一种纳米晶钛酸钡热敏陶瓷及其制备方法与流程

文档序号:14904832发布日期:2018-07-10 21:43阅读:249来源:国知局

本发明属于电子陶瓷元件制备领域,更具体地,涉及一种低温烧结制备纳米晶钛酸钡基热敏陶瓷的方法及纳米晶钛酸钡热敏陶瓷。



背景技术:

在电子电路、电子机器中,钛酸钡基正温度系数陶瓷热敏电阻用于对集成电路,电池电路和可穿戴设备等进行过热过电流保护,其广泛应用于移动通信、手机、家电、计算机、航空航天等领域。随着电子电路和电器迅速向小型化、集成化和可穿戴化发展,要求常规保护元件热敏电阻也要实现微型化,片式化。同时,为了适应表面贴装技术的要求,满足大规模自动化生产的需要,热敏电阻也要像电阻、电容、电感等无源分立元件一样实现片式化,并可以采用标准的片式元件外形尺寸进行封装。

钛酸钡基热敏陶瓷作为一种传统的n型半导体陶瓷,其晶粒尺寸很难降低到1μm以下。传统空气烧结工艺下,晶粒尺寸在1μm到10μm。后来,通过还原再氧化工艺,晶粒尺寸可以做到1μm到1.5μm。此外,传统钛酸钡基热敏陶瓷采用压片成型和空气中一次烧成的制备工艺,烧结温度在1300度以上,烧结温度过高。而改进后的还原再氧化工艺制备,烧结温度也在1100度以上。

因此空气烧结和还原再氧化烧结,烧结温度高,成瓷的晶粒尺寸在微米级别,不利于钛酸钡基热敏陶瓷的进一步微型化,限制了其应用领域。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种纳米晶钛酸钡热敏陶瓷及其制备方法,由此解决目前采用空气烧结和还原再氧化烧结制备钛酸钡基热敏陶瓷存在的烧结温度高,成瓷的晶粒尺寸较大,不利于钛酸钡基热敏陶瓷的进一步微型化等的技术问题。

为实现上述目的,按照本发明的一个方面,提供了一种纳米晶钛酸钡热敏陶瓷的制备方法,包括:

将纳米钛酸钡热敏粉体、施主粉体以及受主粉体进行混合,获得混合均匀的原料粉体,并将所述原料粉体进行压片,获得待烧结坯体;

对所述待烧结坯体执行等离子放电烧结,获得钛酸钡成型陶瓷;

对所述钛酸钡成型陶瓷进行保温,并在保温的同时进行再氧化得到纳米晶钛酸钡热敏陶瓷。

优选地,所述对所述待烧结坯体执行等离子放电烧结,获得钛酸钡成型陶瓷,包括:

将所述待烧结坯体在800℃~1100℃进行第一次保温0.5min~10min,并在第一次保温的同时施加10mpa~50mpa压力,接着将温度调节至400℃~600℃并进行第二次保温5min~20min,并在第二次保温的同时逐渐将施加的压力降低到0.1mpa~0.5mpa,使得钛酸钡陶瓷成型。

优选地,所述纳米钛酸钡热敏粉体的粒径为10nm~400nm。

通过本发明构思,采用纳米级的钛酸钡热敏粉体,然后通过等离子放电烧结和再氧化工艺相结合的方法,能较好控制晶粒尺寸,得到晶粒细小均匀的致密陶瓷,其平均晶粒范围为100nm~700nm,最后在氧气气氛或者空气气氛下,进行氧化处理,使钛酸钡纳米晶陶瓷的晶界充分氧化,从而获得ptc性能较为优良的钛酸钡热敏陶瓷。

优选地,所述待烧结坯体的厚度为0.05cm~5cm。

在本发明中,片式生坯的厚度为0.05cm~5cm是一种优选参数,该厚度范围的片式生坯会保证烧结后的热敏陶瓷具有较好的机械强度,并能保证其能承受一定的耐压值。

优选地,所述对所述钛酸钡成型陶瓷进行保温的温度范围为:600℃~900℃。

优选地,所述再氧化的时间为0.5h~6h。

在本发明中,对钛酸钡成型陶瓷进行保温的温度范围在600℃~900℃温度范围内,在空气或氧气气氛下,对成型陶瓷保温0.5h~6h,获得纳米晶钛酸钡热敏陶瓷的电性能较好,保温时间太短,再氧化不充分,保温时间太长,没有实际意义,浪费能源。

