一种微波介质陶瓷的制备方法与流程

文档序号:20912202发布日期:2020-05-29 13:07阅读:247来源:国知局

本发明属于陶瓷材料技术领域,尤其涉及一种微波介质陶瓷的制备方法。



背景技术:

微波介质材料是指应用于微波频段(300mhz-300ghz)电路中作为介质并完成一种或多种功能的陶瓷,主要用于制备谐振器、滤波器、介质天线、介质导波回路等微波元器件。高集成、高品质、高介电常数、低损耗与良好的温度稳定性的介电陶瓷材料是目前研究的热点之一,目前钙钛矿系、bao-ln2o3-tio2系、cao-li2o-ln2o3-tio2系等高介电常数微波陶瓷已得到了一定的应用,但烧结温度高,难以实现与高导电率的金属银或铜共烧集成,不利于集成化的不足严重制约了微波通信电路的微型化和高品质的发展。

ltcc(低温共烧陶瓷)技术作为一种先进的三维立体组装集成技术,为无源器件集成、无源/有源器件混合集成以及高密度电子封装的发展提供了理想的平台,成为了当前高频电子器件及基板集成中最为主流的技术;而ltcc材料作为ltcc技术的核心,其最大的特点是能够在800-1050℃低温烧结下即可烧结致密成瓷,在具备优良电子功能陶瓷性能的同时,能与银电极实现匹配共烧,并且还需根据预先设定的电路结构,实现电路、基板和电子元器件等全系统的一次性烧成;该技术在降低成本的同时,对电子线路、器件以及模块封装的集成度、功能性和可靠性等都有大幅度的提高。

微波介质陶瓷材料是ltcc材料中应用最为广泛的一个分支,一般的微波介质陶瓷材料烧结温度都在1100℃以上,但为了与ltcc低温烧结工艺兼容,需将其烧结温度降低到1100℃以下;常采用的方法主要包括添加低熔氧化物或玻璃助烧、引入化学合成方法以及采用超细粉体做原料等;后两种成本高昂、并有一定的工艺局限性,因而添加低熔氧化物或玻璃是目前实现ltcc微波介电陶瓷材料的主要方法;但即便采取这种方法,目前许多微波介电陶瓷材料的烧结温度太高,也很难实现低温烧结,其次,过多低熔氧化物或玻璃的掺入,也会对材料的损耗性能构成很大的影响,导致q×f下降很大,无法保证ltcc集成器件和组件性能的稳定性。



技术实现要素:

本发明目的就是为了弥补已有技术的缺陷,提供一种微波介质陶瓷的制备方法。

为了实现上述的目的,本发明提供以下技术方案:

一种微波介质陶瓷的制备方法,包括以下步骤:

(1)将nb2o5、baco3、mgo按物质的量比1:3:1混合送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨8-10h,得到配合料备用;

(2)将配合料送入100-120℃干燥箱中烘干,再送入烧结炉中预烧后重新磨细,得到预合成粉体备用;

(3)向上述预合成粉体中依次加入sno2和助熔剂,再次送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨6-8h,得到二次配合料;

(4)将二次配合料送入80-100℃干燥箱中烘干,向其中加入粘合剂,充分搅拌后制成球状粉粒,密封均化备用;

(5)将均化后的粉粒送入模具内压制成圆柱体生坯;

(6)将生坯置于烧结炉中进行终烧,得到陶瓷半成品;

(7)将上述终烧产物表面抛光后用酒精擦干,在其上下表面涂覆银浆,之后送入电阻炉中于650-750℃下烧渗制备电极,自然冷却后得到本发明介质陶瓷材料。

进一步的,所述步骤(2)中预烧时以250-300℃/h的速度升温至900-1200℃,烧结8-12h。

进一步的,所述步骤(3)中sno2的加入量为预合成粉体质量的4-8%。

进一步的,所述步骤(3)中助熔剂的制备方法包括以下步骤:

(1)将h3bo3、zno、la2o3按物质的量比2:2:1混合后高温熔融,将均化澄清后的熔体倒入去离子水中淬火得到玻璃碎粒;

(2)将玻璃碎粒烘干后研磨过200-250目筛,得到均匀的玻璃粉体,即为助熔剂。

进一步的,所述步骤(3)中助熔剂的加入量为预合成粉体质量的9-12%。

进一步的,所述步骤(4)中粘合剂为质量分数为5-8%的聚乙烯醇水溶液,其加入量为二次配合料质量的15-25%。

进一步的,所述步骤(5)中压制压力控制为50-90mpa,圆柱体生坯大小为φ(18-20)mm×(8-10)mm。

进一步的,所述步骤(6)中终烧过程为:先以2-4℃/min速率升温至600-650℃,保温1-2h,再以4-6℃/min速率继续升温至980-1070℃,保温5-7h,再以3-5℃/min速率降温至500-600℃,保温1-2h,最后自然冷却至常温。

