添加ReAlO<sub>3</sub>的微波介质陶瓷材料及其制备方法

文档序号:10466179阅读:528来源:国知局
添加ReAlO<sub>3</sub>的微波介质陶瓷材料及其制备方法
【专利摘要】本发明提供一种添加ReAlO3的微波介质陶瓷材料及其制备方法,材料化学通式为Ba3.75Nd9.5(Ti1?xCx)18O54+y wt%ReAlO3,C=MN,其中x为摩尔含量比例,0.03≤x≤0.06,2≤y≤9,y是在Ba3.75Nd9.5(Ti1?xCx)18O54的基础上外加的ReAlO3的质量百分比含量;M代表价态高于四价的Nb,N代表价态低于四价且离子半径与Ti相近的Zn,Co,Ni,Mg,Al中一种元素,M和N同时取代,Re为Nd,Sm,La,Ce其中的一种;制备方法包括配料、分别经过球磨混合,两相分别在1100~1150℃和1450?1500℃下预烧,然后在1400~1450℃下烧结制成;制得的材料介电常数较高,频率温度系数可调同时保持较高的Q×f值,配方中不含Pb、Cd等挥发性或重金属,性能上实现了大幅提升,且原材料在国内供应充足,价格低廉,使高性能微波陶瓷的低成本化成为可能。
【专利说明】
添加 ReA 103的微波介质陶瓷材料及其制备方法
技术领域
[0001] 本发明涉及电子元器件材料领域,特别是涉及一种在少量B位取代的 Ba3.75Nd9.5Ti180 54中,添加经过接近其烧结温度预烧的ReA103相的微波介质陶瓷材料及其制 备方法。
【背景技术】
[0002] 随着无线通信技术向小型化民用化方向发展,同时根据物联网技术在日常生活中 的具体需求,二者结合产生了射频识别技术(radio frequency identification,RFID)。该 技术既是物联网感知层的核心技术之一,又是一种无线通信技术,其系统由读写器、天线和 电子标签组成。一般而言,无论是天线还是标签常常需要采用介电常数大于60的微波介质 陶瓷。因此,高介电常数的微波介质陶瓷是制备射频识别器件的核心基础材料。而同时其高 频化,高稳定性的实际应用要求,加上器件制备工艺简洁和低成本化需求,一般要求微波介 质陶瓷材料具有:系列化且较高的介电常数(大于60),较低的频率温度系数(± 10ppm/°C以 内),较低的微波损耗(由Q X f值表征,一般要求Q X f值大于5000GHz)。因此,这三项性能指 标是表征微波介质材料性能的重要参数:同样的条件下,微波器件采用较高的QXf值材料 制作器件损耗更低,有效解决器件集成中的发热问题,且利于器件精确选频;采用系列化的 较大的介电常数的微波介质材料有助于设计各种小型化的微波器件;同时,趋于零的频率 温度系数是器件性能是否稳定的重要参数。因此研制微波频率下具有系列化较高介电常 数,低损耗且趋于零的频率温度系数的微波介质陶瓷材料具有较大的应用价值。
[0003] 在当前为数不多的高介微波介质陶瓷体系中,Ba6-3xNd8+2xTi 18054体系陶瓷(0 < X < 0.8),其较高的QXf值(约5000-10000GHZ),较高的介电常数(80-90),以及已被广泛证实的 可调到零的频率温度系数,在世界范围内有着广泛的研究和应用。据报道,x = 2/3时,体系 介电常数约82,QX f值为体系最高值(约10000GHz),且频率温度系数最低(约50ppm/°C);而 χ = 0·75时,体系介电常数约89,QXf值约10000GHz,且频率温度系数同样很低(约60ppm/ °C )。相比较而言,当x = 0.75时,体系的综合性能更加优异,本发明基于x = 0.75进行性能改 善研究。其具有类钨铜矿结构,原材料在国内较易获得,成本相对比较低廉,烧成温度较宽 较低,现在已经成为应用最广泛的微波介质陶瓷材料之一。也可用于制作介质滤波器,多层 陶瓷电容器以及介质谐振器等。