优选地,所述纳米钛酸钡热敏粉体的粒径为30nm~100nm。

在本发明中,纳米钛酸钡热敏粉体的粒径为30nm时候,工艺过程和成本容易控制,制备获得的钛酸钡热敏陶瓷的综合性能较好。

优选地,所述施主粉体为la2o3或者nb2o5,所述受主粉体为mn(no3)2。

优选地,所述将纳米钛酸钡热敏粉体、施主粉体以及受主粉体进行混合,获得混合均匀的原料粉体,包括:

将所述纳米钛酸钡热敏粉体、所述施主粉体以及所述受主粉体加入去离子水中混合,接着依次执行球磨、干燥和过筛处理,从而获得混合均匀的原料粉体。

按照本发明的另一方面,提供了一种基于上述任意一项所述的纳米晶钛酸钡热敏陶瓷的制备方法制备的纳米晶钛酸钡热敏陶瓷,所述纳米晶钛酸钡热敏陶瓷的平均晶粒大小为100nm~700nm。

优选地,所述纳米晶钛酸钡热敏陶瓷的陶瓷致密度控制在70%~95%范围内,升阻比在3个数量级以上。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:

本发明采用纳米钛酸钡热敏粉体,等离子烧结结合再氧化工艺制备获得纳米晶钛酸钡热敏陶瓷,首先采用纳米级的钛酸钡热敏粉体作为初始原料,该成分具有组分均匀、粒径小、活性高的优点,有利于降低烧结温度和制备纳米晶陶瓷,然后对待烧结坯体执行等离子放电烧结,先在800℃~1100℃保温0.5min~10min,同时施加10~50mpa压力,接着将温度调节至400℃~600℃并保温5min~20min,同时逐渐将施加的压力缓慢降低到0.1~0.5mpa,使得钛酸钡陶瓷成型;通过调控等离子放电烧结温度和时间参数可以精确控制晶粒大小和致密度大小,最后再在600℃~900℃空气或氧气中进行再氧化,制备出的钛酸钡晶粒尺寸可以控制在100nm~700nm,陶瓷致密度可以控制在70%~95%内,升阻比在3个数量级以上,室温电阻率可以达到50ω·cm以下,并且机械性能良好,同时电性能满足使用要求。本发明方法简单易行、成本低廉、烧结温度较低,成瓷晶粒尺寸细小,节约能源、易于大规模推广应用。

附图说明

图1是本发明实施例提供的一种制备纳米晶钛酸钡热敏陶瓷方法的流程示意图;

图2是本发明实施例提供的另一种制备纳米晶钛酸钡热敏陶瓷方法的流程示意图;

图3是本发明实施例提供的一种制备获得的纳米晶钛酸钡热敏陶瓷的扫描电镜图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明提供了一种制备纳米晶钛酸钡热敏陶瓷的方法及纳米晶钛酸钡热敏陶瓷,采用纳米钛酸钡热敏陶瓷粉体压片成生坯,然后通过等离子放电烧结和再氧化工艺相结合的方法制得钛酸钡纳米晶热敏陶瓷,本发明的制备方法制备的钛酸钡热敏陶瓷晶粒尺寸细小、分布均匀、室温电阻率低、具有较大的升阻比。

如图1所示为本发明实施例提供的一种制备纳米晶钛酸钡热敏陶瓷方法的流程示意图,在图1所示的方法中,包括以下步骤:

s1:将纳米钛酸钡热敏粉体、施主粉体以及受主粉体进行混合,获得混合均匀的原料粉体,并将原料粉体进行压片,获得待烧结坯体;

其中,纳米钛酸钡热敏粉体的粒径为10nm~400nm,优选为30nm~100nm,进一步还可优选为30nm~60nm。

其中,该纳米钛酸钡热敏粉体可以为batio3

其中,施主粉体可以为la2o3或者nb2o5,受主粉体可以为mn(no3)2。

其中,可以通过将纳米钛酸钡热敏粉体、施主粉体以及受主粉体加入去离子水中混合,接着依次执行球磨、干燥和过筛处理,以获得混合均匀的原料粉体。

其中,可以将原料粉体用压片机压片,获得待烧结坯体,待烧结坯体的厚度可以为0.05cm~5cm。

s2:对待烧结坯体执行等离子放电烧结,获得钛酸钡成型陶瓷;

