一种陶瓷基储热材料及其制备方法与流程

文档序号:12882001阅读:422来源:国知局

本发明属于储热材料技术领域。具体涉及一种陶瓷基储热材料及其制备方法。



背景技术:

储热材料是目前应用比较广泛的新型功能材料,主要用于工业余热/废热回收利用、太阳能综合开发及高温节能等领域。储热材料主要包括显热储热材料和潜热储热材料两种。显热储热材料采用耐火材料作为吸收热量的主体,由于热量的吸收仅仅是依靠耐火材料的显热容变化,显热储热材料具有体积大、造价高、热惯性大和输出功率逐渐下降等缺点。潜热式储热材料则利用相变介质在相变过程中的吸放热特性,具有储热密度大、体积小和相变温度范围宽等优势,是热量存储技术研究的热点。

目前主要采用混合烧结法和熔融浸渗法来制备潜热储热材料,但都存在一些不足。混合烧结法是将基体材料、相变材料、添加剂等混匀,经成型、烧结后得到潜热储热材料。该法相对简单,但当烧结温度过高或相变材料含量较大时会造成相变材料的蒸发流失,从而降低材料的蓄热性能。为降低相变材料固液转变过程中的损失,有研究者将相变材料封装在专门容器内,但这会增加材料的热阻,降低传热效率和提高生产成本。熔融浸渗法则需预先制备多孔陶瓷材料,然后将液态相变材料浸渗到多孔陶瓷孔隙中,冷却制得潜热储热材料。这种方法可以避免相变材料蒸发流失,减少烧结过程体积效应。但该法需要预先制备多孔陶瓷体,相变材料的含量取决于多孔陶瓷预制体的孔径大小及其分布状态,过程较为复杂,且制作成本高。现有的储热材料中还存在机械强度、导热系数及热震稳定性等性能低的问题。



技术实现要素:

本发明旨在克服现有技术缺陷,目的是提供一种原料来源广、生产成本低和工艺简单的陶瓷基储热材料的制备方法,用该方法制备的陶瓷基储热材料储热密度大、导热系数大、耐压强度高和热震稳定性高。

为实现上述目的,本发明采用的技术方案的具体步骤是:

第一步,将20~50wt%的含钛原料、10~20wt%的稳定剂、30~50wt%的铝盐和0.1~10wt%的络合剂混合,研磨0.5~2小时,得到研磨料。

第二步,将10~30wt%的含碳原料、10~30wt%的所述含钛原料、20~40wt%的无机盐、20~50wt%的铝粉和10~30wt%的锌粉混合均匀,在50~100mpa条件下压制成型,于中性气氛和400~900℃条件下热处理0.5~3小时,随炉冷却至室温,破碎,球磨,90℃条件下干燥12小时,筛分,得到粒度为0.088~1mm的筛分料a和粒度小于0.088mm的筛分料b。

第三步,将20~50wt%的所述研磨料、10~30wt%的所述筛分料a、20~40wt%的所述筛分料b和5~10wt%的无机盐混合均匀,在10~30mpa条件下压制成型,于中性气氛和500~900℃条件下热处理0.5~3小时,随炉冷却至室温,即得陶瓷基储热材料。

所述含钛原料的粒度小于0.045mm;所述含钛原料为钛白粉或为偏钛酸,所述钛白粉的tio2含量大于98wt%,所述偏钛酸的tio(oh)2含量大于98wt%。

所述稳定剂的粒度小于0.01mm;所述稳定剂为二氧化锆粉或为氧化锌粉,所述二氧化锆粉的zro2含量大于99wt%,所述氧化锌粉的zno含量大于99wt%。

所述铝盐为硫酸铝或为硝酸铝,所述硫酸铝的al2(so4)3·18h2o含量大于99wt%,所述硝酸铝的al(no3)3·9h2o含量大于99wt%;所述铝盐的粒度小于0.045mm。

所述络合剂为无水草酸或为一水柠檬酸;所述络合剂的纯度大于99wt%。

所述含碳原料的粒度小于0.045mm;所述含碳原料为天然石墨或为人造石墨,所述含碳原料的固定碳含量大于90wt%。

所述无机盐的粒度小于0.088mm;所述无机盐为无水硫酸钠、无水碳酸钠和无水硝酸钠中的一种,所述无机盐的纯度大于99wt%。

所述铝粉的al含量大于99wt%,所述铝粉的粒度小于0.045mm。

所述锌粉的粒度小于0.045mm;所述锌粉的zn含量大于99wt%。

所述中性气氛为氮气气氛或为氩气气氛。

所述球磨是:按物料︰氧化锆磨球︰无水乙醇的质量比为1︰10︰5配料,放入球磨罐中,在200r/min的条件下球磨12~15小时。

由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:

