一种聚集太阳能催化合成氨的方法及其催化剂与流程

文档序号:13681204阅读:716来源:国知局
一种聚集太阳能催化合成氨的方法及其催化剂与流程

本发明属于合成氨技术领域,涉及太阳能的利用,具体涉及一种聚集太阳能催化氮气和氢气合成氨的技术及其相关催化剂。



背景技术:

氨气是一种重要的化工和能源材料。氮原子是生物分子的重要组成元素,因而是药剂、肥料的必要成分,同时氮原子在非生物领域如染料、炸药和树脂也有广泛应用,而制备以上物质都需要以氨气为原料;氨气裂解可产生氢气,因此氨气也作为一种储氢材料广泛应用于能源领域。

通过空气中的氮气合成氨被誉为是20世纪最伟大的科学进展,每年有超过1%地球的总能量用于合成氨。目前最主要的合成氨方式是haber-bosch循环:氮气和氢气为反应气,高温高压反应条件下,基于fe基或者ru基催化剂的热催化技术。但热催化(300-550摄氏度,15-25mpa)需要消耗大量化石能源,化石能源燃烧又导致温室气体二氧化碳的排放。面对全球日益受关注的能源问题和环境问题,节能减排始终是合成氨工业面临的重大挑战。

太阳能是一种清洁廉价的可再生能源,是地球上大部分能量的最终来源,直接利用太阳光具有巨大的应用潜力。在我国,太阳光光致热效果已经被用于光热发电、太阳能热水器等行业。然而,利用太阳光驱动化学反应依然面临极大挑战。近年来出现的光热催化技术能有效利用太阳光中全光谱范围内的光波,既利用高频波段激发半导体产生光生载流子实现光催化反应,也利用载流子复合所产生的热能和太阳光中红外波段产生的热能促进热反应,从而有效提高光能利用率和催化反应效率。然而,现有的光热催化技术依然无法实现常压下氨的合成。这主要是由于氮气中氮氮三键非常稳定(键能946千焦/摩尔),不能被文献报道的催化剂活化,专利cn104016825a公开了一种含fe或ru的催化剂,但其是用于二氧化碳转化制备有机燃料,无法用于催化氮气和氢气合成氨反应(结果具体见表1)。

由此,如能开发一种将太阳能高效吸收利用进行催化氮气和氢气制备氨气的技术,对于环境和能源意义重大,并且能降低生产成本,具有巨大的商业化前景。



技术实现要素:

本发明所要解决的技术问题是针对现有技术的不足提供一种聚集太阳能催化氮气和氢气合成氨的方法及其催化剂。本发明以太阳光作为能源合成氨,能充分利用太阳能中各波段的光,达到高效利用太阳能催化合成氨目的,且不需要消耗化石能源或者电能,聚集太阳能催化常压合成氨的性能优异,表现出光和热的协同催化效果。本发明的催化剂能够有效利用太阳光的能量,实现反应温度100-800摄氏度自由调控,满足合成氨生产需求。利用本发明的催化剂,以太阳光作为能源合成氨,能缓解目前热催化能耗大、成本高的问题。

本发明采用的技术方案是:

一种聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:将催化剂放于反应装置中,通入氮气和氢气,然后在聚集的太阳光照射下,控制催化剂表面温度达到300-550摄氏度,进行氮气和氢气合成氨反应。通过聚集方式将太阳光的光能和热能汇聚到催化剂表面,可解决太阳光能量密度低问题,为氮气和氢气反应合成氨过程提供能量。

按上述方案,所述的催化剂以无定型、富电子、表面无序的黑色纳米tio2-z(0<z<2)为载体材料,以fe或ru的单质纳米晶为活性组分,活性组分负载在载体材料上。

按上述方案,所述的催化剂还包括碱金属或碱土金属k、rb、cs、mg、ca、sr、ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。

按上述方案,所述的碱金属或碱土金属促进剂为k、rb、cs、mg、ca、sr、ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐。

按上述方案,所述氮气和氢气的体积比为1:3。

按上述方案,所述活性组分的尺寸在1-20纳米。

按上述方案,所述催化剂具有50-100平方米/克的比表面积。

按上述方案,所述无定型、富电子、表面无序的黑色纳米tio2-z是将纳米tio2和硼氢化钠按质量比为1:0.5-1:8研磨混合均匀,于马弗炉370-420℃密闭加热,然后取出急速冷却后,后处理而得。所述的后处理为用水清洗多次,低温烘干。