[0004] 在这些调整Ba6-3xNd8+2 XTi18054体系陶瓷频率温度系数的报道中,主要方法包括离 子取代和两相复合。根据文献报道,结构上,Ba6-3xNd8+2xTi 18054体系陶瓷通常是类钨青铜结 构(复杂钙钛矿结构),由Ti-Ο构成的八面体相互连接形成骨架,而同时Ba和Nd分别位于骨 架间隙中。这些间隙既有四边形区域(A2位稀土元素更倾向于占该位)和又有空间较大的五 边形区域(A1位,Ba元素更倾向于占该位);且随着通式中X的变化,Ba和Ln可以相互取代。基 于该结构理论,各国研究人员在Ba0-Nd203-Ti02体系中较多采用A位取代,且得到了各种介 电常数较高的(90左右)、性能优异的陶瓷材料。R.Ubic等采用Ca,Sr和Sm,Bi等元素分别对 Ba位和Nd位进行取代制备(Bai-aAa) 6-3x( Ndl-bBb ) 8+2xTi 18〇54陶瓷,可改善体系不同的性能指标 参数。总体而言,A1位取代可提升介电常数但会增大频率温度系数;A2位取代会降低频率温 度系数,但是不同元素会产生不同的性能变化趋势,且不同含量会有不同的取代机理。故为 达到介电常数可控的目的,A位取代元素的选取和含量的控制显得尤为重要。同时,B位取代 的研究进展缓慢,相关的文献报道近年来才陆续有所报道。为调零频率温度系数,四价取代 会大幅降低介电常数和品质因数,而少量B位非四价元素组合取代可维持较高的介电常数 和较高的品质因数。因此,选取合适的元素在适量的范围内做离子取代可达到较好的预期 效果。
[0005] 对于两相复合而言,原理较为清晰,体系性能由两相性能综合决定,但是只有选择 合适两相参与复合,在合适的温度烧结,才能得到理想的微波性能。原因在于,1)纯的Ba6-3xNd8+2xTi18054相具有较高的频率温度系数,常常需要加入大量的第二相进行调节。2)具有 负频率温度系数的陶瓷,介电常数一般较低。因此,若直接采用纯Ba-Nd-Ti相,需要引入大 量第二相,会大幅降低体系的介电常数,以换取近零的频率温度系数。基于现有报道,多数 直接复合常常会大幅降低体系的介电常数。例如,《陶瓷国际》(Ceramic Internationa 1)报 道,采用BaNd2Ti4〇i2和BaZn2Ti4〇n复合,得到的陶瓷QXf值达40000GHz,频率温度系数也接 近于零,但是介电常数40左右;Azough.F等在《电子陶瓷》(Journal of Electroceramics) 报道采用BaNd2Ti4〇i2和BaAl2Ti4〇i2复合,得到了介电常数71,品质因数8200GHz的陶瓷; X. Yao等报道BaNcbTisOw和BaAhTisOw复合得到介电常数71,Q X f值约10000GHz的陶瓷,事 实上,根据文献分析BaNd2Ti5〇i4并非单相;《欧洲陶瓷协会会刊》(Journal of the European Ceramic Society)报道了Βε?4.2M9.2Tii8〇54体系中掺杂如NdAl〇3,成功降低了频率 温度系数,介电常数约65,总体性能并不好,原因在于二者不同的传质速率。综合上述报道, 直接采用BaNd2Ti4〇12晶相的陶瓷采用两相复合,需要大量引入第二相以降低体系频率温度 系数,但体系介电常数也会大幅降低。基于这样的事实,现迫切需要新的思路以维持体系较 高的介电常数,较高的品质因数和近零的频率温度系数。
[0006] 基于上述研究现状,本发明拟采用在少量B位取代(0.03 < X < 0.06)的 Ba3.75Nd9.5Ti18〇 54陶瓷基础上,添加在烧结温度附近预烧的ReA103陶瓷,通过两相复合,以获 得近零的频率温度系数,且维持体系较高的介电常数和较高的品质因数。充分利用了少量B 位取代Ba3.75Nd9.5Ti18〇 54陶瓷材料高介电常数、高品质因数和较低的频率温度系数,以及 ReA103陶瓷较低的损耗和绝对值较大的负频率温度系数的优势。故采用较少的第二相即可 将体系频率温度系数调零,对主晶相的性能危害较小。

【发明内容】

[0007] 鉴于以上所述现有技术的情况,本发明的目的在于采用低损耗,廉价且具有负频 率温度系数的ReAl〇3陶瓷,将其在接近烧结温度下预烧,与B位少量等价取代的 Ba3.75Nd9.5Ti180 54陶瓷复合,提供一种具有介电常数较高且可调、损耗较低、频率温度系数接 近零、成本低廉的微波介质陶瓷材料及其制备方法。