其中,如图2所示为本发明提供的另一种制备纳米晶钛酸钡热敏陶瓷方法的流程示意图,详细介绍了获得钛酸钡成型陶瓷的方法,具体为:将待烧结坯体在800℃~1100℃进行第一次保温0.5min~10min,并在第一次保温的同时施加10mpa~50mpa压力,接着将温度调节至400℃~600℃并进行第二次保温5min~20min,并在第二次保温的同时逐渐将施加的压力降低到0.1mpa~0.5mpa,使得钛酸钡陶瓷成型。

在该步骤中,等离子放电烧结的作用是提高粉料活性,降低陶瓷烧结的时间,从而调控晶粒最终尺寸。

s3:对钛酸钡成型陶瓷进行保温,并在保温的同时进行再氧化得到纳米晶钛酸钡热敏陶瓷。

其中,对钛酸钡成型陶瓷进行保温的温度范围为:600℃~900℃,再氧化的时间为0.5h~6h,也可优选为0.5h~2h。

进一步地,采用本发明方法制备的纳米晶钛酸钡热敏陶瓷的平均晶粒大小为100nm~700nm,也可优选为50nm~700nm,纳米晶钛酸钡热敏陶瓷的陶瓷致密度控制在70%~95%范围内,纳米晶钛酸钡热敏陶瓷的升阻比在3个数量级以上。

下面以具体的实施例对本发明进行进一步详细的说明:

实施例1:

s1:将纳米钛酸钡热敏粉体、施主粉体la2o3、受主粉体以执行混合,配制原料粉体。具体为,将粒径为30nm的0.5mol的batio3水热粉体、0.002mol的la2o3施主粉体、0.0005molmn(no3)2受主粉体混合,获得混合物。其中,batio3、施主粉体la2o3固相形式加入,受主粉体以mn(no3)2的水溶液形式加入,硝酸锰的质量分数为1%。将上述混合物与去离子水混合后球磨、烘干、过筛,取100g备用。

s2:称取0.5g上述粉体用压片机压片,0.5mpa保压1min成形,获得待烧结坯体。

s3:对上述待烧结坯体执行等离子放电烧结,以20℃/min升温到烧结温度,然后在800℃的烧结温度下保温0.5min,同时施加10mpa压力,接着将温度调节至400℃并保温5min,同时逐渐将施加的压力缓慢降低到0.1mpa,使得钛酸钡陶瓷成型;

s4:最后在空气中600℃条件下再氧化处理0.5h。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的组织性能为:平均晶粒尺寸为110nm,致密度为70%,所得瓷片室温电阻率为4.29×104ω·cm,升阻比r250/r25=4.29×104

实施例2:

本实施例与实施例1相同,不同的是,步骤s3中,烧结温度为850℃,其他均相同。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为128nm,致密度为78%,所得瓷片室温电阻率为6500ω·cm,升阻比r250/r25=1.9×104

实施例3:

本实施例与实施例1不同的是,步骤s3中,烧结温度为900℃,其他均相同。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为185nm,致密度为82%,所得瓷片室温电阻率为188ω·cm,升阻比r250/r25=2.1×103

图3是本发明一实施例中制备获得的纳米晶钛酸钡热敏陶瓷的扫描电镜图片,由图可知:其晶粒细小,结构致密,平均晶粒尺寸为185nm。

实施例4

本实施例与实施例1相同,不同的是,步骤s3中,烧结温度为950℃,其他均相同。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为210nm,所得瓷片室温电阻率为62ω·cm,致密度为84%,升阻比r250/r25=1.7×103

