氧化物烧结体、溅射用靶及使用该靶得到的氧化物半导体薄膜的制作方法

文档序号:11886959阅读:302来源:国知局

本发明涉及氧化物烧结体、靶及使用该靶得到的氧化物半导体薄膜,更详细地,本发明涉及显示出低载流子浓度和高载流子迁移率的含铟、镓和镁的结晶质的氧化物半导体薄膜、含有适于形成该氧化物半导体薄膜的铟、镓和镁的溅射用靶以及含有适于获得该靶的铟、镓和镁的氧化物烧结体。



背景技术:

薄膜晶体管(Thin Film Transistor,TFT)是场效应晶体管(Field Effect Transistor,下面记作FET)的一种。TFT是具有栅极端子、源极端子和漏极端子作为基本构成的三端子元件,是一种有源元件,可将成膜于基板的半导体薄膜用作电子或空穴移动的沟道层,对栅极端子施加电压而控制流过沟道层的电流,具有对源极端子与漏极端子间的电流进行开关的功能。TFT是目前实际应用最广泛的电子器件,其典型的用途是用作液晶驱动用元件。

作为TFT,目前最广泛应用的是以多晶硅膜或非晶硅膜为沟道层材料的金属-绝缘体-半导体-FET(Metal-Insulator-Semiconductor-FET,MIS-FET)。使用硅的MIS-FET对于可见光而言是不透明的,因此,不能构成透明电路。因此,将MIS-FET用作液晶显示器中的液晶驱动用开关元件时,该器件使得显示器像素的开口率变小。

另外,近年来,伴随着对液晶的高精细化的需求,液晶驱动用开关元件也被要求高速驱动。为实现高速驱动,需要将电子或空穴的迁移率至少比非晶硅更高的半导体薄膜应用于沟道层。

针对这种情况,在专利文献1中,提出了一种透明半绝缘性非晶质氧化物薄膜,其是一种通过气相成膜法进行成膜的、由In、Ga、Zn和O的元素构成的透明非晶质氧化物薄膜,其特征在于,对该氧化物的组成而言,已结晶化时的组成为InGaO3(ZnO)m(m是小于6的自然数),在不添加杂质离子的条件下,具有载流子迁移率(也称作载流子电子迁移率)大于1cm2V-1sec-1并且载流子浓度(也称作载流子电子浓度)为1016cm-3以下的半绝缘性。专利文献1中还提出了一种薄膜晶体管,其特征在于,将所述透明半绝缘性非晶质氧化物薄膜作为沟道层。

但是,在专利文献1中提出的通过溅射法、脉冲激光沉蒸镀法中的任一种气相成膜法进行成膜的、由In、Ga、Zn和O元素构成的透明非晶质氧化物薄膜(a-IGZO膜),虽然显示出约1~10cm2V-1sec-1的范围内的较高的电子载流子迁移率,但是,也指出了非晶质氧化物薄膜本来就容易产生氧缺损,而且针对热等外部因素,电子载流子的状态不一定稳定,这会造成不良影响,在形成TFT等器件时,常常会产生不稳定的问题。

作为解决这种问题的材料,在专利文献2中提出了一种薄膜晶体管,其特征在于,使用一种氧化物薄膜,对于该氧化物薄膜而言,镓固溶于氧化铟中,原子数比Ga/(Ga+In)为0.001~0.12,相对于全部金属原子的铟和镓的含有率为80原子%以上,并且具有In2O3的方铁锰矿结构。并且,还提出了一种氧化物烧结体,作为所述薄膜晶体管的原料,其特征在于,镓固溶于氧化铟中,原子比Ga/(Ga+In)为0.001~0.12,相对于全部金属原子的铟和镓的含有率为80原子%以上,并且具有In2O3的方铁锰矿结构。

但是,还存在如下待解决的课题,在专利文献2的实施例1~8中所述的载流子浓度约为1018cm-3,作为应用于TFT的氧化物半导体薄膜,载流子浓度过高。

另外,在专利文献3中,还提出了一种溅射靶,其含有烧结体,该烧结体含有In、Ga以及Mg,并且含有由In2O3表示的化合物、由In(GaMg)O4表示的化合物、由MgGa2O4表示的化合物以及由In2MgO4表示的化合物中选择的一种以上的化合物。

然而,对于专利文献3的靶而言,由于含有引发电弧的导电性差的Ga2MgO4等相,所以,存在会引起异常放电的问题。

因此,现状是很难开发出不含有引发电弧的上述相的氧化物导电膜用氧化物烧结体和靶。

现有技术文献

专利文献

专利文献1:日本特开2010-219538号公报;

