一种红色荧光陶瓷及其制备方法与流程

文档序号:14728498发布日期:2018-06-19 14:25阅读:443来源:国知局

本发明涉及荧光陶瓷技术领域,尤其涉及一种红色荧光陶瓷及其制备方法。



背景技术:

半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的新一代照明光源。目前基于GaN基蓝光芯片和黄光荧光粉(YAG:Ce3+)构成的白光LED已实现商业生产。然而,传统大面积点胶的荧光粉涂覆方式不但使得光子与荧光粉作用后,大部分光被荧光粉反射回芯片,造成LED光取出率降低,而荧光粉厚度不均会导致色温的空间分布均匀性差,影响出光质量,这限制了其在大功率器件中的应用。

LED远程荧光粉器件是将复合荧光粉精确地附着在基板上,与蓝色LED光源分开,独立的荧光粉在蓝色光线的激发下发光。由于LED芯片和荧光粉两个热源有效分离,消除了胶体在高温工作状态下不稳定的问题,荧光粉温度较低转换效率高(温度系数),降低荧光粉衰减,整个LED照明系统具有可靠性高,光效高,光衰更小,发光均匀等特点。

另一方面,激光激发荧光粉显示(Laser Phosphor Display,LPD)技术因其优异的显示性能引起了科研和生产领域极大的关注,该技术通过单色激光结合红,绿,蓝等多种颜色的荧光粉色轮的旋转来实现不同颜色的光输出。通过树脂,硅胶荧光粉涂覆封装在高反射基底上是目前制作荧光粉色轮的主要方法。其特点在于:以一种全新的技术方案解决了显示用激光的能量冲击问题,因此解决了荧光粉瞬间淬灭的问题,同时解决了激光消散斑问题;在寿命与可靠性上,继承了传统半导体光源的优势,突破传统LED光源亮度不高的瓶颈,并且通过荧光粉与蓝色激光的转换,降低了激光光源成本,达到市场可承受范围,其低成本、高效率、节能安全的特点契合了市场的需求。但是由于LPD技术采用激光作为光源,激光长时间照射在荧光粉色轮上,大部分荧光粉在高激发密度下(例如激光激发)光输出将会出现饱和,在其无法将吸收能量尽快通过发射光释放的情况下会通过非辐射放热,使得器件温度不断升高,会导致树脂和硅胶老化,裂解,黄变,同时又使荧光粉因热衰而降低效率,最终陷入恶性循环。因此,研制开发满足可被蓝光激发并可承受高能量激发和高密度的荧光材料是LPD技术发展过程亟需解决的重大问题。

有鉴于此,特提出本发明。



技术实现要素:

本发明的目的是提供一种红色荧光陶瓷及其制备方法,该红色荧光陶瓷以MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉为原料,采用凝胶注模工艺制备而成,制备方法简单,固含量高,产品形状尺寸可调,并可批量制备,成品率高。该红色荧光陶瓷作为远程荧光粉的载体,可用于芯片的远程封装,避免荧光粉材料和芯片能量源的直接接触,以提高器件的散热性能,用途广泛,可广泛应用于大功率LED、远程LED、汽车灯具、激光照明等领域,可靠性高。

为了实现上述目的,本发明提供的一种红色荧光陶瓷的制备方法,其特征在于,包括如下步骤:

(1)准确称取一定比例的红色荧光粉原料放入球磨机中球磨,所述红色荧光粉原料以氧化物质量百分比计为:0%<La2O3+Y2O3≤52.51%,0%<MgO≤17.45%,0%<Nb2O5+Ta2O5+Sb2O3≤45.82%,0%<Eu2O3≤25.80%,待原料粉碎并混合均匀后,放入高温炉中,在1450℃空气气氛条件下煅烧4~24小时,制得MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉粉体;

(2)将红色荧光粉与预混液以1000∶173的比例加入至滚筒式球磨机中充分球磨24~48小时,制得混合浆料,所述预混液中各组分占预混液总质量的比为:0%<H2O≤85.58%,0%<N,N二甲基丙烯酰胺≤14.53%,0%<N,N亚甲基双丙烯酰胺≤0.76%,0%<聚丙烯酸铵≤7.56%,0%<聚乙二醇400≤1.74%,在球磨结束之前30min~1h向浆料中加入催化剂N,N,N,N,-四甲基乙二胺,所述催化剂添加量占预混液总质量的比为:0%<N,N,N,N-四甲基乙二胺≤0.37%;

(3)将混合浆料缓慢移出球磨罐,并向混合浆料中加入引发剂过硫酸铵,所述引发剂添加量占预混液总质量的比为:0%<过硫酸铵≤0.035%,搅拌后,将混合浆料倒入模具中干燥24~48小时,制得生坯;