实施例5

s1:将纳米钛酸钡热敏粉体、施主粉体执行混合,配制原料粉体。具体为,将粒径为50nm的0.5mol的batio3水热粉体、0.004mol的nb2o5施主粉体混合,获得混合物。其中,batio3、施主粉体以固相形式加入。将上述混合物与去离子水混合后球磨、烘干、过筛,取100g备用。

s2:称取0.5g上述粉体用压片机压片,0.5mpa保压1min成形,获得待烧结坯体。

s3:对上述待烧结坯体执行等离子放电烧结,以30℃/min升温到烧结温度,然后在900℃的烧结温度下保温10min,同时施加50mpa压力,接着将温度调节至600℃并保温20min,同时逐渐将施加的压力缓慢降低到0.1mpa,使得钛酸钡陶瓷成型;

s4:最后在空气中600℃条件下再氧化处理0.5h。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸140nm,致密度为74%,所得瓷片室温电阻率为7420ω·cm,升阻比r250/r25=8.8×103

实施例6

本实施例与实施例5不同的是,步骤s4中,在空气中800℃条件下再氧化处理2h,其他均相同。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为140nm,致密度为74%,所得瓷片室温电阻率为8550ω·cm,升阻比r250/r25=1.2×104

实施例7

本实施例与实施例5不同的是,步骤s4中,在空气中900℃条件下再氧化处理2h。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为140nm,致密度为74%,所得瓷片室温电阻率为16860ω·cm,升阻比r250/r25=4.2×104

实施例8

s1:将纳米钛酸钡热敏粉体、施主粉体la2o3、受主粉体执行混合,配制原料粉体。具体为,将粒径为400nm的0.5mol的batio3水热粉体、0.003mol的la2o3施主粉体、0.0015molmn(no3)2受主粉体混合,获得混合物。其中,batio3、施主粉体以固相形式加入,受主粉体以mn(no3)2的水溶液形式加入,硝酸锰的质量分数为1%。将上述混合物与去离子水混合后球磨、烘干、过筛,取100g备用。

s2:称取1g上述粉体用压片机压片,1mpa保压1min成形,获得待烧结坯体。

s3:对上述待烧结坯体执行等离子放电烧结,以20℃/min升温到烧结温度,然后在900℃的烧结温度下保温5min,同时施加30mpa压力,接着将温度调节至500℃并保温20min,同时逐渐将施加的压力缓慢降低到0.5mpa,使得钛酸钡陶瓷成型;

s4:最后在空气中600℃条件下再氧化处理0.5h。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:所得瓷片室温电阻率为140ω·cm,平均晶粒尺寸430nm,致密度为84%,升阻比r250/r25=5.5×103

实施例9

本实施例与实施例8不同的是,步骤s3中,烧结温度为1000℃。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为640nm,致密度为89%,所得瓷片室温电阻率为60ω·cm,升阻比r250/r25=2.2×103

实施例10

本实施例与实施例8不同的是,步骤s3中,烧结温度为1100℃。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:平均晶粒尺寸为786nm,致密度为95%,所得瓷片室温电阻率为16ω·cm,升阻比r250/r25=1.2×102

实施例11

s1:将纳米钛酸钡热敏粉体、施主粉体、受主粉体执行混合,配制原料粉体。具体为,将粒径为10nm的0.5mol的batio3水热粉体、0.006mol的la2o3施主粉体、0.0005molmn(no3)2受主粉体混合,获得混合物。其中,batio3、施主粉体以固相形式加入,受主粉体以mn(no3)2的水溶液形式加入,硝酸锰的质量分数为1%。将上述混合物与去离子水混合后球磨、烘干、过筛,取100g备用。

s2:称取1g上述粉体用压片机压片,1mpa保压1min成形,获得待烧结坯体。

s3:对上述待烧结坯体执行等离子放电烧结,以10℃/min升温到烧结温度,然后在950℃的烧结温度下保温10min,同时施加30mpa压力,接着将温度调节至500℃并保温10min,同时逐渐将施加的压力缓慢降低到0.5mpa,使得钛酸钡陶瓷成型;

s4:最后在空气中900℃条件下再氧化处理6h。

本实施例制备获得的纳米晶钛酸钡热敏陶瓷的结构性能为:所得瓷片室温电阻率为4165ω·cm,平均晶粒尺寸50nm,致密度为83%升阻比r250/r25=6.2×103

本发明的陶瓷的制备方法特别适用于叠层片式钛酸钡基正温度系数热敏陶瓷电阻。这里陶瓷纳米晶的控制方法也可以应用于高耐电压热敏陶瓷元件的制备。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1