一种导热性优异的氮化硅陶瓷材料及其制备方法与流程

文档序号:13705010阅读:298来源:国知局
技术领域本发明涉及陶瓷材料技术领域,具体是一种导热性优异的氮化硅陶瓷材料及其制备方法。

背景技术:
陶瓷的发展史是中华文明史的一个重要的组成部分,中国作为四大文明古国之一,为人类社会的进步和发展做出了卓越的贡献,其中陶瓷的发明和发展更具有独特的意义,中国历史上各朝各代有着不同艺术风格和不同技术特点。随着近代科学技术的发展,近百年来又出现了许多新的陶瓷品种。它们不再使用或很少使用粘土、长石、石英等传统陶瓷原料,而是使用其他特殊原料,甚至扩大到非硅酸盐,非氧化物的范围,并且出现了许多新的工艺。其中氮化硅陶瓷就是一种新的陶瓷品种。氮化硅陶瓷材料热膨胀系数低、导热率高,故其耐热冲击性极佳。热压烧结的氮化硅加热到l000℃后投入冷水中也不会破裂。在不太高的温度下,氮化硅陶瓷材料具有较高的强度和抗冲击性,但在1200℃以上会随使用时间的增长而出现破损,使其强度降低,在1450℃以上更易出现疲劳损坏,所以氮化硅陶瓷材料的使用温度一般不超过1300℃。由于氮化硅陶瓷材料的理论密度低,比钢和工程超耐热合金钢轻得多,所以,在那些要求材料具有高强度、低密度、耐高温等性质的地方用氮化硅陶瓷材料去代替合金钢是再合适不过了。美国专利US5908796提出氮化硅与碳化钦复相的材料可以得到更高的硬度、韧性,具有更优秀的性能。中国专利CN1760158A进一步提出,在氮化硅一碳化钦复相材料中加入一定量的纳米碳化钦颗粒可以提高材料性能。但这些氮化硅陶瓷材料在导热性能方便的表现并不优异,限制了其在高温领域的应用。