⑴本发明以高含量相变材料为基础,控制结构材料的组成、形成与分布状态,调节结构材料与相变材料的高温反应性,因而制得的陶瓷基储热材料的储热密度大。

⑵本发明利用结构材料的形成特点实现相变材料的微观分布,控制微晶在相变材料中的形成状态以调节材料的吸热、蓄热及传热行为,因而制得的陶瓷基储热材料的导热系数高。

⑶本发明利用不同原料之间的高温反应特性,形成耐火度高、耐压强度大、热膨胀系数低和抗侵蚀性高的基体材料,因而制得的陶瓷基储热材料的耐压强度大和热震稳定性高。

⑷本发明根据储热材料的结构与性能特点,将制备过程分步控制,避免采用高温煅烧等工序,既杜绝了相变材料的流失,又实现了材料结构与性能的巧妙控制。所以,不但所采用的原料来源广泛,而且生产工艺简单和生产成本低。

本发明制备的陶瓷基储热材料经检测:储热密度大于800kj/kg;耐压强度大于20mpa,导热系数大于1.8w/(m·k);热震稳定性(1100℃水冷)>20次。

因此,本发明具有原料来源广、工艺简单和生产成本低的特点,所制备的陶瓷基储热材料的储热密度大、导热系数大、耐压强度高和热震稳定性高。

具体实施方式

下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。

为避免重复,先将本具体实施方式所涉及的技术参数统一描述如下,实施例中不再赘述:

所述钛白粉和所述偏钛酸的粒度小于0.045mm,所述钛白粉的tio2含量大于98wt%,所述偏钛酸的tio(oh)2含量大于98wt%。

所述二氧化锆粉和所述氧化锌粉的粒度小于0.01mm,所述二氧化锆粉的zro2含量大于99wt%,所述氧化锌粉的zno含量大于99wt%。

所述硫酸铝和硝酸铝的粒度小于0.045mm;所述硫酸铝的al2(so4)3·18h2o含量大于99wt%,所述硝酸铝的al(no3)3·9h2o含量大于99wt%。

所述无水草酸和所述一水柠檬酸的纯度大于99wt%。

所述天然石墨和人造石墨的粒度小于0.045mm;所述天然石墨和人造石墨的固定碳含量大于90wt%。

所述无水硫酸钠、无水碳酸钠和无水硝酸钠的纯度大于99wt%,所述无水硫酸钠、无水碳酸钠和无水硝酸钠的粒度小于0.088mm。

所述铝粉的al含量大于99wt%,所述铝粉中的粒度小于0.045mm。

所述锌粉的粒度小于0.045mm;所述锌粉的zn含量大于99wt%。

所述球磨是:按物料︰氧化锆磨球︰无水乙醇的质量比为1︰10︰5配料,放入球磨罐中,在200r/min的条件下球磨12~15小时。

实施例1

一种陶瓷基储热材料及其制备方法。本实施例所述制备方法的步骤是:

第一步,将20~30wt%的钛白粉、10~20wt%的氧化锌粉、40~50wt%的硝酸铝和5~10wt%的无水草酸混合,研磨0.5~2小时,得到研磨料。

第二步,将10~20wt%的天然石墨、10~20wt%的钛白粉、20~30wt%的无水硝酸钠、30~40wt%的铝粉和20~30wt%的锌粉混合均匀,在50~100mpa条件下压制成型,于700~900℃和氮气气氛条件下热处理0.5~1.5小时,随炉冷却至室温,破碎,球磨,90℃条件下干燥12小时,筛分,得到粒度为0.088~1mm的筛分料a和粒度小于0.088mm的筛分料b。

第三步,将20~30wt%的研磨料、20~30wt%的筛分料a、30~40wt%的筛分料b和5~10wt%的无水硫酸钠混合均匀,在10~30mpa条件下压制成型,于500~700℃和氮气气氛条件下热处理0.5~1.5小时,随炉冷却至室温,即得陶瓷基储热材料。

本实施例制备的陶瓷基储热材料经检测:储热密度大于900kj/kg;导热系数大于1.8w/(m·k);耐压强度大于20mpa;热震稳定性(1100℃水冷)>20次。

实施例2

一种陶瓷基储热材料及其制备方法。本实施例所述制备方法的步骤是:

第一步,将30~40wt%的偏钛酸、10~20wt%的二氧化锆粉、40~50wt%的硫酸铝和0.1~1wt%的一水柠檬酸混合,研磨0.5~2小时,得到研磨料。

第二步,将20~30wt%的人造石墨、20~30wt%的偏钛酸、20~30wt%的无水碳酸钠、20~30wt%的铝粉和10~20wt%的锌粉混合均匀,在50~100mpa条件下压制成型,于400~600℃和氩气气氛条件下热处理1~2小时,随炉冷却至室温,破碎,球磨,90℃条件下干燥12小时,筛分,得到粒度为0.088~1mm的筛分料a和粒度小于0.088mm的筛分料b。