本发明的优点是:

本发明介质陶瓷材料以钙钛矿结构微波陶瓷为主体,为了改善其微波介电性能,通过掺杂改性的方式以降低其烧结温度,在制备过程中,经预烧的混合粉体与sno2混合球磨,能将材料中部分nb5+和mg2+用sn4+取代,由于化合价的不同,会在陶瓷材料中产生部分点缺陷,从而加快离子的迁移和扩散,进而促进原料的烧结,同时sn4+的有效半径与b位离子半径的平均值非常接近,且化合价也相等,因此sn4+能够进入陶瓷材料的晶格中,形成b位置换型固溶体,降低了成瓷致密化烧结温度。

与此同时,在掺杂sno2的同时还向其中加入助烧剂,其中h3bo3、zno能够与陶瓷原料中的氧化物形成低熔点的玻璃相,在烧结时先产生液相,对粉体起到了润湿和溶解的作用,令烧结机理从固相烧结变为液相烧结,加速晶粒的成长,从而进一步降低烧结温度,并在sno2掺杂的情况下,能与过量的液相在烧结温度下降的过程中重结晶,避免了过多低熔氧化物或玻璃的掺入导致材料损耗的弊端。

在制备方法中,在终烧过程中不仅大幅降低了烧结温度,同时其阶段式的升降温可以令其在致密化过程中反应更为均匀饱和,单位体积内极化子数量增多,促进晶粒良好的发育,从而有效提高陶瓷的致密度,改善了其介电性能。

由此得到的微波介质陶瓷具有更为优质的性能,且由于烧结温度的降低,大大降低了生产成本,具有理想的经济价值和实用价值。

具体实施方式

以下结合具体的实例对本发明的技术方案做进一步说明:

实施例1

一种微波介质陶瓷的制备方法,包括以下步骤:

(1)将nb2o5、baco3、mgo按物质的量比1:3:1混合送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨8h,得到配合料备用;

(2)将配合料送入100℃干燥箱中烘干,再送入烧结炉中以250℃/h的速度升温至900℃,烧结12h进行预烧,预烧后重新磨细,得到预合成粉体备用;

(3)向上述预合成粉体中依次加入相当于预合成粉体质量4%的sno2和9%的助熔剂,再次送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨6h,得到二次配合料;

其中助熔剂的制备方法包括以下步骤:

a、将h3bo3、zno、la2o3按物质的量比2:2:1混合后高温熔融,将均化澄清后的熔体倒入去离子水中淬火得到玻璃碎粒;

b、将玻璃碎粒烘干后研磨过200目筛,得到均匀的玻璃粉体,即为助熔剂。

(4)将二次配合料送入80℃干燥箱中烘干,向其中加入相当于二次配合料质量的15%、质量分数为5%的聚乙烯醇水溶液,充分搅拌后制成球状粉粒,密封均化备用;

(5)将均化后的粉粒送入模具内压制成圆柱体生坯,压制压力控制为50mpa,圆柱体生坯大小为φ18mm×8mm;

(6)将生坯置于烧结炉中进行终烧,先以2℃/min速率升温至600℃,保温2h,再以4℃/min速率继续升温至980℃,保温7h,再以3℃/min速率降温至500℃,保温2h,最后自然冷却至常温,得到陶瓷半成品;

(7)将上述终烧产物表面抛光后用酒精擦干,在其上下表面涂覆银浆,之后送入电阻炉中于650℃下烧渗制备电极,自然冷却后得到本实施例介质陶瓷材料。

实施例2

一种微波介质陶瓷的制备方法,包括以下步骤:

(1)将nb2o5、baco3、mgo按物质的量比1:3:1混合送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨10h,得到配合料备用;

(2)将配合料送入120℃干燥箱中烘干,再送入烧结炉中以300℃/h的速度升温至1200℃,烧结8h进行预烧,预烧后重新磨细,得到预合成粉体备用;

(3)向上述预合成粉体中依次加入相当于预合成粉体质量8%的sno2和12%的助熔剂,再次送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨8h,得到二次配合料;

