无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法与流程

文档序号:20912452发布日期:2020-05-29 13:07阅读:652来源:国知局
无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法与流程

本发明属于纳米材料制备领域,涉及一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法。



背景技术:

碳化硅陶瓷基复合材料(sic-cmc)因具有高强度、高模量、良好的韧性、低密度、耐高温、耐磨耐蚀等优良性能,在航空航天领域有广阔的应用前景。sic-cmc通常包括增强体、界面和基体等三个结构单元,其中增强体的作用是对陶瓷基体增强补韧。目前sic-cmc的增强体主要有连续纤维、短切纤维、晶须和颗粒,早期发展的sic-cmc的增强体通常是单相增强体,即采用上述增强体中的一种。伴随着sic纳米线(sicnws)的首次合成,wenyang等(single-crystalsicnanowireswithathincarboncoatingforstrongerandtougherceramiccomposites)在sic连续纤维上原位生长了sicnws,由于sicnws具有很高的本征强度(~50gpa),因此sicnws与sic纤维组成的双相增强体使复合材料的抗弯强度和断裂韧性相比sic纤维增强的复合材料提高了一倍。据此,研究人员意识到可以通过原位生长的方式将sicnws引入到sic-cmc中与原增强体协同增韧,达到进一步提高材料强韧性的目的。liwenyan等(insitugrowthofcore-sheathheterostructuralsicnanowirearraysoncarbonfibersandenhancedelectromagneticwaveabsorptionperformance)采用cvi法在碳纤维上原位生长了sicnws,jianli等(fabricationandcharacterizationofcarbon-bondedcarbonfibercompositeswithin-situgrownsicnanowires)在碳短切纤维上原位生长了sicnws,suminzhu等(insitugrowthofβ-sicnanowiresinporoussicceramics)在sic颗粒上原位生长了sicnws。而sic晶须(sicw)作为一种力学性能优异的增强体,尚未见报道有人在sicw上原位生长sicnws。

sicnws的原位生长方法可以分为两类,即有催化法和无催化法。有催化法指的是在生长过程中有催化剂参与,催化剂通常是一些金属纳米粒子,这些粒子可以与其他反应物形成低熔点共晶合金,作为一维各向异性生长的催化种子,促进sicnws的生长。催化剂的加入可以降低反应温度,但不可避免地引入金属杂质,这可能会影响sic-cmc的高温性能;同时,sicnws的生长受限于催化剂位点,即只有有催化剂的位置才能生长sicnws,因此催化剂在材料中的分布必须均匀可控,而这一要求实现难度较大。无催化法指的是在生长过程中没有催化剂参与,这种方法可避免上述问题。目前报道的无催化生长工艺主要为气相方法,即化学气相渗透(cvi)和化学气相沉积(cvd)。其中,cvd法只能在材料表面生长sicnws,一般用于制备涂层;cvi法由于气相渗透过程由外而内进行,因此制备的sicnws通常在材料内外分布不均匀、外多里少、存在梯度,这对复合材料性能提升不利。目前尚未见液相方法无催化生长sicnws的研究报道。液相工艺(如先驱体浸渍裂解法(pip))可将反应物均匀的引入复合材料中,如果能够发展液相无催化工艺,将很可能在复合材料中制备出均匀分布的sicnws,优化材料性能。

本团队系统总结了前人采用有催化pip法生长sicnws的工艺,发现其具有“一步法”的特点,即将原材料升温到某一个特定温度下利用气液固(vls)机制制得sicnws。例如:leizhuang等(in-situpip-sicnws-toughenedsic-crsi2-cr3c2-mosi2-mo2ccoatingforoxidationprotectionofcarbon/carboncomposites)把浸渍有催化剂和先驱体的基材从室温升到1500℃保温2h即在基材中制备了sicnws。我们也对比总结了前人采用无催化cvi/cvd法生长sicnws的工艺,发现其生长机理一般是气固(vs)机制。vls机制对气相的过饱和度不敏感,而vs机制则要求原材料产生很高的气相过饱和度。“一步法”反应过程除生成sicnws生长所需的必要气相物质外,还伴随生成大量的不必要气相物质,这些不必要气相物质的存在大大降低了必要气相物质的过饱和度,因此“一步法”很难实现无催化pip生长sicnws。同时,本团队还注意到基材的孔隙结构对气相过饱和度有很大影响,我们前期开发了一种喷雾造粒结合3d打印制备具有两级孔隙结构sicw预制体的方法(cn108706978a),在此基础上经研究发现,此sicw预制体的两级孔隙结构有利于提高气相过饱和度,目前相关认识未见报道。综上所述,如果对pip“一步法”工艺进行改进,并利用预制体的特殊孔隙结构,很有可能实现无催化pip制备sicnws。