[0008] 为实现上述目的,本发明提供一种添加 ReAl〇3的微波介质陶瓷材料及其制备方 法,材料化学通式为BausNcb.dTii-xCx)18〇54+y wt%ReA103,C=MN,其中X为摩尔含量比例, 0.03<x<0.06;2<y < 9,y是在 BausNcb.dTii-xCx)18〇54 的基础上外加的 ReA103的质量百分 比含量;Μ代表价态高于四价的Nb,N代表价态低于四价且离子半径与Ti相近的Zn,Co,Ni, Mg,A1中一种元素,Μ和N同时取代,Re为常见稀土元素 Nd,Sm,La,Ce。
[0009] 作为优选方式,N为Zn,Co,Ni,Mg,A1中的一种。
[0010] 作为优选方式,当MN同时取代时,若N为Al,贝摩尔比N:M=1:1,若N为Zn、Co、Ni、Mg 其中的一种,则摩尔比N:M=1:2。
[0011] 作为优选方式,所述微波介质陶瓷材料晶相为类钨铜矿结构的BaNd2Ti4012和钙钛 矿结构的ReA103复合。
[0012] 作为优选方式,所述微波介质陶瓷材料的QXf值在9000~12000GHz之间,相对介 电常数£1在70~80之间,谐振频率温度系数在± 10ppm/°C以内。
[0013] 为实现上述目的,本发明提供一种添加 ReAl〇3的微波介质陶瓷材料及其制备方 法,材料化学通式为Ba3.75Nd9.5(Ti卜XC X) 18〇54+y wt%ReA103。原料选自 BaC03、Nd2〇3、La2〇3、 〇6203、5111203、1102^1 203、]\%0、2110、(:〇203、附0、恥 205,各原料按化学通式确定各自质量百分含 量,经过球磨混合,两相分别在1100~1150°C和1450-1500°C下预烧,然后在1400~1450°C 下烧结制成。
[0014] 本发明具体在于,1.原材料的选取:(1)充分利用少量B位II-V或III-V价取代的 Ba3.75Nd9.5Til8〇54陶瓷,具有的高介电常数(大于80),低损耗和低的频率温度系数(一般低于 +35ppm/°C);(2)采用低损耗,负频率温度系数的ReA103陶瓷作为第二相;2.烧结机理控制: 充分利用两相不同的烧结传质速率。相比较而言,ReA103陶瓷晶粒形成速率较快, Ba3.75Nd9.5Ti18〇54陶瓷晶粒形成速度较慢。两相混合烧结时,ReA10 3陶瓷晶粒快速形成,会阻 碍Ba3.75Nd9.5Ti18〇 54陶瓷晶粒生长,导致整体性能变差。而本发明创新在于第二相ReA103陶 瓷在接近烧结温度(1450-1500°C)下预烧,降低第二相的烧结活性,采用该思路形成的陶瓷 材料非常致密(如图2所示)。3.少量第二相添加即可实现大幅提升体系微波介电性能的目 标。
[0015] 作为优选方式,所述方法包括以下步骤:
[0016] (1)配料;按照化学通式Ba3.75Nd9.5(Tii-xCx)i8〇54+y wt%ReAl〇3,C = MN,原料选自 8&0)3、制2〇3、1^2〇3、〇62〇3、31112〇3、11〇2、厶12〇3、]\^0、211〇、(:02〇3、附0、恥2〇5,各原料按化学通式 确定各自质量百分含量;
[0017] (2)球磨;将步骤(1)所得混合料进行球磨,得到球磨料;
[0018] (3)烘干,过筛;将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
[0019] (4)预烧;将步骤(3)所得干燥粉体置于氧化铝坩埚中,两相分别在1100~1150Γ 和1450-1500 °C下预烧5小时得到预烧粉体;
[0020] (5)二次球磨;将步骤(4)所得预烧粉体按照摩尔比例混合并球磨,得到球磨料并 烘干;
[0021] (6)造粒,模压成型;将步骤(5)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒 尺寸控制在80~160目,将粒料放入成型模具中干压成型得到生坯;
[0022] (7)烧结;将步骤(6)所得生坯置于氧化铝坩埚中,1400~1450Γ下烧结2~3小时, 得到最终的微波介质陶瓷材料。
