一种组合孔结构PZT95/5铁电陶瓷及其制备方法与流程

文档序号:23090472发布日期:2020-11-27 12:42阅读:95来源:国知局
一种组合孔结构PZT95/5铁电陶瓷及其制备方法与流程

本发明属于功能陶瓷领域,涉及一种铁电陶瓷材料及其制备方法,尤其涉及一种组合孔结构pzt95/5铁电陶瓷及其制备方法。



背景技术:

高功率脉冲电源具有高电压、大电流、高功率、强脉冲的特点,在受控核聚变试验、强流粒子束加速器、高端医疗装备等近代科学和高技术领域有着重要的科学意义与应用价值。铁电体高功率脉冲电源是在冲击波作用下,极化的铁电陶瓷在几微秒的时间内迅速发生相变去极化,从而输出兆瓦级功率能量的脉冲电源。铁电体高功率脉冲电源具有储能密度高、体积小、重量轻、抗电磁干扰等突出优点。

目前,pb0.99(zr0.95ti0.05)0.98nb0.02o3铁电陶瓷(简称pzt95/5铁电陶瓷)具有较高的剩余极化强度、较低的诱导相变压力,伴随着高储能密度、快放电速率和高能量输出能力,是铁电体高功率脉冲电源应用的理想材料。在服役条件下,pzt95/5铁电陶瓷受到高的冲击应力和高的电场共同作用,冲击破坏会导致功能失效。因此,如何有效地抑制铁电陶瓷的冲击破坏,减弱或延迟冲击诱导的功能失效是亟需解决的基础科学问题。

在不改变材料组分的前提下,通过微结构调控可以显著改变材料性能。通过引入微孔洞(晶界气孔)已被证明是提高pzt95/5铁电陶瓷材料的“塑性”变形能力、延缓损伤破坏的有效途径。美国sandia国家实验室报道了多孔pzt95/5铁电陶瓷具有优异的耐电击穿性能。进一步研究发现这种晶界孔隙率的增加可以改善铁电陶瓷的抗冲击性能,但是气孔率的增加会降低铁电材料的电学性能,如剩余极化强度和电阻率等。



技术实现要素:

针对上述问题,本发明提供一种组合孔结构的pzt95/5铁电陶瓷及其制备方法,通过晶内微孔与晶界气孔的组合构筑,实现铁电陶瓷抗冲击性能和电学性能的协同优化,对于开发高可靠性的高功率脉冲电源具有非常重要的意义。

第一方面,本发明提供一种组合孔结构pzt95/5铁电陶瓷,包括pzt95/5铁电陶瓷基体和分布于所述pzt95/5铁电陶瓷基体中的、由位于pzt95/5晶粒内部的晶内微孔和位于pzt95/5晶粒之间的晶界气孔构成的组合孔结构。晶界气孔的引入可以提高pzt95/5铁电陶瓷的抗冲击性能,晶内微孔的引入用于改善剩余极化强度等电学性能,将两种微孔结构进行组合后可以显著提升pzt95/5铁电陶瓷抗冲击和耐电压性能。

其中,组合孔结构的总孔隙率在20%以内,优选为5%-10%。作为电子功能陶瓷而言,更高的孔隙率会导致pzt95/5铁电陶瓷力学和电学性能的显著降低。较佳地,所述晶内微孔的尺寸为2μm以下,所述晶界气孔的尺寸为100μm以下。优选地,所述晶界气孔的尺寸为15μm-60μm。

较佳地,组合孔结构中晶内微孔的孔隙率≤5%,晶界气孔的孔隙率≤15%。优选地,晶内微孔的孔隙率和晶界气孔的孔隙率的比例是1:2-1:5。将晶内微孔的孔隙率和晶界气孔的孔隙率的比例限定在上述范围内,利于pzt95/5铁电陶瓷抗冲击和耐电压性能的协同改善。

较佳地,所述铁电陶瓷的室温剩余极化强度≥25μc/cm2,优选为30-38μc/cm2

第二方面,本发明还提供了上述任一项所述的组合孔结构pzt95/5铁电陶瓷的制备方法,包括:将有机微球造孔剂、pzt95/5陶瓷粉体、晶界气孔调控剂和有机溶剂混合均匀以形成浆料;将浆料依次烘干、成型、排胶和烧结,得到所述组合孔结构pzt95/5铁电陶瓷。