按上述方案,所述的活性组分为fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为ru时,用量占载体材料质量百分比为1%-8%。

提供一种催化剂,所述的催化剂以无定型、富电子、表面无序的黑色纳米tio2-z(0<z<2)为载体材料,以fe或ru的单质纳米晶为活性组分,活性组分负载在载体材料上。

按上述方案,所述的催化剂还包括碱金属或碱土金属k、rb、cs、mg、ca、sr、ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。

按上述方案,所述的碱金属或碱土金属促进剂为k、rb、cs、mg、ca、sr、ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐。

按上述方案,所述的活性组分为fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为ru时,用量占载体材料质量百分比为1%-8%。

按上述方案,所述活性组分的尺寸在1-20纳米。

按上述方案,所述催化剂具有50-100平方米/克的比表面积。

按上述方案,所述无定型、富电子、表面无序的黑色纳米tio2-z是将纳米tio2和硼氢化钠按质量比为1:0.5-1:8研磨混合均匀,于马弗炉370-420℃密闭加热,然后取出急速冷却后,后处理而得。所述的后处理为用水清洗多次,低温烘干。

提供一种上述催化剂的制备方法,其特征在于催化剂的制备可采用浸渍负载-高温氢气还原或液相还原-促进剂负载方法,即将活性组分负载在基底材料上,然后经高温氢气还原或液相还原得到活性组分/tio2-z,,然后根据需要再进行促进剂的负载,具体步骤如下:

将纳米tio2和硼氢化钠按质量比为1:0.5-8研磨混合均匀,于马弗炉密闭加热至370-420℃,然后取出急速冷却后,经后处理得到载体材料tio2-z(0<z<2);

将载体材料浸渍在一定量的fe、ru的前驱体溶液中,超声混合后烘干,所得的样品通过高温氢气还原或液相还原得到活性组分/tio2-z,然后根据需要将所得的样品浸渍在促进剂溶液中并于非氧化气氛中干燥或真空干燥得到催化剂样品。

按上述方案,所述fe、ru的前驱体为fe、ru的氯化物、硝酸盐、羰基化物,配制前驱体溶液用溶剂为水、丙酮或四氢呋喃。所述的前驱体为fe、ru氯化物时,将前驱体样品还原后用去离子水多次洗涤后干燥,充分除去氯离子。

按上述方案,所述还原采用高温氢气还原时,采用太阳光供热,在催化装置中利用合成氨的反应气氛还原活性组分,具体为:将浸渍了活性组分前驱体的载体材料放置在反应器中,聚集太阳光使催化剂表面温度到300-550摄氏度,通入合成氨的反应原料气氮气和氢气的混合气或者氢气还原得到活性组分/tio2-z催化剂。还原时间一般可为0.1-2小时。

按上述方案,所述还原为液相还原时,液相还原所用还原剂为nabh4,还原时间为2-8小时。

按上述方案,所述促进剂溶液为促进剂的乙醇或者乙二醇溶液,所述浸渍了促进剂溶液的样品放于反应装置中,通入合成氨的反应原料气氮气和氢气的混合气或氮气中利用会聚太阳光照射烘干。

本发明的优点是:

1.环境友好低成本的高效催化过程。本发明能充分利用太阳能中各波段的光,达到高效利用太阳能催化合成氨目的,不需要消耗化石能源或者电能,是对热催化haber-bosch循环的革新升级,是一种全新的太阳能催化的haber-bosch循环,聚集太阳能催化常压合成氨的性能可达到32.2毫升氨/(克催化剂*小时),表现出光和热的协同催化效果。

2.基底材料对光吸收增强作用以及对活性组分的活性增强作用。本发明以表面无序、富电子的非化学计量比化合物tio2-z作为基底能够增强催化剂利用太阳光的效率,同时表面无序结构和氧空位的存在为活性组分的负载、均匀分散、活性组分-基底相互作用提供支持,使得本发明的催化剂拥有一般催化剂不具备的合成氨催化活性。