[0023]作为优选方式,所述步骤(2)中具体球磨过程为:以二氧化锆球为球磨介质,按照 混合料:磨球:去离子水的质量比为1: (3~5):(1~2)进行研磨8小时得到混合均匀的球磨 料。
[0024] 本发明提供的微波介质陶瓷材料,经检测具有较低的损耗即较高的QXf值,可调 且较高的介电常数和近零的谐振频率温度系数。
[0025] 与现有技术相比,本发明具有以下特点:
[0026] 1.本发明采用在少量B位取代的频率温度系数较低(约+35ppm/°C)的Ba6- 3xNd8+ 2xTi18〇54,x = 3/4中少量添加低损耗,负频率温度系数的ReA103陶瓷。具有高介电常数,较高 的Q X f值和近零频率温度系数的优点。
[0027] 2.第二相在接近其烧结温度的温度范围内进行预烧,晶相生成较为完整;其与主 相复合烧结时,第二相活性降低,促进了主晶相的晶粒生长,可以实现陶瓷致密化烧结,对 应的复相陶瓷性能获得提尚。
[0028] 3.本发明的配方中不含Pb,Cd等挥发性或重金属,是一种环保微波介质陶瓷材料。
[0029] 4.性能上实现了较大提升:现阶段已有的两相复合基础配方,介电常数一般在60 ~70,QXf值一般在5000~11000GHz左右,不能完全满足用于射频识别的微波器件应用要 求;本发明提供的微波介质陶瓷材料QXf值在9000~12000GHz之间,相对介电常数εr在70 ~80之间,且谐振频率温度系数均在± 10ppm/°C以内,且性能稳定,能够满足现代微波器件 的应用需求。
[0030] 5.原材料在国内供应充足,价格低廉,使高性能微波陶瓷的低成本化成为可能。
【附图说明】
[0031] 图 1 为Ba3.75Nd9.5 (T i 〇. 97 (C〇1/3Nb2/3) 〇. 〇3) 18054_9wt % NdAl 03 陶瓷的XRD 图谱。
[0032] 图 2 为Ba3.75Nd9.5(Ti。.95(Al。.5Nb。.5)。.。5)l8054-5wt%NdA103陶瓷的断面SEM图。
【具体实施方式】
[0033] 以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书 所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实 施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离 本发明的精神下进行各种修饰或改变。
[0034] 图 1 为8&3.75恥9.5(11().97((:〇1/3恥 2/3)().()3)18054-9¥七%恥厶10 3的父1^图谱,未标出的相 为主晶相BaNd2Ti4〇i2,类钨铜矿结构,标出的相为NdAl〇3相,钙钛矿结构。
[0035] 图 2 为Ba3.75Nd9.5(Ti().95(Al().5Nb().5)().()5)l8054-5wt%NdA103的断面SEM图,断面致密, 在微米级别图像中观察不到明显的气孔。
[0036] 实施例
[0037]本发明提供一种添加 ReA103(高温预烧)的高性能基微波介质陶瓷材料,材料配方 为BausNcb.dTii-xCx)18〇54+y wt%ReA103,C = MN,其中X为摩尔含量比例,0·03<χ<0·06;2 < y《9,y是在Ba3.75Nd9.5(Tii-xCx)i8〇54的基础上外加的ReAl〇3的质量百分比含量(即y wt% 表示每100克BausNcb.dTii-xCx)18〇54材料加入y克的ReA10 3);M代表价态高于四价的Nb,N代 表价态低于四价且离子半径与Ti相近的其他一种元素(211,1%,附,0),41),1和1^同时取代, 此为常见稀土元素(1^ =阳,3111,]^1,〇6)。
[0038] N为Zn,Co,Ni,Mg,A1中的一种。当MN同时取代时,若N为A1,则摩尔比N:M= 1:1,若N 为Zn、Co、Ni,Mg其中的一种时,则总的摩尔比N: M= 1:2。
[0039] 所述微波介质陶瓷材料晶相为类钨铜矿结构的B a N d 2 T i 4 0 i 2和钙钛矿结构的 ReAl〇3.