较佳地,所述有机微球造孔剂占pzt95/5陶瓷粉体的质量比为0.5-2.5%;所述有机微球造孔剂的尺寸为5-120μm,优选为10-60μm。

较佳地,所述晶界气孔调控剂为在烧结过程中可烧失的纳米碳化合物。优选地,所述晶界气孔调控剂占pzt95/5陶瓷粉体的质量比为5wt%以内,更优选为1-2%。一些实施方式中,所述晶界气孔调控剂包括但不限于碳纳米管和/或纳米尺寸的微晶纤维素。现有技术中通常使用尺寸5-120μm的大尺寸球状造孔剂以形成晶界气孔。本发明使用100nm以下的纳米碳化合物作为晶界气孔调控剂,辅助烧结工艺调控烧结动力学,进而控制固相扩散和晶粒成核长大,促进坯体中的气体来不及排出晶粒而形成晶内微孔。该烧结动力学并不适用于晶界气孔的调控,晶界气孔本质上是利用模板法借助造孔剂的烧失而形成,其形成依赖于模板的尺寸和形状,但是调控烧结动力学形成的晶界气孔的形状并不局限于纳米碳化合物的形状,这是本发明的特色之一所在。

较佳地,组合孔结构pzt95/5铁电陶瓷的平均晶粒尺寸范围是5-15μm。

较佳地,所述碳纳米管为单壁或者多壁短碳纳米管,尺寸为0.5-5nm。

根据有机溶剂的极性,可以选择合适的分散剂和分散设备实现有机微球造孔剂、晶界气孔调控剂以及pzt95/5铁电陶瓷粉体的均匀分散。较佳地,使用两次分散法,具体过程为:将有机微球造孔剂和晶界气孔调控剂分别分散于有机溶剂中,然后再与pzt95/5铁电陶瓷粉体湿法球磨均匀,获得浆料。

较佳地,所述成型前在烘干后的浆料中添加3-10wt%的粘结剂;优选地,所述粘结剂为pva、pvb和ps中的一种或几种。

较佳地,所述排胶的工艺条件为:在空气或者氧气气氛中于600-800℃下保温不低于0.5小时,优选为0.5-5小时。

较佳地,所述烧结的工艺条件为:在空气或氧气气氛下,在1300-1350℃烧结保温0.5-5小时,然后随炉冷却。

附图说明

图1是组合孔结构的pzt95/5铁电陶瓷显微形貌设计图;

图2是实施例1组合孔结构pzt95/5铁电陶瓷显微形貌;

图3是实施例2组合孔结构pzt95/5铁电陶瓷显微形貌;

图4是实施例3组合孔结构pzt95/5铁电陶瓷显微形貌;

图5是实施例1-3中pzt95/5铁电陶瓷电滞回线;其中,10μm组合孔指的是实施例1,30μm组合孔指的是实施例2,60μm组合孔指的是实施例3;

图6是实施例1-3中pzt95/5铁电陶瓷冲击波放电电流曲线。其中,10μm指的是实施例1,30μm指的是实施例2,60μm指的是实施例3。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

本发明所要解决的第一问题是如何实现pzt95/5铁电陶瓷的抗冲击性能和电学性能协同优化。为解决该问题,经过特殊设计,形成如图1所示的组合孔结构pzt95/5铁电陶瓷。该组合孔结构包含晶内微孔和晶界气孔。组合孔结构的总孔隙率在20%以内,优选为5%-10%。晶内微孔和晶界气孔随机分布。晶界气孔的引入可以提高pzt95/5铁电陶瓷的抗冲击性能,晶内微孔的引入可以提升pzt95/5铁电陶瓷电学性能,如剩余极化强度和电阻率等。该组合孔结构的pzt95/5铁电陶瓷兼具有抗冲击和耐电压的优点,可广泛应用于高脉冲功率技术领域。一些实施方式中,组合孔结构的pzt95/5铁电陶瓷的最大冲击压力高达5.0gpa。

本发明所要解决的第二问题在于提供一种组合孔结构的pzt95/5铁电陶瓷制备方法。

例如,将含有一定比例的有机微球造孔剂和晶界气孔调控剂利用有机溶剂充分均匀分散于pzt95/5粉体中,然后经过压制成型、排素和烧结得到所述组合气孔结构的pzt95/5铁电陶瓷。

以下具体示出所述组合孔结构的pzt95/5铁电陶瓷制备方法。

步骤(a),制备pzt95/5陶瓷粉体。以pb3o4、zro2、tio2、nb2o5的粉体为原料,按照pb0.99(zr0.95ti0.05)0.98nb0.02o3对应元素的化学计量比进行配料。将配料后的原料混合。可通过湿式球磨进行混合。湿式球磨过程中,物料:球磨介质:酒精的质量比可为1:(1-2):(0.5-2)。将原料混合后烘干,压块,固相烧结,得到pzt95/5陶瓷粉体。固相烧结的温度可为800~900℃,烧结时间可为1~3小时。