据此,本发明提出一种具有“两步法”工艺特征、在sicw预制体内原位生长sicnws的无催化pip法。首先制备具有两级孔隙结构的sicw预制体,然后将聚碳硅烷(pcs)引入到此预制体内并固化裂解,之后再经更高温度的热处理即可生长出sicnws。该方法不使用任何催化剂,生长机理为vs机制,“两步法”是指第一步固化裂解第二步热处理,“两步”不能合并,缺一不可。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,

技术方案

一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,其特征在于生长工艺具有“两步法”特征,具体步骤如下:

步骤1:将聚碳硅烷pcs与溶剂配成混合溶液,然后浸渍到晶须预制体内,并在氩气气氛下固化裂解,固化温度为150℃,固化时间2h;裂解温度为900~1100℃,裂解时间为2~3h,升温速率为2~5℃/min;所述聚碳硅烷pcs与溶剂的混合质量比为1:1~1:3;所述晶须预制体的孔隙结构为两级孔隙结构,其中小孔孔径在0.3~3μm之间,大孔孔径在10~40μm之间;

步骤2:在高于裂解温度下对裂解后的材料进行热处理,热处理温度为1300~1500℃,热处理时间为2~3h,升温速率为2~5℃/min;热处理气氛为氩气气氛。

所述溶剂包括但不限于二甲苯或二乙烯基苯。

所述预制体为具有单晶结构的晶须构成。

所述晶须为sic晶须、氮化硅晶须或碳化锆晶须。

有益效果

本发明提出的一种无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法,将pcs和二甲苯混合溶液浸渍到sicw预制体内,200℃固化1h,900~1100℃裂解2h得多孔sicw/sic;3.多孔sicw/sic的热处理:将多孔sicw/sic在1300~1500℃热处理2h,“两步法”指的是浸渍固化裂解和热处理。本发明利用固化裂解先将生长sicnws所不必要的气相除去,再利用热处理放出生长sicnws所必要的气相,同时利用sicw预制体的两级孔隙结构极大的提高必要气相的过饱和度,从而实现了sicnws的pip无催化原位生长。

本发明的有益效果有以下几点:

(1)从工艺创新性的角度来看,首先,本发明所提供的无催化pip工艺具有“两步法”特征:第一步裂解可以保证对sicnws生长并不必要的气体(如h2,ch4)充分释放;第二步更高温度热处理可以保证第一步裂解生成的非晶固态产物进一步分解释放气体,而释放的几乎全是对sicnws生长十分必要的气体,此“两步”过程实现了除废气的作用。其次,本发明所提供的无催化pip工艺采用具有两级孔隙结构的sicw预制体作为基材,可以将反应气体在大孔内聚集,有效提升气相过饱和度;而且大孔空间较大,有利于高长径比、高产量的sicnws的原位生长。

(2)从工艺特点的角度来看,一方面:前人采用基于气相工艺的无催化cvi/cvd方法在一些厚壁构件中制备sicnws时容易出现sicnws生长不均匀的问题,而本发明提供的基于液相工艺的无催化pip方法对构件的尺寸、壁厚等几何参数没有特殊要求和选择性,可实现sicnws在构件中的均匀生长。另一方面,本发明提供的无催化pip工艺具有很强的可调控性,可以通过调控先驱体的浸渍量、裂解温度与热处理温度、sicw球形颗粒的粒径和sicw预制体的孔径分布来实现不同体积分数、不同长径比的sicnws的制备。

(3)从工程应用的角度来看,前人发展的无催化cvi/cvd工艺需要相对复杂昂贵的制造设备,而本发明提供的无催化pip工艺所需设备简单、成本较低,更容易实现。

(4)从工艺推广的角度来看,本发明提供的无催化pip方法具有普适性意义。从基材结构上推广,“两步法”还可以在具有其他类型两级孔隙结构的基材内生长sicnws,只要该基材的大孔与小孔相互分布均匀,并且孔径比在10~100之间;从材料体系上推广,“两步法”可以在具有两级孔隙结构的多种陶瓷(如氧化物体系、超高温锆系或铪系等)预制体内原位生长其他成分的纳米线。