3.聚集太阳光的催化技术和促进剂稳定催化剂的活性。无序结构是催化性能的保证,但是无序结构在高温下易发生重结晶而不利于保持。本发明的催化剂具有良好的光致热转换能力,表面温度在光照下急剧升高,而在关灯时温度急剧下降,在氢气存在的氛围中保证材料氧空位的稳定存在,快速的温度变化和材料氧空位的保持使得无序结构再生和循环;碱金属和碱土金属助剂不仅从电子结构上促进催化剂性能,而且具有结构助剂的功能,使得基底材料无序结构稳定。进而基底无序结构的保持也有利于稳定活性组分,从而稳定催化剂的活性。

综上所述,本发明提供的催化剂能有效利用太阳中0.2-2.5微米全光谱范围内的光波,表现出较高的光热转换能力和较高的催化合成氨性能。通过聚集方式将太阳光的光能和热能汇聚到催化剂表面,为氮气和氢气反应生成氨提供驱动力,实现常压合成氨,且在光和热的协同催化作用使得同温度下聚集太阳光催化比传统热催化性能更高;采用表面无序的纳米tio2-z为基底材料不仅增强了催化剂利用太阳光的效率,而且增强并稳定了活性组分的催化能力;催化剂的急速升温降温能力保持了催化剂的结构,稳定了催化剂性能。由于在催化剂活性组分还原和合成氨催化过程中都使用聚集的太阳光供能,使得整个过程能耗低、清洁环保,解决了合成氨工业面临的节能减排问题,因而很可能是下一代合成氨工业技术,具有商业化前景。

附图说明

图1tio2-z的x射线衍射图谱;

图2tio2-z的高分辨透射电镜图;

图3tio2-z的顺磁电子共振图谱,其中g为电子顺磁共振因子;

图4为ru/tio2-z合成氨催化剂的透射电镜照片,图4左图显示ru纳米颗粒均匀负载在载体tio2-z上,右图为单个ru纳米颗粒的细节图;

图5为k/ru/tio2-z合成氨催化剂的近红外-可见-紫外吸收光谱;

图6为k/ru/tio2-z合成氨催化剂在聚集太阳光下的光照升温曲线和闭光降温曲线;

图7k/ru/tio2-z循环反应6次后的透射电镜照片。

具体实施方式

实施例1

碱金属、碱土金属为促进剂,ru为活性组分负载在黑色tio2-z的催化剂制备及其聚集太阳光催化合成氨

称取1克纳米氧化钛和2克硼氢化钠,充分研磨混合,将所得产物置于马弗炉,以10摄氏度/分钟升温到370摄氏度,在370摄氏度时将坩埚从马弗炉内取出至室温空气环境快速降温,将固体产物转移至烧杯加入100毫升去离子水静置1小时,过滤所得固体用去离子水清洗,将所得固体放置于真空干燥箱100摄氏度4小时烘干,得到载体黑色tio2-z固体,载体tio2-z的x射线衍射图谱见图1,x射线衍射图谱中无明显峰表明材料结晶性差或者无结晶性,载体tio2-z的高分辨透射电镜图见图2,通过紊乱的晶格条纹可以看出材料结晶性差,整体呈现无序状态,载体材料的电子顺磁共振图谱见图3,在g值为2.0附近的峰表明材料含有丰富的氧空位,而无序结构和氧空位都使得材料富含电子。

称取1克载体黑色tio2-z,十二羰基三钌以其中的钌元素含量计,按3%(可在1%-8%范围内变动)的质量比量取配置好的十二羰基三钌的四氢呋喃或者丙酮溶液,将二者混合后蒸干,将蒸干得到的黑色固体在管式炉中真空干燥1小时,将所得的固体在反应器中,聚集太阳光使催化剂表面温度到400摄氏度左右,氢气气氛下(n2:h2=1:3,流量为10毫升/分钟)还原催化剂1小时,得到ru/tio2-z催化剂,所制备的催化剂为黑色或深黑灰色。透射电镜照片见图4,图4左图显示ru纳米颗粒均匀负载在载体tio2-z上,右图为单个ru纳米颗粒的细节图,透射电镜观察到ru颗粒尺寸在1-20纳米范围内。

