一种纳米氟磷灰石玻璃陶瓷的制备方法与流程

文档序号:11645277阅读:300来源:国知局

本发明涉及一种纳米氟磷灰石玻璃陶瓷的制备方法,属于玻璃陶瓷的制备技术领域。



背景技术:

人体内天然hap为70nm左右的针状晶体,因此纳米氟磷灰石陶瓷是一种兼具医用,生物活性和良好机械性能的牙科、骨科修复材料,与普通陶瓷相比氟磷灰石纳米陶瓷由于存在大量的晶界,所以性能有着极大的提高和差异。但由于致密性和晶粒尺寸在制备时相互影响,所以就目前来说高致密度的纳米陶瓷制备一直以来都很困难。现有技术中的玻璃陶瓷的制备方法大都是浇注法制备玻璃陶瓷,这种方法需要较高制备温度,对设备要求程度更高,且玻璃形核析晶热处理时间长,也就造成了生产周期太长,效率不容易提高,烧结法可很好地解决这方面问题。



技术实现要素:

针对以上情况,本发明利用动态控制烧结、相变辅助致密化,提供一种可行的制备纳米氟磷灰石陶瓷的制备方法。为实现上述目的,本发明采用如下技术方案:

一种纳米氟磷灰石玻璃陶瓷的制备方法,包括以下步骤:

(1)制备氟磷灰石粉末:使用化学沉淀法制备出氟磷灰石粉体,随后将氟磷灰石粉体置于真空干燥箱中干燥,最后球磨、过筛,备用;

(2)制备氟金云母粉末:将原料高温熔融,然后将熔融的原料倒入水中淬火,随后将淬火后的原料置于真空干燥箱中干燥,最后球磨、过筛,备用;

(3)混料:将制备的氟金云母和氟磷灰石粉末进行混料,混合时间为3~5h;

(4)压制成型:将混合均匀的粉末压制成生坯;

(5)烧结:将生坯放入箱式电阻炉中随炉升温至1000~1400℃烧结,随后随炉冷却至900~800℃,保温1~3h,然后随炉冷却至室温,即得到纳米氟磷灰石陶瓷。

作为优选,所述步骤(1)中使用化学沉淀法制备出约30~60nm粒径的氟磷灰石粉体,然后在真空干燥箱60~80℃的温度下烘干,最后将粉体放入刚玉球磨罐中球磨1~4h,然后过200目筛。

作为优选,所述步骤(2)中将高温熔融的原料倒入室温的水中淬火,然后在真空干燥箱60~80℃的温度下烘干,随后将原料放入刚玉球磨罐中球磨1~4h,然后过200目筛。

作为优选,所述步骤(3)中选择配比为重量份数为氟金云母粉末70%和氟磷灰石粉末30%,放入球磨机中混料,混合时间为5h。

作为优选,所述步骤(3)中选择配比为重量份数为氟金云母粉末50-70份和氟磷灰石粉末30-50份,放入球磨机中混料,混合时间为5h。

作为优选,所述步骤(4)中将混合均匀的粉末压制成生坯,压力为100~200mpa。

作为优选,所述步骤(5)中将生坯放入箱式电阻炉中,以10k/min的速度升至1000℃,随后随炉冷却至850℃,保温1~3h,然后随炉冷却至室温,即得到纳米氟磷灰石陶瓷。

作为优选,所述步骤(5)中将生坯放入箱式电阻炉中,以15k/min的速度升至1400℃,随后随炉冷却至900℃,保温1~3h,然后随炉冷却至室温,即得到纳米氟磷灰石陶瓷。

本发明的有益效果

(1)本专利所述纳米氟磷灰石玻璃陶瓷的制备方法主要采用了压制和分步烧结工艺,原料不需要经过熔融和玻璃形成阶段,相对于浇注方法,这种方法不要求原料组成一定满足玻璃形成的系统,并且烧结法中晶体的析出位置主要集中在颗粒的表面或者相之间的界面,这就拥有了较大的表面积,这就使得玻璃更容易晶化,甚至原料中可不用添加形核剂、网络调整氧化物的形成玻璃的必要添加剂。并且本发明的特点在于利用动态控制烧结理论作为关键技术,所谓动态控制烧结就是两步烧结法或者被称为速率控制烧结:首先使烧结炉升至一较高温度使材料形成大量晶核、析晶,随后马上降到一较低温度保温,降低晶体生长速率以保证获得较细的晶粒。