附图说明

图1.本发明的工艺流程图

图2.sicw预制体中大孔与小孔示意图;图中展示了本发明的晶须预制体的二级孔隙结构的分布状态,是由晶须球内的小孔和晶须球间的大孔组成

图3.实施例2“两步法”中第一步和第二步对应的材料低倍sem照片

是“两步法”的原理中的证据,即第一步所产生的裂解产物只存在于球内(图3左插图),而球间没有裂解产物(图3左);第二步的热处理会使裂解产物进一步释放用于生长纳米线的气体,这些气体生于小孔,由于扩散,聚集于大孔,过饱和度由此升高,纳米线得以生长,图3右展示了纳米线将晶须球包裹的低倍照片。

图4.实施例1制备的sicnws的高倍sem照片

展示了纳米线的高倍照片,没有发现纳米线尖端的金属催化剂球,证明纳米线是无催化生长的,再结合图3右,可以统计出纳米线的直径约30-200nm,长度在几十到几百微米之间。

图5.实施例2制备的sicnws的tem照片

图6.实施例3制备的sicnws的eds照片

说明所制备的纳米线的成分主要是si和c,即碳化硅纳米线,微量的氧可能是由于轻微的氧化导致的。

图7.实施例4制备的sicnws的saed照片,saed证明了纳米线具有单晶结构;

图8.实施例4制备的sicnws的hrtem照片

证明了纳米线的生长方向为(111)方向,具有3c-sic结构。

具体实施方式

现结合实施例、附图对本发明作进一步描述:

本发明提供了一种利用“两步法”结合预制体孔隙结构设计实现无催化pip原位生长sicnws的新方法。

以sicw为例,先用喷雾造粒法将sicw造粒成球形颗粒,再用3d打印技术将sicw球形颗粒打印成预制体,该预制体具有两级孔隙结构,即sicw球间大孔(~30μm)和sicw球内小孔(~0.35μm)。然后将pcs与二甲苯的混合溶液浸渍到该预制体内,因为预制体内大孔和小孔的毛细管力相差悬殊,pcs最后只存在于小孔内,大孔内的pcs无法稳定存在最后被小孔吸走或流出基材。之后将浸渍了pcs的sicw预制体放于管式炉中进行pcs陶瓷化处理,该处理过程包括“两步”:第一步固化裂解,裂解后的非晶固态产物只存在于预制体的小孔中;第二步更高温度下的热处理,没有裂解充分的非晶固态产物在更高温度下会发生析晶转变并释放气体,此气体产生于小孔,大孔里起初并没有该气体,但由于小孔与大孔里的气体存在浓度差,使得小孔里的气体向大孔扩散。一个大孔由周围多个sicw球包围,大孔内的气相过饱和度会在极短时间内达到很高,此过饱和度恰好有利于sicnws的生长,并且大孔空间大,使得大量的具有高长径比的sicnws得以生长。由此实现了无催化pip原位生长sicnws。

步骤1.两级孔隙sicw预制体的制备:

将去离子水和糊精按照9:1混合磁力搅拌0.5~1h得到糊精的去离子水溶液,将sicw按质量分数40~70wt.%、聚乙二醇-400(peg-400)按质量分数0~2wt.%、四甲基氢氧化铵(tmah)按质量分数0~3.5wt.%与糊精的去离子水溶液混合放入球磨罐,把球磨罐放入滚筒式球磨机以20~70r/min的速度球磨2~30h。将得到的混合均匀的浆料用于喷雾造粒,喷雾干燥机的进风温度在200~300℃之间,出口温度在60~100℃之间,雾化器转速在300hz~400hz之间,进料速度在0.1~1ml/s,由此,可制备出sicw球形颗粒。然后将sicw球形颗粒送入3d打印设备中进行打印,层厚设置为0.1mm,粘结剂饱和度为100%/200%,将打印得到的sicw预制体原位干燥6~10h后取出。

由此获得的sicw预制体中sicw球形颗粒的粒径在20~100μm之间。该sicw预制体具有两级孔隙结构,球间大孔孔径为10~40μm,球内小孔孔径为0.3~5μm。

步骤2.先驱体的浸渍固化裂解:

先驱体的浸渍固化裂解是“两步法”的第一步。将pcs和二甲苯按照质量比1:1~1:3混合并磁力搅拌10~30min得到pcs的二甲苯溶液,将步骤1得到的sicw预制体与pcs的二甲苯溶液放置于浸渍装置中,在真空度为-0.1mpa下浸渍3~10min,pcs的浸渍量将影响sicnws的生成量。把浸渍了先驱体的sicw预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以2~5℃/min的速率升温至900~1100℃保温2~3h进行裂解,而后以5℃/min的速率降温至600℃,随炉冷却至室温,由此得到多孔的sicw增强sic陶瓷(sicw/sic)。在该sicw/sic中,pcs裂解生成的非晶固态产物sic只存在于sicw预制体的小孔中,其是后续sicnws生长的重要原料。