专利文献2:WO2010/032422号公报;

专利文献3:WO2013/005400号公报;

专利文献4:WO2013/014409号公报;

专利文献5:日本特开2012-253372号公报;

非专利文献1:N.Ueda等7人,“New oxide phase with wide band gap and high electroconductivity,MgIn2O4”,Appl.Phys.Lett.61(16),19,October,1992,p.1954-1955;

非专利文献2:M.Orita等4人,“New Transparent Conductive Oxides with YbFe2O4Structure”,JJAP,34,L1550。



技术实现要素:

发明所要解决的问题

本发明的目的在于,提供一种能降低结晶质的氧化物半导体薄膜的载流子浓度的溅射用靶、适于获得该溅射用靶的氧化物烧结体以及使用该靶得到的显示出低载流子浓度和高载流子迁移率的氧化物半导体薄膜。

解决问题的技术方案

本发明人等新发现了:特别是通过在以使氧化物的形式含有以铟和镓的Ga/(In+Ga)比计为0.08以上且小于0.20的镓的氧化物烧结体,含有少量的镁,具体而言,以Mg/(In+Ga+Mg)的比计为0.0001以上且小于0.05的镁,烧结而成的氧化物烧结体实质上由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成,或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成,使用该氧化物烧结体制备的氧化物半导体薄膜的载流子迁移率为10cm2V-1sec-1以上。

即,第一发明为一种氧化物烧结体,其特征在于,以氧化物的形式含有铟、镓以及镁,并且以Ga/(In+Ga)原子数比计的所述镓的含量是0.08以上且小于0.20,并且以Mg/(In+Ga+Mg)原子数比计的所述镁的含量是0.0001以上且小于0.05,并且所述氧化物烧结体由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成,或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成,所述氧化物烧结体实质上不包含In(GaMg)O4相、MgGa2O4相、In2MgO4相、Ga2O3相。

第二发明是如第一发明所述的氧化物烧结体,其中,以Mg/(In+Ga+Mg)原子数比计的所述镁的含量是0.01以上且0.03以下。

第三发明是如第一或第二发明所述的氧化物烧结体,其中,以Ga/(In+Ga)原子数比计的所述镓的含量是0.08以上且0.15以下。

第四发明是如第一至第三发明中任一项所述的氧化物烧结体,其中,实质上不含有镁以外的正二价元素以及铟和镓以外的正三价至正六价的元素。

第五发明是如第一至第四发明中任一项所述的氧化物烧结体,其中,由下述式1定义的β-Ga2O3型结构的GaInO3相的X射线衍射峰强度比在2%以上且45%以下的范围内。

100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]}[%] 式1。

第六发明是一种溅射用靶,其是对第一至第五发明中任一项所述的氧化物烧结体进行加工而获得的。

第七发明是一种结晶质的氧化物半导体薄膜,其是使用第六发明所述的溅射用靶通过溅射法在基板上形成后通过在氧化性环境中的热处理进行结晶化而成的结晶质的氧化物半导体薄膜。

第八发明是如第七发明所述的氧化物半导体薄膜,其中,载流子迁移率是10cm2V-1sec-1以上。

第九发明是如第七或第八发明所述的氧化物半导体薄膜,其中,载流子浓度小于1.0×1018cm-3

发明效果

本发明的氧化物烧结体,以氧化物的形式含有铟和镓,并且以Mg/(In+Ga+Mg)的原子数比计含有0.0001以上且小于0.05的镁,例如,在用作溅射用靶的情况下,能够获得通过溅射成膜而形成且通过热处理而得到的本发明的结晶质的氧化物半导体薄膜。所述结晶质的氧化物半导体薄膜,具有方铁锰矿结构,因含有规定量的镁,而获得抑制载流子浓度的效果。由此,在将本发明的结晶质的氧化物半导体薄膜用于TFT中时,能提高TFT的导通或关断(on/off)性能。在本发明中,不仅能够抑制载流子浓度,而且由于氧化物烧结体实质上由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成,或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成,能够通过溅射成膜而稳定地获得载流子迁移率是10cm2V-1sec-1以上的优异的氧化物半导体膜。因此,本发明的氧化物烧结体、靶以及使用它们获得的氧化物半导体薄膜是在工业上极其有用的。