第三步,将30~40wt%的研磨料、10~20wt%的筛分料a、30~40wt%的筛分料b和5~10wt%的无水碳酸钠混合均匀,在10~30mpa条件下压制成型,于600~800℃和氩气气氛条件下热处理1~2小时,随炉冷却至室温,即得陶瓷基储热材料。

本实施例制备的陶瓷基储热材料经检测:储热密度大于850kj/kg;导热系数大于2w/(m·k);耐压强度大于20mpa;热震稳定性(1100℃水冷)>20次。

实施例3

一种陶瓷基储热材料及其制备方法。本实施例所述制备方法的步骤是:

第一步,将40~50wt%的偏钛酸、10~20wt%的二氧化锆粉、30~40wt%的硝酸铝和1~5wt%的无水草酸混合,研磨0.5~2小时,得到研磨料。

第二步,将10~20wt%的人造石墨、10~20wt%的钛白粉、30~40wt%的无水硫酸钠、20~30wt%的铝粉和10~20wt%的锌粉混合均匀,在50~100mpa条件下压制成型,于500~700℃和氩气气氛条件下热处理2~3小时,随炉冷却至室温,破碎,球磨,90℃条件下干燥12小时,筛分,得到粒度为0.088~1mm的筛分料a和粒度小于0.088mm的筛分料b。

第三步,将40~50wt%的研磨料、10~20wt%的筛分料a、20~30wt%的筛分料b和5~10wt%的无水硝酸钠混合均匀,在10~30mpa条件下压制成型,于700~900℃和氩气气氛条件下热处理2~3小时,随炉冷却至室温,即得陶瓷基储热材料。

本实施例制备的陶瓷基储热材料经检测:储热密度大于850kj/kg;导热系数大于2w/(m·k);耐压强度大于25mpa;热震稳定性(1100℃水冷)>20次。

实施例4

一种陶瓷基储热材料及其制备方法。本实施例所述制备方法的步骤是:

第一步,将40~50wt%的偏钛酸、10~20wt%的二氧化锆粉、30~40wt%的硝酸铝和1~5wt%的无水草酸混合,研磨0.5~2小时,得到研磨料。

第二步,将10~20wt%的天然石墨、10~20wt%的偏钛酸、20~30wt%的无水硝酸钠、40~50wt%的铝粉和10~20wt%的锌粉混合均匀,在50~100mpa条件下压制成型,于600~800℃和氮气气氛条件下热处理1~2小时,随炉冷却至室温,破碎,球磨,90℃条件下干燥12小时,筛分,得到粒度为0.088~1mm的筛分料a和粒度小于0.088mm的筛分料b。

第三步,将40~50wt%的研磨料、10~20wt%的筛分料a、20~30wt%的筛分料b和5~10wt%的无水硝酸钠混合均匀,在10~30mpa条件下压制成型,于700~900℃和氮气气氛条件下热处理1~2小时,随炉冷却至室温,即得陶瓷基储热材料。

本实施例制备的陶瓷基储热材料经检测:储热密度大于800kj/kg;导热系数大于2w/(m·k);耐压强度大于22mpa;热震稳定性(1100℃水冷)>20次。

本具体实施方式与现有技术相比具有如下积极效果:

⑴本具体实施方式以高含量相变材料为基础,控制结构材料的组成、形成与分布状态,调节结构材料与相变材料的高温反应性,因而制得的陶瓷基储热材料的储热密度大。

⑵本具体实施方式利用结构材料的形成特点实现相变材料的微观分布,控制微晶在相变材料中的形成状态以调节材料的吸热、蓄热及传热行为,因而制得的陶瓷基储热材料的导热系数高。

⑶本具体实施方式利用不同原料之间的高温反应特性,形成耐火度高、耐压强度大、热膨胀系数低和抗侵蚀性高的基体材料,因而制得的陶瓷基储热材料的耐压强度大和热震稳定性高。

⑷本具体实施方式根据储热材料的结构与性能特点,将制备过程分步控制,避免采用高温煅烧等工序,既杜绝了相变材料的流失,又实现了材料结构与性能的巧妙控制。因此,不但所采用的原料来源广泛,而且生产工艺简单和生产成本低。

本具体实施方式制备的陶瓷基储热材料经检测:储热密度大于800kj/kg;耐压强度大于20mpa,导热系数大于1.8w/(m·k);热震稳定性(1100℃水冷,次)>20。

因此,本具体实施方式具有原料来源广、工艺简单和生产成本低的特点,所制备的陶瓷基储热材料的储热密度大、导热系数大、耐压强度高和热震稳定性高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1