步骤(b),实现有机微球造孔剂、晶界气孔调控剂和陶瓷粉体的均匀分散。

将有机微球造孔剂和晶界气孔调控剂分别分散于有机溶剂中实现第一步分散。所述有机溶剂可为酒精。有机微球造孔剂和有机溶剂的质量比可为1:(20-50)。然后将步骤(a)所得的陶瓷粉体与步骤b)所得的分散液混合,用湿式球磨法混合进行第二步分散,获得浆料。湿式球磨法中,物料:球磨介质:有机溶剂的质量比可为1:(0.5~2.0):(0.6~1.5)。球磨介质为钢球、锆球或玛瑙球,球磨介质为酒精等有机溶剂。湿式球磨时间为0.5~5小时,例如2小时。

所述有机微球造孔剂包括但不限于聚甲基丙烯酸甲脂(pmma)微球、聚苯乙烯微球、聚乙烯醇微球等有机微球。利用有机微球造孔剂可以制备晶界气孔结构。

本发明的制备方法中利用碳纳米管、纳米微晶纤维素等调控pzt95/5铁电陶瓷的烧结动力学而制备晶内微孔结构。

步骤(c),浆料烘干后,加入粘结剂造粒,陈化,压制成型。所述粘结剂为pva等类似的有机溶剂,其粘结剂的加入量为陶瓷粉料重量的3~10wt%。压制成型后进行排胶以得到陶瓷坯体。所述排胶程序为在空气或者氧气气氛中于600~800℃保温时间不小于0.5小时。

步骤(d),将步骤(c)所得陶瓷坯体放入高温炉中烧结得到陶瓷材料。所述烧结条件为在空气或氧气气氛下在1300~1350℃保温0.5~5小时后随炉冷却。

将烧结好的陶瓷材料加工成所需尺寸,进行电极制备。例如,将烧结得到的陶瓷材料被银、烧银并进行极化处理制得组合孔结构pzt95/5铁电陶瓷。所述烧银工艺可以为:以1-2.5℃/min的速率升温至650-750℃,保温10-30min。所述极化处理可以为:极化电场2-4kv/mm在硅油中保持电压3-30min。

本发明所述制备方法获得的铁电陶瓷在一定的压力条件下能够发生铁电-反铁电相变。所述铁电陶瓷元件在冲击波压力作用下能够释放表面束缚电荷,并产生电流(电压)脉冲。

本发明与现有技术相比,显著区别在于:现有技术通常通过引入晶界气孔来提升pzt95/5铁电陶瓷的抗冲击性能,但该晶界气孔引入会引起电学性能(如剩余极化强度或电阻率)的降低;本发明在此基础上创新性地进一步引入晶内微孔,通过晶内微孔实现剩余极化强度和电阻率的增加,从而实现pzt95/5铁电陶瓷在改善抗冲击性能的同时,改善单一晶界气孔引入而造成电学性能降低的问题。

本发明的组合孔结构应理解还适用于其他陶瓷,例如高锆陶瓷。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1.晶内微孔和10μm晶界气孔的组合孔结构铁电陶瓷制备

首先按照pb0.99(zr0.95ti0.05)0.98nb0.02o3对应元素的化学计量比称取pb3o4、zro2、tio2和nb2o5粉体作为原料,用湿法球磨法混合粉体、细磨后利用固相反应法在800~900℃保温1~3小时合成pzt95/5粉体。称取重量百分比为1.5wt%、直径10μm的聚甲基苯烯酸甲酯(pmma)微球以及1wt%的碳纳米管,经两步分散法与pzt95/5粉体混合均匀,球磨料、球磨介质和酒精的质量比为1:1.5:0.6,球磨时间为2小时,球磨介质为钢球。细磨后浆料烘干,按照5wt%加入pva粘结剂,造粒,陈化,过筛,在200mpa压强下成型,在750℃保温2小时排塑;将坯体在密闭的氧化铝坩埚中进行烧结。烧结工艺条件为:以2.5℃/min的速率升温到1000℃;再以1℃/min的速率升温到1330℃,保温1.5小时;随炉冷却至室温。烧结后的陶瓷经机械加工、清洗、被银、烧银,然后测量其电学性能。

实施例1的显微形貌见图2。从图2可以看出,晶界气孔的形貌接近球形,尺寸为10μm左右,这主要是由于造孔剂尺寸接近晶粒尺寸造成的;晶内微孔的形貌为圆形,尺寸为0.5-2μm。晶内微孔的形貌和晶界气孔调控剂的形貌并不一致,这进一步佐证了晶内微孔并非通过模板法制备获得。