具体实施方式

下面,针对本发明的氧化物烧结体、溅射用靶以及使用该靶获得的氧化物薄膜进行详细说明。

本发明的氧化物烧结体,其特征在于,以氧化物的形式含有铟、镓和镁,并且以Ga/(In+Ga)原子数比计含有0.08以上且小于0.20的镓,以Mg/(In+Ga+Mg)原子数比计含有0.0001以上且小于0.05的镁。

对于镓含量而言,以Ga/(In+Ga)原子数比计为0.08以上且小于0.20,优选0.08以上且0.15以下。镓与氧的结合力强,并且具有降低本发明的结晶质的氧化物半导体薄膜的氧缺损量的效果。当以Ga/(In+Ga)原子数比计的镓含量小于0.08时,不能充分地获得上述效果。另一方面,当含量大于0.20时,结晶化温度变得过高,因此,需要在高温条件下进行热处理。由此,作为氧化物半导体薄膜,不能达到所需的载流子浓度或者不能改善结晶性,因此,不能获得充分高的载流子迁移率。

对本发明的氧化物烧结体而言,除了含有上述所规定的组成范围的铟和镓以外,还含有镁。以Mg/(In+Ga+Mg)的原子数比计的镁浓度为0.0001以上且小于0.05,优选0.01以上且0.03以下。

对本发明的氧化物烧结体而言,通过添加上述范围内的镁,主要由氧缺陷所生成的电子被中和,通过这一作用,载流子浓度受到抑制,在将本发明的结晶质的氧化物半导体薄膜应用于TFT中时,能改善TFT的导通或关断(on/off)性能。

此外,在本发明的氧化物烧结体中,优选实质上不含有元素M,所述元素M是镁以外的正二价元素以及铟和镓以外的正三价至正六价的元素。所谓实质上不含有是指,以M/(In+Ga+M)的原子数比计的各个单独的元素M为500ppm以下,优选为200ppm以下,更优选为100ppm以下。作为具体的元素M的示例,作为正二价元素,能够例举Cu、Ni、Co、Zn、Ca、Sr、Pb;作为正三价元素,能够例举Al、Y、Sc、B、镧系元素;作为正四价元素,能够例举Sn、Ge、Ti、Si、Zr、Hf、C、Ce;作为正五价元素,能够例举Nb、Ta;作为正六价元素,能够例举W、Mo。

1.氧化物烧结体组织

本发明的氧化物烧结体,优选由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成,或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成。如果氧化物烧结体仅由In2O3相构成,则无论是否含有Mg,例如,与专利文献4(WO2003/014409号公报)中的比较例11同样地产生结节。另一方面,In(GaMg)O4相、MgGa2O4相和In2MgO4相都是高电阻相,因此,会引起电弧、结节的产生。对于In2MgO4相而言,其比电阻约为10-2Ω·cm(非专利文献1),与In2O3相、GaInO3相相比,其电阻高约1~2个数量级,因此,在溅射成膜中易于产生挖掘残留,从而容易产生结节。另外,对于In(GaMg)O4相而言,其比电阻更高,约100Ω·cm(非专利文献2),会导致结节产生。由于MgGa2O4相不含In,所以,比电阻进一步升高,会导致电弧产生。另外,对于使用已生成这些相的氧化物烧结体进行溅射成膜而成的氧化物半导体薄膜而言,In2O3相的结晶性低,载流子迁移率趋向于变低。

镓和镁固溶于In2O3相。另外,镓构成GaInO3相、(Ga,In)2O3相。当固溶于In2O3相时,镓和镁取代作为正三价离子的铟的晶格位置。由于烧结不进行等理由,镓不固溶于In2O3相而形成β-Ga2O3型结构的Ga2O3相是不优选的。Ga2O3相缺乏导电性,因此,会导致异常放电。

对于本发明的氧化物烧结体而言,优选在含有方铁锰矿型结构的In2O3相以外,在由下述式1定义的X射线衍射峰强度比为2%以上且45%以下的范围内只含有β-Ga2O3型结构的GaInO3相、或者含有β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相。

100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]} [%]式1

(式1中,I[In2O3相(400)]表示方铁锰矿型结构的In2O3相的(400)峰强度,I[GaInO3相(111)]表示β-Ga2O3型结构的复合氧化物β-GaInO3相(111)峰强度。)