称取如上制备的ru/tio2-z催化剂1克,按照所需比例(促进剂和活性组分的比例10:1-1:100)量取koh的乙醇溶液。将促进剂与催化剂充分混合后置于反应釜中,于聚集太阳光下,惰性气氛(氮气或者氮氢混合气,20毫升/分钟)、温度为100度左右干燥样品,所得样品即为最终合成氨的催化剂,催化剂的比表面积为84平方米/克的比表面积。

用配置好的rucl3、ru(no3)3水溶液也能制得ru负载在黑色tio2-z的催化剂,在利用含cl前驱体时,所制得的催化剂需要用去离子水多次清洗以除去cl离子,真空烘干或者用聚集太阳光惰性气氛烘干后再进行促进剂的负载。用配置好的k、rb、cs、mg、ca、sr、ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐的水溶液、乙醇溶液或者乙二醇溶液为促进剂,即可制备不同促进剂的催化剂。

催化合成氨实验:

将催化剂放于反应器中,通入氮气和氢气,氮气和氢气的体积比为1:3,然后在聚集的太阳光照射下,控制催化剂表面温度达到预设温度,进行氮气和氢气合成氨反应。反应气(n2:h2=1:3)流量为6毫升每分钟,催化剂用量为0.1克。

文献报道含fe、ru元素为活性组分的催化剂不具有催化合成氨性能,结果见表1。

调整本专利催化剂制备中前驱体的用量,获得不同含量活性组分的催化剂,具体含量可在1%-8%范围内变动。不同ru负载量对反应活性的影响见表2;表2看出:增加活性组分ru的负载量,反应活性会相应增加;

改变助剂,获得不同助剂作促进剂的催化剂,不同助剂对反应活性的影响见表3;助剂对催化性能的增强顺序为:rb>ba>cs>k>sr>ca>mg>无助剂;

保持活性组分负载量不变,调整助剂用量,不同助剂量对催化剂活性的影响见表4。结果表明:增加助剂用量,反应活性也会增加。

温度对催化活性的影响见表5,同一催化剂,升高反应温度,催化活性增加。

为了研究催化的催化寿命,采用k/3%ru/tio2-z(k:ru为1:1)进行了6次循环实验,每次实验7小时,实验结果见表6。结果表明:催化剂在反应条件下循环性良好。

为了评价聚焦太阳光相对于传统热催化的性能,采用k为促进剂(k:ru为1:1),质量比3%的ru负载在黑色tio2-z的聚集太阳光催化剂和负载在al2o3、mgo、活性炭传统催化剂的热催化剂进行合成氨性能对比,结果见表7结果表明:本专利发明的催化剂聚集太阳光合成氨效果明显优于传统热催化剂的热催化效果。

以上制备的催化剂颜色为黑色或者深黑灰色,具有50-100平方米/克的比表面积,都具有利用太阳光中红外、可见、紫外部分的能力,k/3%ru/tio2-z(k:ru为1:1)的近红外-可见-紫外吸收光谱具体见图5。以上催化剂在聚集的太阳光下,催化剂表面温度能在1-3分钟内升温至300-500摄氏度,满足合成氨所需温度。黑色tio2-z是表面无序的富电子材料,无序表面为ru负载提供位点,能够均匀分散ru组分,负载后由于ru和基底的肖特基接触使得黑色tio2-z中的电子转移到ru上,从而使催化剂有高效的催化合成氨活性,而文献报道的催化剂则不能催化合成氨,(结果见表1)。在聚集太阳光下的光照升温曲线和闭光降温曲线见图6。图6表明:本发明的催化剂在太阳光照射下能迅速升温达到满足合成氨的温度要求、且关灯后可迅速降温。由于光激发tio2-z在氢气气氛下还原、光照催化剂迅速升温、关灯后迅速降温以及促进剂都能使tio2-z的无序结构得到维持,使得催化剂寿命较长。具体结果见图7,从透射电镜可以看到,6次循环反应后,载体材料tio2-z仍然呈现表面无序状态,与反应前的样品相比(图2),活性组分ru的颗粒大小没有明显的改变,表明材料稳定性良好,使得催化剂寿命较长。