利用aixacct公司的tf2000型铁电测试仪在室温1hz交流电场下测试实施例1所得铁电陶瓷陶瓷样品的电滞回线,结果见图5所示。从图上可以看出,实施例1铁电陶瓷剩余极化强度可达30μc/cm2

对实施例1极化后的铁电陶瓷进行冲击波压力下的放电行为测试,所施加的冲击波压力为4.5gpa,放电电流曲线结果见图6。从上图可以看出,实施例1铁电陶瓷在冲击压缩下可以放出方波电流,幅值达30a。

实施例2晶内微孔和30μm晶界气孔的组合孔结构铁电陶瓷制备

首先按照pb0.99(zr0.95ti0.05)0.98nb0.02o3对应元素的化学计量比称取pb3o4、zro2和、tio2和nb2o5的原料,用湿法球磨法混合粉体、细磨后利用固相反应法在800~900℃保温1~3小时合成pzt95/5粉体。称取重量百分比为1wt%、直径30μm的聚甲基苯烯酸甲酯(pmma)微球以及2wt%的碳纳米管,经两步分散法与pzt95/5粉体混合均匀,球磨料、球磨介质和酒精的质量比为1:1.5:0.6,球磨时间为2小时,球磨介质为钢球。细磨后浆料烘干,按照6wt%加入pva粘结剂,造粒,陈化,过筛,在200mpa压强下成型,在750℃保温2小时排塑;将坯体在密闭的氧化铝坩埚中进行烧结。烧结工艺条件为:以2.5℃/min的速率升温到1000℃;再以1℃/min的速率升温到1330℃,保温1.5小时;随炉冷却至室温。烧结后的陶瓷经机械加工、清洗、被银、烧银,然后测量其电学性能。实施例2的显微形貌见图3。从图3可以看出,晶界气孔的形貌为球形,尺寸为30μm左右;晶内微孔的形貌为圆形,尺寸为0.5-2μm。

利用aixggt公司的tf2000型铁电测试仪在室温1hz交流电场下测试实施例2所得铁电陶瓷陶瓷样品的电滞回线,结果见图5所示,从图上可以看出,实施例1铁电陶瓷剩余极化强度可达28μc/cm2

对实施例1极化后的铁电陶瓷进行冲击波压力下的放电行为测试,所施加的冲击波压力为4.5gpa,放电电流曲线结果见图6。从图上可以看出,实施例1铁电陶瓷在冲击压缩下可以放出方波电流,幅值达29a。

实施例3晶内微孔和60μm晶界气孔的组合孔结构铁电陶瓷制备

首先按照pb0.99(zr0.95ti0.05)0.98nb0.02o3对应元素的化学计量比称取pb3o4、zro2和、tio2和nb2o5的原料,用湿法球磨法混合粉体、细磨后利用固相反应法在800~900℃保温1~3小时合成pzt95/5粉体。称取重量百分比为0.5wt%、直径60μm的聚甲基苯烯酸甲酯(pmma)微球以及1wt%的碳纳米管,经两步分散法与pzt95/5粉体混合均匀,球磨料、球磨介质和酒精的质量比为1:1.5:0.6,球磨时间为2小时,球磨介质为钢球。细磨后浆料烘干,按照7wt%加入pva粘结剂,造粒,陈化,过筛,在200mpa压强下成型,在750℃保温2小时排塑;将坯体在密闭的氧化铝坩埚中进行烧结。烧结工艺条件为:以2.5℃/min的速率升温到1000℃;再以1℃/min的速率升温到1330℃,保温1.5小时;随炉冷却至室温。烧结后的陶瓷经机械加工、清洗、被银、烧银,然后测量其性能。实施例3的显微形貌见图4。从图4可以看出,晶界气孔的形貌为圆球形,尺寸为60μm左右;晶内微孔的形貌为圆形,尺寸为0.5-2μm。

利用aixggt公司的tf2000型铁电测试仪在室温1hz交流电场下测试实施例1所得铁电陶瓷陶瓷样品的电滞回线,,结果见图5所示,从图上可以看出,实施例1铁电陶瓷剩余极化强度可达25μc/cm2

对实施例1极化后的铁电陶瓷进行冲击波压力下的放电行为测试,所施加的冲击波压力为4.5gpa,放电电流曲线结果见图6。从图上可以看出,实施例1铁电陶瓷在冲击压缩下可以放出方波电流,幅值达27a。

最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非限制本发明,尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1