2.氧化物烧结体的制备方法

本发明的氧化物烧结体,将由氧化铟粉末和氧化镓粉末构成的氧化物粉末以及氧化镁粉末作为原料粉末。

在本发明的氧化物烧结体的制备工序中,在将这些原料粉末进行混合后,进行成型,并通过常压烧结法对成型物进行烧结。本发明的氧化物烧结体组织的生成相很大程度地依赖于氧化物烧结体的各工序中的制备条件,例如,原料粉末的粒径、混合条件以及烧结条件。

本发明的氧化物烧结体的组织,优选以所需的比例由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成,为此,优选将上述各原料粉末的平均粒径设为3μm以下,更优选设为1.5μm以下。如前所述,In2O3相以外,还含有β-Ga2O3型结构的GaInO3相或者β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相,因此,为了抑制这些相的过剩生成,优选将各原料粉末的平均粒径设为1.5μm以下。

氧化铟粉末是ITO(铟-锡氧化物)的原料,在对ITO进行改良的同时,对烧结性优越的微细氧化铟粉末的开发也一直处于推进之中。由于氧化铟粉末作为ITO用原料而大量地继续使用,近来,能获得平均粒径为0.8μm以下的原料粉末。

但是,对于氧化镓粉末、氧化镁粉末而言,与氧化铟粉末相比,它们的用量仍然较少,因此,难以获得平均粒径为1.5μm以下的原料粉末。因此,在只能获得粗大的氧化镓粉末的情况下,需要将它们粉碎至平均粒径为1.5μm以下。

在本发明的氧化物烧结体的烧结工序中,优选使用常压烧结法。常压烧结法是一种简便且工业上有利的方法,从低成本的观点出发也是优选的方法。

在使用常压烧结法的情况下,如前所述,首先制备成型体。将原料粉末加入树脂制罐中,与粘结剂(例如,PVA)等一同在湿式球磨机等中进行混合。在本发明的氧化物烧结体的制备中,为了抑制In2O3相以外的β-Ga2O3型结构的GaInO3相的过剩生成、或者β-Ga2O3型结构的GaInO3相以及(Ga,In)2O3相的过剩生成,或者,为了使β-Ga2O3型结构的Ga2O3相不生成,优选进行18小时以上的上述球磨机混合。此时,作为混合用球,可以使用硬质ZrO2球。在混合后,取出浆料,并进行过滤、干燥、造粒。然后,通过冷等静压机对所得到的造粒物施加9.8MPa(0.1吨/cm2)~294MPa(3吨/cm2)左右的压力而进行成型,形成成型体。

在常压烧结法的烧结工序中,优选设为氧存在的环境,更优选环境中的氧体积分数超过20%。特别地,由于氧体积分数超过20%,氧化物烧结体的密度更进一步升高。在烧结的初始阶段,通过环境中的过剩的氧,成型体表面的烧结首先进行。接着,在成型体内部进行在还原状态下的烧结,最终获得高密度的氧化物烧结体。

在不存在氧的环境中,由于不会首先进行成型体表面的烧结,因此,其结果是不会促进烧结体的高密度化。如果不存在氧,特别是在900~1000℃左右,氧化铟进行分解,生成金属铟,因此,难以获得作为目标的氧化物烧结体。

常压烧结的温度范围优选设为1200℃以上且1550℃以下,更优选在烧结炉内的大气中导入氧气的环境中、在1350℃以上且1450℃以下的温度下进行烧结。烧结时间优选10~30小时,更优选15~25小时。

通过将烧结温度设为上述范围,并将所述平均粒径调整为1.5μm以下的由氧化铟粉末和氧化镓粉末构成的氧化物粉末以及氧化镁粉末作为原料粉末来使用,可获得由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成、或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成的氧化物烧结体。

在烧结温度小于1200℃时,烧结反应不能充分地进行,因此,会产生氧化物烧结体的密度小于6.4g/cm3的问题。另一方面,如果烧结温度超过1550℃,则(Ga,In)2O3相将会显著地形成。与GaInO3相相比,(Ga,In)2O3相的电阻更高,因此,会导致成膜速度下降。如果烧结温度为1550℃以下,即,如果(Ga,In)2O3相为少量时,则不会发生问题。从这种观点出发,优选将烧结温度设为1200℃以上且1550℃以下,更优选设为1350℃以上且1450℃以下。