步骤3.多孔sicw/sic的热处理:

多孔sicw/sic的热处理是“两步法”的第二步。将步骤2得到的多孔sicw/sic置于管式炉等温区,以2~5℃/min的速率升温至1300~1500℃保温2~3h进行热处理,而后以5℃/min的速率降温至600℃,随炉冷却至室温,即可在sicw预制体中原位生长sicnws。热处理温度将影响sicnws的长径比和生成量。

具体实施例:

实施例1

步骤一:两级孔隙sicw预制体的制备。将92g去离子水和10.2g糊精混合磁力搅拌0.5h,再将180gsicw、5.7gpeg-400、6.5gtmah与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨36h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400hz,由此可制备出sicw球形颗粒140g。将140gsicw球形颗粒放入3dp成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将sicw预制体原位干燥10h后取出。

步骤二:先驱体的浸渍固化裂解。将35gpcs和70g二甲苯混合并磁力搅拌30min得到pcs的二甲苯溶液,然后将sicw预制体与pcs的二甲苯溶液放置于浸渍装置中,在真空度为-0.1mpa下浸渍5min,然后将浸渍完的sicw预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至1100℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔sicw/sic。

步骤三:多孔sicw/sic的热处理。将多孔sicw/sic置于管式炉等温区,以5℃/min的速率升温至1400℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。

实施例2

步骤一:两级孔隙sicw预制体的制备。将99g去离子水和11g糊精混合磁力搅拌0.5h,再将154gsicw、5.4gpeg-400、6.5gtmah与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨30h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400hz,由此可制备出sicw球形颗粒120g。将120gsicw球形颗粒放入3dp成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将sicw预制体原位干燥10h后取出。

步骤二:先驱体的浸渍固化裂解。将35gpcs和70g二甲苯混合并磁力搅拌30min得到pcs的二甲苯溶液,然后将sicw预制体与pcs的二甲苯溶液放置于浸渍装置中,在真空度为-0.1mpa下浸渍5min,然后将浸渍完的sicw预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至900℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔sicw/sic。

步骤三:多孔sicw/sic的热处理。将多孔sicw/sic置于管式炉等温区,以5℃/min的速率升温至1500℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。

实施例3

步骤一:两级孔隙sicw预制体的制备。将106g去离子水和11.7g糊精混合磁力搅拌0.5h,再将128gsicw、5.1gpeg-400、6.5gtmah与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨28h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400hz,由此可制备出sicw球形颗粒100g。将100gsicw球形颗粒放入3dp成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将sicw预制体原位干燥10h后取出。

步骤二:先驱体的浸渍固化裂解。将35gpcs和70g二甲苯混合并磁力搅拌30min得到pcs的二甲苯溶液,然后将sicw预制体与pcs的二甲苯溶液放置于浸渍装置中,在真空度为-0.1mpa下浸渍5min,然后将浸渍完的sicw预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至1000℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔sicw/sic。

步骤三:多孔sicw/sic的热处理。将多孔sicw/sic置于管式炉等温区,以5℃/min的速率升温至1300℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。

实施例4

步骤一:两级孔隙sicw预制体的制备。将85g去离子水和9.4g糊精混合磁力搅拌0.5h,再将205gsicw、6.1gpeg-400、6.5gtmah与糊精的去离子水溶液混合放入球磨罐,然后将球磨罐置入滚筒式球磨机中以50r/min的速度球磨60h得混合均匀的浆料,然后将浆料引入喷雾干燥机,进口温度200℃,出口温度70℃,雾化器转速400hz,由此可制备出sicw球形颗粒170g。将170gsicw球形颗粒放入3dp成型设备中,设置打印层厚0.1mm,粘结剂饱和度100%/200%,打印完成后,将sicw预制体原位干燥10h后取出。

步骤二:先驱体的浸渍固化裂解。将35gpcs和70g二甲苯混合并磁力搅拌30min得到pcs的二甲苯溶液,然后将sicw预制体与pcs的二甲苯溶液放置于浸渍装置中,在真空度为-0.1mpa下浸渍5min,然后将浸渍完的sicw预制体放置于管式炉等温区,以5℃/min的速率升温至150℃保温2h进行固化,再以5℃/min的速率升温至900℃保温2h进行裂解,然后以5℃/min的速率降温至600℃,随炉冷却至室温得到多孔sicw/sic。

步骤三:多孔sicw/sic的热处理。将多孔sicw/sic置于管式炉等温区,以5℃/min的速率升温至1400℃保温2h,然后以5℃/min的速率降温至600℃,随炉冷却至室温。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1