一种高吸收率太阳能陶瓷材料的制备方法与流程

文档序号:12340736阅读:410来源:国知局

本发明涉及一种高吸收率太阳能陶瓷材料的制备方法,属于太阳能陶瓷材料的制备技术领域。



背景技术:

石油、煤炭、天然气等传统化石能源正日益枯竭,而人类的发展对能源需求的不断增加,能源紧缺问题迫在眉睫。世界各国采取了可再生能源替代传统化石能源的一系列措施,太阳能热发电技术正是在此背景发展的一种有效解决能源短缺问题的方法。而事实证明,利用太阳能替代一部分化石能源是一种切实可行的方法,人们 发出了多种太阳能利用技术,如太阳能热水器、太阳能釆暖、太阳能干燥、太阳能热发电等。吸热器作为搭式太阳能热发电的核心器件之一,承受着比自然日光强200~300倍的辐射强度,其工作温度甚至可达到1000℃以上。因此其性能影响着热发电系统的稳定运行和工作效率。国内外研究表明,由于吸热器使用温度过高,普通金属工作温度不能超过800℃,所以普通金属不能作为吸热材料,所以取而代之的是吸热较好的陶瓷材料。

但是现有在制备吸热陶瓷材料的时候,性能较好的碳化硅陶瓷材料工艺复杂成本较高,所以一般使用氧化物陶瓷材料,但是由于现有的氧化物陶瓷材料作为吸热体材料导热率较低,辐射吸收率不够均匀,同时材料热震性能较差,容易因太阳能的不连续性所产生的热冲击而失效。所以制备一种高热导率辐射均匀的氧化陶瓷材料很有必要。



技术实现要素:

本发明所要解决的技术问题:针对现有的太阳能氧化陶瓷材料导热率较低,辐射吸收率不够均匀,同时材料热震性能较差,容易因太阳能的不连续性所产生的热冲击而失效的问题,提供了一种将磁性四氧化三铁颗粒分散复合制备凝胶液,通过将氧化物陶瓷材料在凝胶液中冷却,由于冷却过程中磁性颗粒与氧化物材料连接复合,随后形成黑色凝胶存储至陶瓷材料孔隙中,使其均匀吸收太阳能辐射,有效提高了其热震性能,很有的解决了太阳能氧化陶瓷材料导热率较低,辐射吸收率不够均匀,同时材料热震性能较差,容易因太阳能的不连续性所产生的热冲击而失效的问题。

为解决上述技术问题,本发明采用的技术方案是:

(1)收集Fe3O4颗粒洗净后并在45~60℃下干燥3~5h,随后将干燥Fe3O4颗粒置于球磨罐中,在250~300r/min下球磨3~5h,过100~110目筛,收集得Fe3O4粉末;

(2)按质量比1:15,将Fe3O4粉末与去离子水搅拌混合,在200~300W下超声分散10~15min,制备得Fe3O4分散液,随后按重量份数计,分别称量45~50份Fe3O4分散液、10~15份N-异丙基丙烯酰胺、5~8份N,N’-亚甲基双丙烯酰胺、3~5份丙烯酸、2~3份十二烷基苯磺酸钠和10~15份去离子水置于三口烧瓶中,搅拌混合并在70℃下水浴加热,对其通氢气排除空气,在氢气气氛下保温处理25~30min;

(3)待保温处理完成后,对三口烧瓶中添加十二烷基苯磺酸钠质量10%的过硫酸铵,随后保温反应5~6h,停止加热并静置冷却至室温,制备得黑色磁性凝胶液,备用;

(4)按重量份数计,分别称量45~50份火山岩颗粒、10~15份高岭土、2~3份氧化铝、5~8份氧化镁、3~5份五氧化二磷和10~15份二氧化硅置于球磨罐中,在250~300r/min下球磨3~5h,随后过95~100目筛,收集得混合球磨粉末;

(5)按质量比1:3,将去离子水与混合球磨粉末搅拌混合并浇注至模具中,在室温下固化2~3h后,将其置于120~150℃下保温预热45~60min,随后按12℃/min升温至1550~1600℃,保温煅烧1~2h后,将烧制胚体自然冷却至450~500℃;