[0040] 所述微波介质陶瓷材料的QXf值在9000~12000GHz之间,相对介电常数εr在70~ 80之间,谐振频率温度系数在± 10ppm/°C以内。
[0041] -种添加 ReA103的高性能高介微波介质陶瓷材料的制备方法,材料化学通式为 (1-y)Ba3.75Ndg.5(Tii-xCx)i8〇54+y ReAl〇3,原料选自 BaC〇3、Nd2〇3、La2〇3、Ce2〇3、Sm2〇3、Ti〇2、 △1203、1%0、2110、(:〇203、附0、他 205,表1为各实施例中各原材料占原料总量的质量百分比,按 表1的百分含量称取原料,经过球磨混合,两相分别在1000~1150°C和1450-1500°C下预烧, 然后在1400~1450°C下烧结制成。
[0042] 实施例具体以少量B位II-V价或III-V价取代的Ba3.75Nd9.5Ti 18054陶瓷为基础,其具 有大于80的介电常数,大于8000GHz的Q X f值和频率温度系数约+35ppm/°C ;结合拥有低损 耗和较负频率温度系数的NdA103,两相复合以得到较高的介电常数,较高的QXf值和近零 的频率温度系数。
[0043]所述方法包括以下步骤:
[0044] (1)配料;按照化学通式Ba3.75Nd9.5(TiXC X) 18〇54+y wt % ReA103,原料选自 Ba⑶3、 阳203、1^203、0620 3、5111203、1102^120 3、]\%0、2110、(:〇203、附0、恥20 5,各实施例分别按表1中质量 百分比准确称量各种原料;
[0045] (2)球磨;将步骤(1)所得混合料进行球磨,以二氧化锆球为球磨介质,按照混合 料:磨球:去离子水的质量比为1: (3~5): (1~2)进行研磨8小时得到混合均勾的球磨料。
[0046] (3)烘干,过筛;将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
[0047] (4)预烧;将步骤(3)所得干燥粉体置于氧化铝坩埚中,两相分别在1000~1150Γ 和1450-1500 °C条件下预烧5小时得到预烧粉体;
[0048] (5)混合球磨;将步骤(4)所得预烧料按照摩尔比例混合并进行球磨,以二氧化锆 球为球磨介质,按照混合料:磨球:去离子水的质量比为1: (3~5):(1~2)进行研磨8小时得 到混合均勾的球磨料。
[0049] (6)造粒,模压成型;将步骤(5)所得干燥预烧粉体与聚乙烯醇水溶液混合后造粒, 造粒尺寸控制在80~160目,将粒料放入成型模具中干压成型得到直径为15mm,厚度为约 7mm的圆柱生还;
[0050] (7)烧结;将步骤(6)所得生坯置于氧化铝坩埚中,1400~1450Γ下烧结2~3小时, 得到最终的微波介质陶瓷材料。各实施例采用的工艺参数和性能检测结果见表2。
[0051] 从表2可看出,各实施例的微波介质陶瓷材料,经检测具有较低的损耗即较高的Q Xf值,较高的介电常数和近零的谐振频率温度系数。
[0052] 表1各实施例中各原材料的质量百分含量
[0053]
[0054] 表2各实施例采用的工艺和微波介电性能
[0055]
[0056] 上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟 悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因 此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完 成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
【主权项】