(2)本发明引入了氟金云母相,对材料产生了一定的补强增韧效果,并且使材料的可加工性能得到了改善,并且在抗弯强度、弹性模量、断裂韧性、硬度等方面优于国内外常用的骨修复生物材料45s5bioglass玻璃、bioverit玻璃陶瓷。而且断裂韧性有很大的提高从而提升了该生物材料的使用寿命。

具体实施方式

下面结合具体实施例对本发明作进一步说明。

实施例1

一种纳米氟磷灰石玻璃陶瓷的制备方法,包括以下步骤:

(1)制备氟磷灰石粉末:使用化学沉淀法制备出约30nm粒径的氟磷灰石粉体,然后在真空干燥箱60℃的温度下烘干,最后将粉体放入刚玉球磨罐中球磨1h,然后过200目筛;

(2)制备氟金云母粉末:将高温熔融的原料倒入室温的水中淬火,然后在真空干燥箱60℃的温度下烘干,随后将原料放入刚玉球磨罐中球磨1h,然后过200目;

(3)混料:择配比为重量份数为氟金云母粉末70%和氟磷灰石粉末30%,放入球磨机中混料,混合时间为5h;

(4)压制成型:将混合均匀的粉末压制成生坯,压力为100mpa;

(6)烧结:将生坯放入箱式电阻炉中,以10k/min的速度升至1000℃,随后随炉冷却至850℃,保温1h,然后随炉冷却至室温,即得到纳米氟磷灰石陶瓷。

实施例2

一种纳米氟磷灰石玻璃陶瓷的制备方法,包括以下步骤:

(1)制备氟磷灰石粉末:使用化学沉淀法制备出约60nm粒径的氟磷灰石粉体,然后在真空干燥箱80℃的温度下烘干,最后将粉体放入刚玉球磨罐中球磨4h,然后过200目筛;

(2)制备氟金云母粉末:将高温熔融的原料倒入室温的水中淬火,然后在真空干燥箱80℃的温度下烘干,随后将原料放入刚玉球磨罐中球磨h,然后过200目筛;

(3)混料:选择配比为重量份数为氟金云母粉末70%和氟磷灰石粉末30%,放入球磨机中混料,混合时间为3h;

(4)压制成型:将混合均匀的粉末压制成生坯,压力为200mpa;

(5)烧结:将生坯放入箱式电阻炉中,以20k/min的速度升至1400℃,随后随炉冷却至850℃,保温3h,然后随炉冷却至室温,即得到纳米氟磷灰石陶瓷

实施例3所得纳米氟磷灰石玻璃陶瓷的性能测试

对以上所得的玻璃陶瓷进行力学性能测试:

烧结坯的相对密度利用阿基米德原理进行测量,抗弯强度和弹性模量在万能试验机上测量,材料的断裂韧性的测量在hd9-45型硬度计上测量材料的硬度,载荷为100n,加载时间为15s,采用以下公式计算材料的维氏硬度:h=1.8544p/d2,其中h为维氏硬度(hv),p为压头载荷(n),d为压痕对角线的平均值(um);采用压痕法测量材料的断裂韧性,在500倍的xjp-200型金相显微镜下测量压痕的对角线长度和压痕裂纹的长度,采用下式计算材料的断裂韧性:kic=0.16ha1/2(c/a)-3/2式中kic为断裂韧性(mpa·m1/2),h为维氏硬度(gpa),a为压痕对角线的一半(um),c为裂纹的平均长度(um),以上维氏硬度和断裂韧性至均测量多次取平均值。测得结果如表1所示:

表1.纳米氟磷灰石玻璃陶瓷的物理性能

由表中数据可以看出,本发明的方法制备的玻璃陶瓷材料的可加工性能得到了改善,并且在抗弯强度、弹性模量、断裂韧性、硬度等方面优于国内外常用的骨修复生物材料45s5bioglass玻璃、bioverit玻璃陶瓷。而且断裂韧性有很大的提高从而提升了该生物材料的使用寿命。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1