表1文献报道含fe、ru活性组分的催化剂合成氨性能

表2碱金属k为促进剂,ru负载量对聚集太阳光催化合成氨的性能的影响

表3碱金属、碱土金属为促进剂,质量比3%的ru负载在黑色tio2-z的催化剂聚集太阳光催化合成氨的性能及不同促进剂对活性的影响对比

表4碱金属k为促进剂,k与活性组分ru的原子比对聚集太阳光催化合成氨的性能的影响

表5碱金属k为促进剂(k:ru为1:1),质量比3%的ru负载在黑色tio2-z的催化剂,温度对催化活性的影响

表6碱金属k为促进剂(k:ru为1:1),质量比3%的ru负载在黑色tio2-z的催化剂在聚集太阳光催化合成氨的循环实验

表7碱金属k为促进剂(k:ru为1:1),质量比3%的ru负载在黑色tio2-z的聚集太阳光催化和负载在al2o3、mgo、活性炭传统催化剂的热催化合成氨性能对比

实施例2

碱金属、碱土金属为促进剂,fe为活性组分负载在黑色tio2-z的催化剂制备及其聚集太阳光催化合成氨

称取1克纳米氧化钛和1.5克硼氢化钠,充分研磨混合,将所得产物置于马弗炉,以10摄氏度/分钟升温到410摄氏度,在410摄氏度时将坩埚从马弗炉内取出至室温空气环境快速降温,将固体产物转移至烧杯加入100毫升去离子水静置1小时,过滤所得固体用去离子水清洗,将所得固体放置于真空干燥箱100摄氏度4小时烘干,得到载体黑色tio2-z固体。经表征,其为无定型、富电子、表面无序、含有氧空位的tio2-z。

称取1克载体黑色tio2-z,按30%(可在5%-50%范围内变动)的质量比量取配置好的氯化铁的水溶液,将二者混合后转移到烧杯中,氮气气氛下红外灯干燥,在研钵内将所得固体压实后再充分研磨。将所得的固体在反应器中,聚集太阳光使催化剂表面温度到350摄氏度左右,惰性气氛下保持1小时,之后进行还原。两种还原方法:1)高温氢气还原。将所得的固体置于调节聚集太阳光使温度到320摄氏度左右氢气气氛下(n2:h2=1:3,流量为20毫升/分钟)还原催化剂1小时,冷却后用去离子水乙醇抽滤清洗,在惰性气氛下红外灯干燥。2)液相还原。将1克所得的固体置于nabh4水溶液(6克硼氢化钠溶于1升水)中,静置2小时。将静置后的溶液过滤充分洗涤除去cl离子,真空烘干或氮气气氛下红外灯干燥得到催化剂即为fe/tio2-z。

按照所需比例(促进剂和活性组分的比例10:1-1:100)量取koh的乙醇溶液。将促进剂与催化剂充分混合后置于聚集太阳光下,惰性气氛(氮气或者氮氢混合气,20毫升/分钟)红外灯下干燥样品,所得样品即为最终合成氨的催化剂k/fe/tio2-z,催化剂的比表面积为62平方米/克的比表面积。

按照上述方法用配置好的fecl3、fe(no3)3水溶液也能制得fe负载在黑色tio2-z的催化剂,在利用含cl前驱体时,所制得的催化剂需要用去离子水多次清洗以除去cl离子,真空烘干或者用聚集太阳光惰性气氛烘干后再进行促进剂的负载。用配置好的k、rb、cs的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐的水溶液、乙醇溶液或者乙二醇溶液为促进剂,即可制备不同促进剂的催化剂。不同fe负载量对催化性能的影响见表8,不同促进剂的催化剂合成氨效果见表9,k促进剂含量对催化性能的影响见表10。

以上制备的催化剂颜色为黑色,都具有利用太阳光中红外、可见、紫外部分的能力,在聚集的太阳光下,温度能在1-3分钟内升温至300-500摄氏度,满足合成氨所需温度,黑色tio2-z是表面无序的富电子材料,能提供负载位点,促进电子转移到fe上,从而使催化剂有高效的催化活性。由于光激发tio2-z在氢气气氛下还原、关灯后催化剂迅速降温以及促进剂都能使tio2-z的无序结构得到维持,使得催化剂寿命较长。

表8碱金属k为促进剂,fe负载量对催化剂合成氨的性能的影响

表9碱金属、碱土金属为促进剂,fe为活性组分负载在黑色tio2-z的催化剂聚集太阳光催化合成氨的性能

表10碱金属k为促进剂,促进剂含量对30%fe/tio2-x催化剂合成氨性能的影响

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1