对于至烧结温度为止的升温速度而言,为了防止烧结体的破裂,并促进脱粘结剂的进行,优选将升温速度设在0.2~5℃/分钟的范围。只要温度在该范围内,则可以根据需要而组合不同的升温速度以升温至烧结温度。在升温过程中,出于促进脱粘结剂、烧结的进行的目的,可以在特定的温度条件下保持一定时间。特别地,为了促进镁固溶于In2O3相中,有效的方法是在1100℃以下的温度条件下保持一定的时间。对保持时间没有特别限定,但是,优选1小时以上且10小时以下。在烧结后,在进行冷却时停止导入氧,优选以0.2~5℃/分钟、特别是以0.2℃/分钟以上且小于1℃/分钟的范围的降温速度将温度降低至1000℃。

3.靶

本发明的靶能够通过将上述氧化物烧结体切断成规定的大小、对表面进行研磨加工、并粘合至背板的方式来获得。对于靶形状而言,优选平板形,但是,也可以为圆筒形。在使用圆筒形靶的情况下,优选抑制由靶旋转而导致的颗粒的产生。

由于作为溅射用靶而使用,本发明的氧化物烧结体的密度优选为6.4g/cm3以上,当以Ga/(In+Ga)原子数比计的镓的含量为0.08以上且小于0.20的情况下,氧化物烧结体的密度优选6.8g/cm3以上。当密度小于6.4g/cm3时,会导致批量生产使用时产生结节,因此,不优选。

4.氧化物半导体薄膜及其成膜方法

本发明的结晶质的氧化物半导体薄膜,通过如下方式获得:使用所述溅射用靶,并通过溅射法在基板上暂时形成非晶质的薄膜,接着实施热处理。

所述溅射用靶能够由氧化物烧结体来获得,但是,所述氧化物烧结体组织,即,基本由方铁锰矿型结构的In2O3相和β-Ga2O3型结构的GaInO3相构成的组织很重要。为了获得本发明的结晶质的氧化物半导体薄膜,重要的是暂时形成的非晶质的氧化物薄膜的结晶化温度要充分高,但是,氧化物烧结体组织与此相关。即,如本发明所使用的氧化物烧结体那样,在不仅包含方铁锰矿型结构的In2O3相,还包含β-Ga2O3型结构的GaInO3相的情况下,由所述氧化物烧结体而获得的成膜后的氧化物薄膜表现出高结晶化温度,即,表现优选为250℃以上、更优选为300℃以上、进一步优选为350℃以上的结晶化温度,形成稳定的非晶质。相对于此,例如,如专利文献2(WO2010/032422号公报)所公开的那样,当氧化物烧结体仅由方铁锰矿型结构的In2O3相构成时,成膜后的氧化物薄膜的结晶化温度低,约为190~230℃,有时不会形成完全非晶质。这是因为,在此情况下,在成膜后已经生成微晶,基于湿式蚀刻法进行的图案加工由于残渣的生成而变得困难。

在非晶质的薄膜形成工序中,常规的溅射法被加以使用,但是,特别地,如果使用直流(DC)溅射法,则成膜时的热影响小,能进行高速成膜,因此,在工业上有利。在通过直流溅射法来形成本发明的氧化物半导体薄膜时,作为溅射气体,优选使用由非活性气体与氧所组成的混合气体,特别是由氩气与氧所组成的混合气体。另外,优选将溅射装置的腔室内的压力设定为0.1~1Pa,特别是设定为0.2~0.8Pa,进行溅射。

对于基板而言,代表性的基板为玻璃基板,优选无碱玻璃基板,但是,也能够使用树脂板、树脂膜中能承受上述工艺温度的基板。

对于所述的非晶质的薄膜形成工序而言,例如,能够在进行真空排气至压力为2×10-4Pa以下后,导入由氩气与氧组成的混合气体,将气体压力设为0.2~0.5Pa,施加直流电力使相对于靶面积的直流电力即直流功率密度为1~7W/cm2左右的范围,从而产生直流等离子体,并实施预溅射。优选在进行5~30分钟的所述预溅射后,根据需要,在对基板位置进行修正的基础上进行溅射成膜。在进行溅射成膜时,为提高成膜速度而在可容许的范围内提高施加的直流电力。