(6)待自然冷却完成后,按质量比1:30,将烧制胚体置于步骤(3)制备的黑色磁性凝胶液中浸泡降温至室温,制备得凝胶渗透陶瓷材料,随后将凝胶渗透陶瓷材料置于100~120℃下干燥6~8h,静置冷却至室温即可制备得一种高吸收率太阳能陶瓷材料。

本发明制备的高吸收率太阳能陶瓷材料在经历10次热震循环后,抗压强度可达80MPa,在0~900℃下热膨胀系数为4.55×10-6-1,太阳能吸收率α为0.85,热发射率为0.88。

本发明与其他方法相比,有益技术效果是:

(1)本发明制备的高吸收率太阳能陶瓷材料热辐射吸收均匀,抗热震性能优异,有效提高材料使用寿命;

(2)本发明制备过程简单,绿色安全无污染。

具体实施方式

首先收集Fe3O4颗粒洗净后并在45~60℃下干燥3~5h,随后将干燥Fe3O4颗粒置于球磨罐中,在250~300r/min下球磨3~5h,过100~110目筛,收集得Fe3O4粉末;按质量比1:15,将Fe3O4粉末与去离子水搅拌混合,在200~300W下超声分散10~15min,制备得Fe3O4分散液,随后按重量份数计,分别称量45~50份Fe3O4分散液、10~15份N-异丙基丙烯酰胺、5~8份N,N’-亚甲基双丙烯酰胺、3~5份丙烯酸、2~3份十二烷基苯磺酸钠和10~15份去离子水置于三口烧瓶中,搅拌混合并在70℃下水浴加热,对其通氢气排除空气,在氢气气氛下保温处理25~30min;待保温处理完成后,对三口烧瓶中添加十二烷基苯磺酸钠质量10%的过硫酸铵,随后保温反应5~6h,停止加热并静置冷却至室温,制备得黑色磁性凝胶液,备用;按重量份数计,分别称量45~50份火山岩颗粒、10~15份高岭土、2~3份氧化铝、5~8份氧化镁、3~5份五氧化二磷和10~15份二氧化硅置于球磨罐中,在250~300r/min下球磨3~5h,随后过95~100目筛,收集得混合球磨粉末;按质量比1:3,将去离子水与混合球磨粉末搅拌混合并浇注至模具中,在室温下固化2~3h后,将其置于120~150℃下保温预热45~60min,随后按12℃/min升温至1550~1600℃,保温煅烧1~2h后,将烧制胚体自然冷却至450~500℃;待自然冷却完成后,按质量比1:30,将烧制胚体置于步骤(3)制备的黑色磁性凝胶液中浸泡降温至室温,制备得凝胶渗透陶瓷材料,随后将凝胶渗透陶瓷材料置于100~120℃下干燥6~8h,静置冷却至室温即可制备得一种高吸收率太阳能陶瓷材料。

实例1

首先收集Fe3O4颗粒洗净后并在45℃下干燥3h,随后将干燥Fe3O4颗粒置于球磨罐中,在250r/min下球磨3h,过100目筛,收集得Fe3O4粉末;按质量比1:15,将Fe3O4粉末与去离子水搅拌混合,在200W下超声分散10min,制备得Fe3O4分散液,随后按重量份数计,分别称量45份Fe3O4分散液、10份N-异丙基丙烯酰胺、5份N,N’-亚甲基双丙烯酰胺、3份丙烯酸、2份十二烷基苯磺酸钠和10份去离子水置于三口烧瓶中,搅拌混合并在70℃下水浴加热,对其通氢气排除空气,在氢气气氛下保温处理25min;待保温处理完成后,对三口烧瓶中添加十二烷基苯磺酸钠质量10%的过硫酸铵,随后保温反应5h,停止加热并静置冷却至室温,制备得黑色磁性凝胶液,备用;按重量份数计,分别称量45份火山岩颗粒、10份高岭土、2份氧化铝、5份氧化镁、3份五氧化二磷和10份二氧化硅置于球磨罐中,在250r/min下球磨3h,随后过95目筛,收集得混合球磨粉末;按质量比1:3,将去离子水与混合球磨粉末搅拌混合并浇注至模具中,在室温下固化2h后,将其置于120℃下保温预热45min,随后按12℃/min升温至1550℃,保温煅烧1h后,将烧制胚体自然冷却至450℃;待自然冷却完成后,按质量比1:30,将烧制胚体置于黑色磁性凝胶液中浸泡降温至室温,制备得凝胶渗透陶瓷材料,随后将凝胶渗透陶瓷材料置于100℃下干燥6h,静置冷却至室温即可制备得一种高吸收率太阳能陶瓷材料。