1. 一种添加 ReAl〇3的微波介质陶瓷材料,其特征在于:材料配方为Ba3.75Nd9.5mi-XCX) is〇54+y wt%ReA103,C = MN,其中X为摩尔含量比例,0.03 <x<0.06;2<y < 9,y是在 Ba^Nch^mi-xCxhsOM的基础上外加的ReA103的质量百分比含量;Μ代表价态高于四价的 Nb,N代表价态低于四价且离子半径与Ti相近的211,0),附,1^,41中一种元素,1和1^同时取 代,Re为常见稀土元素 Nd、Sm、La、Ce其中的一种。2. 根据权利要求1所述的微波介质陶瓷材料,其特征在于:N为Zn、Co、Ni、Mg、A1中的一 种。3. 根据权利要求2所述的微波介质陶瓷材料,其特征在于:当MN同时取代时,若N为Al, 则摩尔比N:M=1:1,若N为Zn、Co、Ni、Mg中的一种,则摩尔比N:M=1:2。4. 根据权利要求1所述的微波介质陶瓷材料,其特征在于:所述微波介质陶瓷材料由B 位取代的BaNd2Ti4〇i2相和ReA103相复合。5. 根据权利要求1所述的微波介质陶瓷材料,其特征在于:所述微波介质陶瓷材料的Q Xf值在9000~12000GHz之间,相对介电常数ε r在70~80之间,频率温度系数在±10ppm/°C 以内。6. 根据权利要求1至5任意一项所述的微波介质陶瓷材料的制备方法,其特征在于:按 材料配方Ba3.75Nd 9.5(TiXCX) 18〇54+y wt%ReA103,原料选自 BaC03、Nd2〇3、Sm2〇3、La 2〇3、Ce2〇3、 1102、2110、附0、(:〇 203、1%0^1203、他20 5,各原料按化学通式确定各自质量百分含量,分别经 过球磨混合,两相分别在1100~1150 °C和1450-1500 °C下预烧,然后在1400~1450 °C下烧结 制成。7. 根据权利要求6所述的微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤: (1) 配料;按照材料配方BausNcb.dTii-xCx)18〇54+y wt%ReA103,C=MN,原料选自BaC03、 制20 3、5111203、1^203丄6 203、1102、2110、附0、(:〇203、]\%0^1 203、恥205,各原料按化学通式确定各 自质量百分含量; (2) 球磨;将步骤(1)所得混合料分别进行球磨,得到球磨料; (3) 烘干,过筛;将步骤(2)所得球磨料烘干并过100目筛得到干燥粉体; (4) 预烧;将步骤(3)所得干燥粉体置于坩埚中,分别在1100~1150 °C和1450-1500 °C条 件下预烧5小时得到预烧粉体; (5) 二次球磨;将步骤(4)所得预烧粉体按照摩尔比例混合并球磨,得到球磨料; (6) 烘干,过筛;将步骤(5)所得球磨料烘干并过100目筛得到干燥粉体; (7) 造粒,模压成型;将步骤(6)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸 控制在80~100目,将粒料放入成型模具中干压成型得到生坯; (8) 烧结;将步骤(7)所得生坯置于承烧板上,1400~1450 °C下烧结2小时,得到最终的 微波介质陶瓷材料。8. 根据权利要求7所述的微波介质陶瓷材料的制备方法,其特征在于:所述步骤(2)和 (5)中具体球磨过程为:以二氧化锆球为球磨介质,按照混合料:磨球:去离子水的质量比为 1: (3~5): (1~2)进行球磨8小时得到混合均勾的球磨料。
【文档编号】C04B35/622GK105837213SQ201610188438
【公开日】2016年8月10日
【申请日】2016年3月29日
【发明人】唐斌, 陈鹤拓, 熊喆, 钟朝位, 张树人
【申请人】电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1