本发明的结晶质的氧化物半导体薄膜是在形成所述非晶质薄膜后,通过对非晶质薄膜进行热处理、使其结晶化而获得的。热处理条件为氧化性环境,结晶化温度以上的温度。作为氧化性环境,优选含有氧、臭氧、水蒸汽、或者氮氧化物等环境。热处理温度优选250~600℃,更优选300~550℃,进一步优选350~500℃。对于热处理时间而言,保持在热处理温度的时间优选为1~120分钟,更优选为5~60分钟。作为直至结晶化的方法,存在如下方法:例如,在室温附近等低温条件下或者100~300℃的基板温度条件下,暂时形成非晶质膜,然后,在结晶化温度以上的条件下进行热处理,使氧化物薄膜结晶化;或者,通过将基板加热至氧化物薄膜的结晶化温度以上来形成结晶质的氧化物薄膜。在这两种方法中,加热温度大致设在600℃以下即可,例如,与专利文献5(日本特开2012-253372号公报)所述的公知的半导体工艺相比,在处理温度上没有显著差异。

所述非晶质薄膜和结晶质的氧化物半导体薄膜的铟、镓和镁的组成与本发明的氧化物烧结体的组成基本相同。即,是一种以氧化物的形式含有铟和镓并且含有镁的结晶质的氧化物半导体薄膜。以Ga/(In+Ga)原子数比计的镓的含量为0.08以上且小于0.20,以Mg/(In+Ga+Mg)原子数比计的所述镁的含量为0.0001以上且小于0.05。以Ga/(In+Ga)原子数比计的镓的含量更优选为0.08以上且0.15以下。另外,以Mg/(In+Ga+Mg)原子数比计的所述镁的含量更优选为0.01以上且0.03以下。

本发明的结晶质的氧化物半导体薄膜,优选仅由方铁锰矿结构的In2O3相构成。在In2O3相中,与氧化物烧结体同样地,镓置换固溶于正三价离子铟的晶格位置,并且镁也进行置换固溶。对于本发明的氧化物半导体薄膜而言,主要由氧缺陷而生成的载流子电子通过添加镁而被中和,通过该中和作用,载流子浓度降低至小于1.0×1018cm-3,更优选3.0×1017cm-3以下。已知含有大量铟的氧化物半导体薄膜在载流子浓度为4.0×1018cm-3以上时将会处于简并态(縮退状態),在沟道层中应用了该氧化物半导体薄膜的TFT不再显示常断特性。因此,对于本发明的结晶质的氧化物半导体薄膜而言,由于载流子浓度被控制在上述TFT可显示常断特性的所述范围内,所以,是理想的。另一方面,虽然载流子迁移率在载流子浓度下降的同时有减少的倾向,但是,载流子迁移率优选为10cm2V-1sec-1以上,更优选为15cm2V-1sec-1以上。

对于本发明的结晶质的氧化物半导体薄膜,通过湿式蚀刻或干式蚀刻进行用于TFT等用途所需的微细加工。在低温条件下暂时形成非晶质膜,然后在结晶化温度以上进行热处理,使氧化物膜结晶化,在此情况下,在非晶质膜形成后,能够实施基于使用弱酸的湿式蚀刻进行的微细加工。只要是弱酸,基本上都能够使用,但是,优选以草酸为主要成分的弱酸。例如,能够使用关东化学制造的ITO-06N等。在通过将基板加热至氧化物薄膜的结晶化温度以上来对结晶质的氧化物薄膜进行成膜时,例如,能够应用基于如氯化铁水溶液那样的强酸的湿式蚀刻或干式蚀刻,但是,如果顾及对TFT周围造成的损伤,则优选干式蚀刻。

本发明的结晶质的氧化物半导体薄膜的膜厚不受限定,但是为10~500nm,优选为20~300nm,进一步优选为30~100nm。如果小于10nm,则不能获得充分的结晶性,其结果是,不能实现高载流子迁移率。另一方面,如果大于500nm,则会产生生产性的问题,因此,不优选。

另外,对于本发明的结晶质的氧化物半导体薄膜而言,在可见光区域(400~800nm)的平均透过率优选80%以上,更优选85%以上,进一步优选90%以上。在应用于透明TFT时,如果平均透过率小于80%,则作为透明显示设备的液晶元件、有机EL元件等的光提取效率下降。

实施例

下面,使用本发明的实施例进一步详细说明本发明,但是,本发明并不受这些实施例的限定。

<氧化物烧结体的评价>

通过ICP发光分光分析法对所得到的氧化物烧结体的金属元素的组成进行测定。使用所得到的氧化物烧结体的端材,利用X射线衍射装置(飞利浦公司(フィリップス)制造),基于粉末法对生成相进行鉴定。