实例2

首先收集Fe3O4颗粒洗净后并在50℃下干燥4h,随后将干燥Fe3O4颗粒置于球磨罐中,在275r/min下球磨4h,过105目筛,收集得Fe3O4粉末;按质量比1:15,将Fe3O4粉末与去离子水搅拌混合,在250W下超声分散12min,制备得Fe3O4分散液,随后按重量份数计,分别称量47份Fe3O4分散液、12份N-异丙基丙烯酰胺、7份N,N’-亚甲基双丙烯酰胺、4份丙烯酸、3份十二烷基苯磺酸钠和12份去离子水置于三口烧瓶中,搅拌混合并在70℃下水浴加热,对其通氢气排除空气,在氢气气氛下保温处理27min;待保温处理完成后,对三口烧瓶中添加十二烷基苯磺酸钠质量10%的过硫酸铵,随后保温反应6h,停止加热并静置冷却至室温,制备得黑色磁性凝胶液,备用;按重量份数计,分别称量47份火山岩颗粒、12份高岭土、3份氧化铝、7份氧化镁、4份五氧化二磷和12份二氧化硅置于球磨罐中,在275r/min下球磨4h,随后过97目筛,收集得混合球磨粉末;按质量比1:3,将去离子水与混合球磨粉末搅拌混合并浇注至模具中,在室温下固化3h后,将其置于135℃下保温预热55min,随后按12℃/min升温至1575℃,保温煅烧2h后,将烧制胚体自然冷却至475℃;待自然冷却完成后,按质量比1:30,将烧制胚体置于黑色磁性凝胶液中浸泡降温至室温,制备得凝胶渗透陶瓷材料,随后将凝胶渗透陶瓷材料置于115℃下干燥7h,静置冷却至室温即可制备得一种高吸收率太阳能陶瓷材料。

实例3

首先收集Fe3O4颗粒洗净后并在60℃下干燥5h,随后将干燥Fe3O4颗粒置于球磨罐中,在300r/min下球磨5h,过110目筛,收集得Fe3O4粉末;按质量比1:15,将Fe3O4粉末与去离子水搅拌混合,在300W下超声分散10~15min,制备得Fe3O4分散液,随后按重量份数计,分别称量50份Fe3O4分散液、15份N-异丙基丙烯酰胺、8份N,N’-亚甲基双丙烯酰胺、5份丙烯酸、3份十二烷基苯磺酸钠和15份去离子水置于三口烧瓶中,搅拌混合并在70℃下水浴加热,对其通氢气排除空气,在氢气气氛下保温处理30min;待保温处理完成后,对三口烧瓶中添加十二烷基苯磺酸钠质量10%的过硫酸铵,随后保温反应6h,停止加热并静置冷却至室温,制备得黑色磁性凝胶液,备用;按重量份数计,分别称量50份火山岩颗粒、15份高岭土、3份氧化铝、8份氧化镁、5份五氧化二磷和15份二氧化硅置于球磨罐中,在300r/min下球磨5h,随后过100目筛,收集得混合球磨粉末;按质量比1:3,将去离子水与混合球磨粉末搅拌混合并浇注至模具中,在室温下固化3h后,将其置于150℃下保温预热60min,随后按12℃/min升温至1600℃,保温煅烧2h后,将烧制胚体自然冷却至500℃;待自然冷却完成后,按质量比1:30,将烧制胚体置于黑色磁性凝胶液中浸泡降温至室温,制备得凝胶渗透陶瓷材料,随后将凝胶渗透陶瓷材料置于120℃下干燥8h,静置冷却至室温即可制备得一种高吸收率太阳能陶瓷材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1