其中助熔剂的制备方法包括以下步骤:

a、将h3bo3、zno、la2o3按物质的量比2:2:1混合后高温熔融,将均化澄清后的熔体倒入去离子水中淬火得到玻璃碎粒;

b、将玻璃碎粒烘干后研磨过250目筛,得到均匀的玻璃粉体,即为助熔剂。

(4)将二次配合料送入100℃干燥箱中烘干,向其中加入相当于二次配合料质量的25%、质量分数为8%的聚乙烯醇水溶液,充分搅拌后制成球状粉粒,密封均化备用;

(5)将均化后的粉粒送入模具内压制成圆柱体生坯,压制压力控制为90mpa,圆柱体生坯大小为φ20mm×10mm;

(6)将生坯置于烧结炉中进行终烧,先以4℃/min速率升温至650℃,保温1h,再以6℃/min速率继续升温至1070℃,保温5h,再以5℃/min速率降温至600℃,保温1h,最后自然冷却至常温,得到陶瓷半成品;

(7)将上述终烧产物表面抛光后用酒精擦干,在其上下表面涂覆银浆,之后送入电阻炉中于750℃下烧渗制备电极,自然冷却后得到本实施例介质陶瓷材料。

实施例3

一种微波介质陶瓷的制备方法,包括以下步骤:

(1)将nb2o5、baco3、mgo按物质的量比1:3:1混合送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨9h,得到配合料备用;

(2)将配合料送入110℃干燥箱中烘干,再送入烧结炉中以275℃/h的速度升温至1050℃,烧结10h进行预烧,预烧后重新磨细,得到预合成粉体备用;

(3)向上述预合成粉体中依次加入相当于预合成粉体质量6%的sno2和10%的助熔剂,再次送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨7h,得到二次配合料;

其中助熔剂的制备方法包括以下步骤:

a、将h3bo3、zno、la2o3按物质的量比2:2:1混合后高温熔融,将均化澄清后的熔体倒入去离子水中淬火得到玻璃碎粒;

b、将玻璃碎粒烘干后研磨过220目筛,得到均匀的玻璃粉体,即为助熔剂。

(4)将二次配合料送入90℃干燥箱中烘干,向其中加入相当于二次配合料质量的20%、质量分数为6%的聚乙烯醇水溶液,充分搅拌后制成球状粉粒,密封均化备用;

(5)将均化后的粉粒送入模具内压制成圆柱体生坯,压制压力控制为70mpa,圆柱体生坯大小为φ19mm×9mm;

(6)将生坯置于烧结炉中进行终烧,先以3℃/min速率升温至620℃,保温1.5h,再以5℃/min速率继续升温至1020℃,保温6h,再以4℃/min速率降温至550℃,保温1.5h,最后自然冷却至常温,得到陶瓷半成品;

(7)将上述终烧产物表面抛光后用酒精擦干,在其上下表面涂覆银浆,之后送入电阻炉中于700℃下烧渗制备电极,自然冷却后得到本实施例介质陶瓷材料。

对比例

按ba3mgnb2o9化学组成,通过以下方法制备对比介质陶瓷:

(1)将nb2o5、baco3、mgo按物质的量比1:3:1混合送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨9h,得到配合料备用;

(2)将配合料送入110℃干燥箱中烘干,再送入烧结炉中以275℃/h的速度升温至1050℃,烧结10h进行预烧,预烧后重新磨细,得到预合成粉体备用;

(3)将上述预合成粉体再次送入行星式球磨机中,用氧化锆作磨球,酒精作助磨剂,球磨7h,得到二次配合料;

(4)将二次配合料送入90℃干燥箱中烘干,向其中加入二次配合料质量的20%、质量分数为6%的聚乙烯醇水溶液,充分搅拌后制成球状粉粒,密封均化备用;

(5)将均化后的粉粒送入模具内压制成圆柱体生坯,压制压力控制为70mpa,圆柱体生坯大小为φ18mm×10mm;

(6)将生坯置于烧结炉中于1260℃进行终烧,得到陶瓷半成品;

(7)将上述终烧产物表面抛光后用酒精擦干,在其上下表面涂覆银浆,之后送入电阻炉中于700℃下烧渗制备电极,自然冷却后得到本对比例介质陶瓷材料。

将实施例1-3及对比例的介电陶瓷材料进行性能测试,测试结果如表1所示。

其中,介电常数εr、品质因数q×f用agilentn5230anetworkanalyzer(300mhz-20ghz)进行测试;相对密度用阿基米德排水法进行测试;

表1实施例1-3及对比例的介电陶瓷材料性能

由上表可见,实施例1-3较对比例在烧结温度上大大降低,相对密度和表观密度都有显著提升,同时介电性能增加,令陶瓷的综合性能得以改善。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1