<氧化物薄膜的基本特性评价>

通过ICP发光分光分析法对所得到的氧化物薄膜的组成进行测定。氧化物薄膜的膜厚通过表面粗糙度计(科磊公司(テンコール社)制造)进行测定。成膜速度根据膜厚与成膜时间进行计算。氧化物薄膜的载流子浓度和载流子迁移率通过霍尔效应测量装置(日本东阳科技公司(东阳テクニカ)制造)来求出。膜的生成相通过X射线衍射测定进行鉴定。

(烧结体的制备及评价)

调节氧化铟粉末、氧化镓粉末以及氧化镁粉末,以使它们的平均粒径为1.5μm以下,从而制成原料粉末。将这些原料粉末调配成如表1和表2中的实施例和比较例的Ga/(In+Ga)原子数比、Mg/(In+Ga+Mg)原子数比,与水一同加入树脂制罐中,通过湿式球磨机进行混合。此时,使用硬质ZrO2球,并设定混合时间为18小时。在混合后,取出浆料,进行过滤、干燥、造粒。通过冷等静压机对造粒物施加3吨/cm2的压力进行成型。

接着,以下述方式对成型体进行烧结。相对于炉内容积每0.1m3以5升/分钟的比例,在烧结炉内的大气中导入氧,在此环境中,以1000~1550℃的烧结温度进行20小时的烧结。此时,以1℃/分钟的速度进行升温,在烧结后进行冷却时,停止导入氧,以10℃/分钟的速度降温至1000℃。

通过ICP发光分光分析法,对所得到的氧化物烧结体进行组成分析,在所有的实施例中都确认了:对于金属元素而言,所得到的氧化物烧结体的组成与原料粉末的配合时所添加的组成基本相同。

接着,通过X射线衍射测定对氧化物烧结体的相进行鉴定,如表1和表2所示,仅确认了方铁锰矿型结构的In2O3相的衍射峰,或者仅确认了方铁锰矿型结构的In2O3相、β-Ga2O3型结构的GaInO3相及(Ga,In)2O3相的衍射峰。

另外,在含有β-Ga2O3型结构的GaInO3相的情况下,将由下述式1定义的β-Ga2O3型结构的GaInO3相的X射线衍射峰强度比示于表1和表2中。

100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]}[%] 式1。

表1

表2

将氧化物烧结体加工成直径152mm、厚度5mm的大小,用杯形磨石对溅射面进行研磨,使最大高度Rz为3.0μm以下。使用金属铟将已加工的氧化物烧结体结合于无氧铜制背板,从而制成溅射用靶。

(溅射成膜评价)

使用实施例和比较例的溅射用靶和无碱玻璃基板(康宁公司(コーニング)制EagleXG),不加热基板而在室温条件下通过直流溅射进行成膜。在装备了不具有电弧抑制功能的直流电源的直流磁控溅射装置(日本特机公司(トッキ)制造)的阴极上安装上述溅射用靶。此时将靶-基板(保持部件)间的距离固定为60mm。进行真空排气至压力为1×10-4Pa以下,然后,根据各靶中的镓含量导入氩气和氧的混合气体,以达到适当的氧的比率,将气压调节成0.6Pa。施加直流电力300W(1.64W/cm2)来产生直流等离子体。进行10分钟的预溅射后,在溅射用靶的正上方,即,在静止相向位置设置基板,形成膜厚为50nm的氧化物薄膜。确认了所得到的氧化物薄膜的组成与靶基本上相同。另外,X射线衍射测定的结果确认为非晶质。使用快速热退火(RTA,Rapid Thermal Annealing)装置,在大气中,在300~700℃温度范围对所得到的非晶质氧化物薄膜进行30分钟以内的热处理。X射线衍射测定的结果确认了,热处理后的氧化物薄膜已结晶化,以In2O3相(111)为主峰。对所得到的结晶质的氧化物半导体薄膜进行霍尔效应测定,求出载流子浓度以及载流子迁移率。将所得到的评价结果统一记载在表3和表4中。

表3

表4

(结节生成的评价)