技术实现要素:
本发明的目的在于提供一种导热性优异的氮化硅陶瓷材料及其制备方法,以解决上述背景技术中提出的问题。为实现上述目的,本发明提供如下技术方案:一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉76-85份、硼化钛纤维5-10份、纳米铜粉8-12份、氧化铝粉末6-9份、羟乙基纤维素3-6份。作为本发明进一步的方案:由以下按照重量份的原料制成:硅粉78-83份、硼化钛纤维6-9份、纳米铜粉9-11份、氧化铝粉末7-8份、羟乙基纤维素4-5份。作为本发明再进一步的方案:由以下按照重量份的原料制成:硅粉81份、硼化钛纤维8份、纳米铜粉10份、氧化铝粉末7份、羟乙基纤维素5份。所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为8-10h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1000-1050℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为900-950℃,压力为100-120MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1210-1250℃,氮气气压为2-5MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合12-15h,获得胚料;6)将胚料通过等静压成型,成型压力为150-180MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在8-10MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1450-1480℃,保温2-4h,然后以1℃/min升温至1650-1700℃,保温2h后,再降温至1200-1250℃,保温1-2h。与现有技术相比,本发明的有益效果是:本发明制备的导热性优异的氮化硅陶瓷材料,其热导率高达69-83W/(m*K),高于现有的氮化硅陶瓷材料,导热性能优异,有利于拓展氮化硅陶瓷材料在高温领域的应用范围。本发明制备的导热性优异的氮化硅陶瓷材料,其抗弯强度为407-421MPa,断裂韧性为6.21-6.53Pa·m1/2,力学性能良好,能够满足高温领域对氮化硅陶瓷材料力学性能的要求。具体实施方式下面结合具体实施方式对本发明的技术方案作进一步详细地说明。实施例1一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉76份、硼化钛纤维5份、纳米铜粉8份、氧化铝粉末6份、羟乙基纤维素3份。本实施例中所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为8h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1000℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为900℃,压力为100MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1210℃,氮气气压为2MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合12h,获得胚料;6)将胚料通过等静压成型,成型压力为150MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在8MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1450℃,保温2h,然后以1℃/min升温至1650℃,保温2h后,再降温至1200℃,保温1h。实施例2一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉85份、硼化钛纤维10份、纳米铜粉12份、氧化铝粉末9份、羟乙基纤维素6份。本实施例中所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为10h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1050℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为950℃,压力为120MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1250℃,氮气气压为5MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合15h,获得胚料;6)将胚料通过等静压成型,成型压力为180MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在10MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1480℃,保温4h,然后以1℃/min升温至1700℃,保温2h后,再降温至1250℃,保温2h。实施例3一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉81份、硼化钛纤维8份、纳米铜粉10份、氧化铝粉末7份、羟乙基纤维素5份。本实施例中所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为9h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1025℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为925℃,压力为110MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1230℃,氮气气压为4MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合13h,获得胚料;6)将胚料通过等静压成型,成型压力为165MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在9MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1460℃,保温3h,然后以1℃/min升温至1680℃,保温2h后,再降温至1220℃,保温1.5h。实施例4一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉78份、硼化钛纤维10份、纳米铜粉9份、氧化铝粉末9份、羟乙基纤维素6份。本实施例中所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为10h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1050℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为910℃,压力为120MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1230℃,氮气气压为5MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合14h,获得胚料;6)将胚料通过等静压成型,成型压力为180MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在10MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1480℃,保温3h,然后以1℃/min升温至1650℃,保温2h后,再降温至1220℃,保温2h。实施例5一种导热性优异的氮化硅陶瓷材料,由以下按照重量份的原料制成:硅粉83份、硼化钛纤维10份、纳米铜粉10份、氧化铝粉末8份、羟乙基纤维素5份。本实施例中所述导热性优异的氮化硅陶瓷材料的制备方法,步骤如下:1)称取硅粉、硼化钛纤维和氧化铝粉末,球磨混合均匀,球磨时间为10h,获得第一混合粉末;2)将第一混合粉末在氮气氛围下进行煅烧,煅烧温度为1050℃,获得煅烧产物;3)将煅烧产物进行热等静压处理,处理温度为900℃,压力为105MPa,获得热等静压产物;4)将热等静压产物在氮气氛围下进行烧结,烧结温度为1250℃,氮气气压为3MPa,获得第一烧结产物;5)称取纳米铜粉和羟乙基纤维素,并与第一烧结产物合并,球磨混合15h,获得胚料;6)将胚料通过等静压成型,成型压力为180MPa,成型后获得素坯;7)将素坯经过干燥后,放入热压烧结炉内,在9MPa的氮气氛围下进行烧结,获得导热性优异的氮化硅陶瓷材料,烧结方法为:先以4℃/min升温至1450℃,保温4h,然后以1℃/min升温至1660℃,保温2h后,再降温至1250℃,保温1.5h。对实施例1-5制备的导热性优异的氮化硅陶瓷材料进行性能测试,测试结果如表1所示。表1导热性优异的氮化硅陶瓷材料的性能测试表抗弯强度(MPa)断裂韧性(Pa·m1/2)热导率(W/(m*K))实施例14106.2169实施例24076.3475实施例34206.5383实施例44126.4878实施例54216.5277本发明制备的导热性优异的氮化硅陶瓷材料,其热导率高达69-83W/(m*K),高于现有的氮化硅陶瓷材料,导热性能优异,有利于拓展氮化硅陶瓷材料在高温领域的应用范围。本发明制备的导热性优异的氮化硅陶瓷材料,其抗弯强度为407-421MPa,断裂韧性为6.21-6.53Pa·m1/2,力学性能良好,能够满足高温领域对氮化硅陶瓷材料力学性能的要求。上面对本发明的较佳实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1