(4)将生坯放在高温炉中,在1400℃空气气氛条件下煅烧2~4小时,制得陶瓷;将陶瓷从高温炉中取出后,冷却至室温并打磨抛光制得最终的红光荧光陶瓷。

优选地,上述步骤(1)中所述红色荧光粉原料,与MgO对应的原料为4MgCO3·Mg(OH)2·5H2O。

优选地,上述步骤(1)中所述红色荧光粉原料,与La2O3,Nb2O5和Eu2O3对应的原料分别为La2O3,Nb2O5和Eu2O3。

优选地,上述步骤(1)中所述红色荧光粉原料,与Y2O3,Ta2O5和5b2O3对应的原料分别为Y2O3,Ta2O5和Sb2O3。

本发明还提供了一种由上述制备方法制得的红色荧光陶瓷。

本发明提供的一种红色荧光陶瓷及其制备方法,具有如下有益效果。

1.本发明提供的一种红色荧光陶瓷的制备方法,以MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉为原料,采用凝胶注模工艺制备而成,制备方法简单,固含量高,产品形状尺寸可调,并可批量制备,成品率高。

2.本发明提供的一种红色荧光陶瓷,其作为远程荧光粉的载体,可用于芯片的远程封装,避免荧光粉材料和芯片能量源的直接接触,以提高器件的散热性能,用途广泛,可广泛应用于大功率器件中,如激光光源、大功率LED光源等,可靠性高。

附图说明

图1为MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉的激发光谱(监控波长为616nm)和发射光谱(激发波长为465nm),点亮图为465nm波长照射下的图片。

具体实施方式

下面结合具体实施例和附图对本发明做进一步说明,以助于理解本发明的内容。

本发明提供了一种红色荧光陶瓷的制备方法,其特征在于,包括如下步骤:

(1)准确称取一定比例的红色荧光粉原料放入球磨机中球磨,所述红色荧光粉原料以氧化物质量百分比计为:0%<La2O3+Y2O3≤52.51%,0%<MgO≤17.45%,0%<Nb2O5+Ta2O5+Sb2O3≤45.82%,0%<Eu2O3≤25.80%;待原料粉碎并混合均匀后,放入高温炉中,在1450℃空气气氛条件下煅烧4~24小时,制得MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉粉体;

(2)将红色荧光粉与预混液以1000∶173的比例加入至滚筒式球磨机中充分球磨24~48小时,制得混合浆料,所述预混液中各组分占预混液总质量的比为:0%<H2O≤85.58%,0%<N,N二甲基丙烯酰胺≤14.53%,0%<N,N亚甲基双丙烯酰胺≤0.76%,0%<聚丙烯酸铵≤7.56%,0%<聚乙二醇400≤1.74%;在球磨结束之前30min~1h向浆料中加入催化剂N,N,N,N,-四甲基乙二胺,所述催化剂添加量占预混液总质量的比为:0%<N,N,N,N-四甲基乙二胺≤0.37%;

(3)将混合浆料缓慢移出球磨罐,并向混合浆料中加入引发剂过硫酸铵,所述引发剂添加量占预混液总质量的比为:0%<过硫酸铵≤0.035%,搅拌后,将混合浆料倒入模具中干燥24~48小时,制得生坯;

(4)将生坯放在高温炉中,在1400℃空气气氛条件下煅烧2~4小时,制得陶瓷;将陶瓷从高温炉中取出后,冷却至室温并打磨抛光制得最终的红光荧光陶瓷。

优选地,上述步骤(1)中所述红色荧光粉原料,与MgO对应的原料为4MgCO3·Mg(OH)2·5H2O。

优选地,上述步骤(1)中所述红色荧光粉原料,与La2O3,Nb2O5和Eu2O3对应的原料分别为La2O3,Nb2O5和Eu2O3。

优选地,上述步骤(1)中所述红色荧光粉原料,与Y2O3,Ta2O5和5b2O3对应的原料分别为Y2O3,Ta2O5和Sb2O3。

本发明提供的一种红色荧光陶瓷的制备方法,以MgO-(La2O3,Y2O3)-(Nb2O5,Ta2O5,Sb2O3)-Eu2O3体系红色荧光粉为原料,采用凝胶注模工艺制备而成,制备方法简单,固含量高,产品形状尺寸可调,并可批量制备,成品率高。所述红色荧光粉为远程荧光粉,其制备方法简单,用途广泛,可广泛应用于远程荧光粉器件的制备。

本发明还提供了一种由上述制备方法制得的红色荧光陶瓷。该红色荧光陶瓷作为远程荧光粉的载体,可用于芯片的远程封装,避免荧光粉材料和芯片能量源的直接接触,以提高器件的散热性能,用途广泛,可广泛应用于大功率器件中,如激光光源、大功率LED光源等,可靠性高。

以下实施例为红色荧光陶瓷的具体制备过程:

实施例1:

(1)按照MgO-La2O3-Nb2O5-Eu2O3=13.17∶31.92∶43.41∶11.50(以氧化物含量计)的组分比例,准确称取总质量为500g的样品(各组分质量为4MgCO3·Mg(OH)2·5H2O 163.05g,La2O3 54.7g,Nb2O5 223.15g,Eu2O3 59.1g),置于球磨机中球磨24h后,转入到高温炉中1450℃保温8h,冷却至室温,得到红色荧光粉。

(2)按照红色荧光粉与预混液的质量比1000∶173进行混合,其中预混液中各组分质量分别为:去离子水65g,N,N二甲基丙烯酰胺13g,N,N亚甲基双丙烯酰胺0.65g,聚丙烯酸铵6.5g,聚乙二醇4001.5g。首次加入粉体的质量为300g,球磨12h与24h后分两次各加入100g。并在球磨结束之前30min向浆料中加入N,N,N,N,-四甲基乙二胺0.32g。

(3)将球磨之后的浆料倒入烧杯中,向其中加入2ml 1.5%wt过硫酸铵,并轻轻搅拌,将浆料通过80目的不锈钢筛网过滤浆料中的气泡,然后迅速将浆料倒入预先准备的模具中。之后静置约10h后,放在烘箱中50℃干燥2h,脱模,并继续干燥12h。

(4)将已经具有一定强度的坯体放在高温炉中,在1400℃下干燥2h,冷却取出后即得到MgO-La2O3-Nb2O5-Eu2O3体系的红光荧光陶瓷。

实施例2:

(1)按照MgO-Y2O3-Ta2O5-Eu2O3=15.74∶26.45∶44.07∶13.74(以氧化物含量计)的组分比例,准确称取总质量为1000g的样品(各组分质量为4MgCO3·Mg(OH)2·5H2O 230.7g,Y2O3 160.9g,Ta2O5 524.8g,Eu2O3 83.6g),置于球磨机中球磨20h后,转入到高温炉中1450℃保温10h,冷却至室温,得到红色荧光粉。

(2)按照红色荧光粉与预混液的质量比1000∶173进行混合,其中预混液中各组分质量分别为:去离子水130g,N,N二甲基丙烯酰胺26g,N,N亚甲基双丙烯酰胺1.3g,聚丙烯酸铵13g,聚乙二醇4003g。首次加入粉体的质量为600g,球磨12h与24h后分两次各加入200g。并在球磨结束之前1h向浆料中加入N,N,N,N,-四甲基乙二胺0.64g。

(3)将球磨之后的浆料倒入烧杯中,向其中加入4ml 1.5%wt过硫酸铵,并轻轻搅拌,将浆料通过80目的不锈钢筛网过滤浆料中的气泡,然后迅速将浆料倒入预先准备的模具中。之后静置约12h后,放在烘箱中50℃干燥4h,脱模,并继续干燥10h。

(4)将已经具有一定强度的坯体放在高温炉中,在1400℃下干燥3h,冷却取出后即得到MgO-Y2O3-Ta2O5-Eu2O3体系的红光荧光陶瓷。

实施例3:

(1)按照MgO-La2O3-Sb2O3-Eu2O3=10.49∶42.41∶37.94∶9.16(以氧化物含量计)的组分比例,准确称取总质量为500g的样品(各组分质量为4MgCO3·Mg(OH)2·5H2O 110.13g,La2O3 184.70g,Sb2O3 165.27g,Eu2O3 39.90g),置于球磨机中球磨24h后,转入到高温炉中1450℃保温8h,冷却至室温,得到红色荧光粉。

(2)按照红色荧光粉与预混液的质量比1000∶173进行混合,其中预混液中各组分质量分别为:去离子水65g,N,N二甲基丙烯酰胺13g,N,N亚甲基双丙烯酰胺0.65g,聚丙烯酸铵6.5g,聚乙二醇4001.5g。首次加入粉体的质量为300g,球磨12h与24h后分两次各加入100g。并在球磨结束之前30min向浆料中加入N,N,N,N,-四甲基乙二胺0.32g。

(3)将球磨之后的浆料倒入烧杯中,向其中加入2ml 1.5%wt过硫酸铵,并轻轻搅拌,将浆料通过80目的不锈钢筛网过滤浆料中的气泡,然后迅速将浆料倒入预先准备的模具中。之后静置约10h后,放在烘箱中50℃干燥2h,脱模,并继续干燥12h。

(4)将已经具有一定强度的坯体放在高温炉中,在1400℃下干燥2h,冷却取出后即得到MgO-La2O3-Sb2O3-Eu2O3体系的红光荧光陶瓷。

用型号为F-7000的荧光光谱仪,分别测试上述实施例1-3制得的不同体系荧光粉的光谱性质,如图1所示,结果表明,该体系荧光粉的最强激发峰位于465nm,在该激发波长光的激发下,该体系荧光粉表现为最强发射波长位于616nm的红光发射,表明该体系荧光粉为蓝光激发的红色荧光粉。

本文中应用了具体个例对发明构思进行了详细阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离该发明构思的前提下,所做的任何显而易见的修改、等同替换或其他改进,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1