对于实施例2和比较例1、2、4、6中的溅射用靶,对由模拟批量生产的溅射成膜所导致的结节的生成进行评价。溅射装置使用装备了不具有电弧抑制功能的直流电源的负载锁定式通过型磁控溅射装置(ロードロック式通過型マグネトロンスパッタリング装置)(日本优贝克公司(アルバック)制造)。靶使用纵5英寸、横15英寸的矩形靶。对溅射成膜评价的溅射室进行真空排气至气压为7×10-5Pa后,根据各靶中的镓含量导入氩气和氧的混合气体,以达到适当的氧的比率,将气压调节成0.6Pa。选择这种条件的溅射气体的理由是:当溅射室的真空度大于1×10-4Pa而腔室内的水分压高、或者添加氢气时,不再能够进行有效的评价。在ITO等中,已知如果来自于水分、氢气的H+被吸入膜中,膜的结晶化温度变高,附着于靶的非侵蚀部分的膜将易于非晶质化。其结果是,由于膜应力下降,将很难从非侵蚀部分剥落,难以产生结节。对于直流电力而言,考虑到在批量生产中通常采用的直流功率密度约为3~6W/cm2,从而将直流电力设为2500W(直流功率密度为5.17W/cm2)。

结节产生的评价是在上述条件下进行50kWh的连续溅射放电后,观察靶表面,对是否产生了结节进行评价。

评价

如表1和表2所示,在实施例1~17中,以Ga/(In+Ga)原子数比计的镓含量为0.08以上且小于0.20,以Mg/(In+Ga+Mg)原子数比计的镁的含量为0.0001以上且小于0.05,在此情况下,由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成,或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成。

相对于此,对于比较例1的氧化物烧结体而言,以Ga/(In+Ga)原子数比计的镓含量小于0.08,对于比较例2、3的氧化物烧结体而言,以Mg/(In+Ga+Mg)原子数比计的镁的含量小于0.0001,因此,成为仅由方铁锰矿型结构的In2O3相构成的氧化物烧结体。即,不能获得本发明的由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相构成、或者由方铁锰矿型结构的In2O3相以及作为In2O3相以外的生成相的β-Ga2O3型结构的GaInO3相与(Ga,In)2O3相构成的氧化物烧结体。另外,对于比较例4~6的氧化物烧结体而言,以Mg/(In+Ga+Mg)原子数比计的镁的含量为0.05以上,因此,方铁锰矿型结构的In2O3相以外的生成相还含有In(GaMg)O4相、MgGa2O4相,不能获得作为本发明的目标的氧化物烧结体。

另外,在实施例2以及比较例1、2、4、6的结节产生评价中,在作为本发明的氧化物烧结体的实施例2的靶中,没有观察到结节的产生。另一方面,在比较例1、2、4、6的靶中,观察到大量结节的产生。认为这是由于:在比较例1、2中,虽然烧结体密度高,但是烧结体组织仅由方铁锰矿型结构的In2O3相构成;在比较例4、6中,烧结体密度低,而且其含有电阻高并在溅射中容易挖掘残留的In(GaMg)O4相。另外,由于比较例6的烧结体中含有MgGa2O4相,所以,与实施例2、其他比较例1、2、4相比,产生电弧的频度更高。

另外,在表3和表4中示出了氧化物半导体薄膜的特性,所述氧化物半导体薄膜是以氧化物的形式含有铟、镓和镁的结晶质的氧化物半导体薄膜,并且,以Ga/(In+Ga)原子数比计的镓含量被控制在0.08以上且小于0.20,以Mg/(In+Ga+Mg)原子数比计的镁含量被控制在0.0001以上且小于0.05。

可知实施例中的氧化物半导体薄膜都仅由方铁锰矿型结构的In2O3相构成。另外,对于实施例的氧化物半导体薄膜而言,可知载流子浓度小于1.0×1018cm-3,载流子迁移率为10cm2V-1sec-1以上。

其中,以Ga/(In+Ga)原子数比计的镓含量为0.08以上且0.15以下、以Mg/(In+Ga+Mg)原子数比计的镁含量为0.01以上且0.03以下的实施例2~4、7、9、11、12的氧化物半导体薄膜,显示出载流子浓度为3.0×1017cm-3、载流子迁移率为15cm2V-1sec-1以上的优异的特性。

相对于此,比较例1~3的氧化物半导体薄膜是仅由方铁锰矿型结构的In2O3相构成的氧化物半导体薄膜,但是,载流子浓度大于1.0×1018cm-3,不适合用于TFT的活性层。相对于此,在比较例4、5的氧化物半导体薄膜中,以Mg/(In+Ga+Mg)原子数比计的镁的含量为0.05以上,载流子迁移率小于10cm2V-1sec-1,因此,不能获得作为本发明的目标的氧化物半导体薄膜。另外,在比较例6的氧化物半导体薄膜中,以Ga/(In+Ga)原子数比计的镓含量为0.20以上,载流子迁移率小于10cm2V-1sec-1,因此,不能获得作为本发明的目标的氧化物半导体薄膜。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1