带热耦连氩气塔的低温精馏系统的制作方法

文档序号:3429479阅读:316来源:国知局
专利名称:带热耦连氩气塔的低温精馏系统的制作方法
总的来说,本发明涉及低温精馏过程,具体地说涉及采用一个氩气塔的低温精馏过程。
氩气在许多工业应用中变得日益重要,例如,在不锈钢生产,电子工业以及象钛加工等活性金属生产等方面。
氩气通常是通过空气低温精馏来制备的。空气含有约78%氮,21%氧以及不足1%的氩。由于氩气在空气中的浓度较低,故在主要大气气体中,其单位价值最高。然而传统低温空气分离方法只能回收进料空气中约80%到90%的氩气。因而,提高空气低温精馏所获得氩气的回收率就成为人们追求的目标。
对通晓本门技术的人们来说,在读过本公开后上述以及其他目的就变得显而易见,这些目的可通过本发明来达到,其一个方面是一种生产氩气的低温精馏方法,包含(A)向主塔系统提供含有氩气的进料,并在该主塔系统内进行低温精镏;
(B)从主塔系统抽出含氩蒸汽并将所说含氩蒸汽冷凝;
(C)降低所生成的含氩液体的压力;
(D)将减压的含氩液体在氩气塔的中间部位加入到氩气塔中,作为进料,助低温精馏将进料分离成富氩流体和贫氩流体;
(E)将贫氩流体从氩气塔抽出、加压并将该增压贫氩流体送入主塔系统;然后(F)将富氩流体作为产品氩气回收。
本发明的另一个方面是一种生产氩气的低温精馏装置,包含(A)一个主塔系统以及向主塔系统提供进料的机构;
(B)一个氩气塔、一个冷凝器以及将流体从主塔系统送至冷凝器的机构;
(C)将流体从冷凝器在氩气塔的中间部位送入氩气塔的机构;
(D)用于将从冷凝器被送到氩气塔后的流体进行减压的机构;
(E)用于从氩气塔下部抽出液体的机构、用于将抽出液加压的机构和用于将增压的抽出液送入主塔系统的机构;以及(F)用于回收来自氩气塔上部流体的机构。
这里所使用的“上部”和“下部”分别指塔身中点以上和以下的部分。
这里使用的术语“进料空气”系指主要含有氮、氧、氩的混合物例如空气。
这里所使用的术语“透平膨胀”是指高压气体流经透平机以降低气体的压力和温度从而产生制冷效应。
这里所使用的术语“塔”系指蒸馏塔或分馏塔或区,即一种接触塔或区,其中,液、汽相逆流接触而实现一种流态混合物的分离,例如,在一系列沿塔内纵向间隔安装的塔盘或塔板上,和/或,在可以有规充填,和/或,无规堆放的填料上借助汽、液相接触而实现。对于蒸馏塔的进一步讨论,请参见R.H Perry和C.H.Chilton编、纽约McGraw-Hill Book公司出版的《化学工程师手册,第五版》,第13节-“连续蒸馏过程”。这里使用的术语“双塔”是指一个高压塔,其上端与一个低压塔的下端处于热交换状态。关于双塔的进一步讨论可参见Ruheman的《气体的分离》(The Separation Of Gases),第七章-“工业气体分离”,牛津大学出版社1949年版。
汽、液接触分离过程依赖于组分间蒸汽压的差别。高蒸汽压(或易挥发或低沸点)组分倾向于浓集在汽相中,而低蒸汽压(或不易挥发或高沸点)组分倾向于浓集在液相中。部分冷凝是一种分离过程,借此过程,蒸汽混合物的冷却可用来使易挥发组分浓集在汽相中,从而使不易挥发组分浓集在液相中。精馏或称连续蒸馏,是一种分离过程,犹如通过汽、液相逆流处理而获得的结果一样,它使一连串部分蒸发与部分冷凝相结合。汽、液相逆流接触为绝热过程且可以包括相间的整体或局部接触。利用精馏原理分离混合物的装置是通常互相变通地称之为精馏塔、蒸馏塔或分馏塔。低温精馏是一种至少部分在、或低于123°K的温度下进行的精馏过程。
这里所说的术语“间接换热”意指将两种流体物流进行热交换而不发生这两种流体间任何物理接触或相互混合。
这里所用术语“氩气塔”是指一种对含氩进料进行加工并生产出一种其氩气浓度超过进料的氩气浓度的产品之塔器,它可以包括一个热交换器或在其上部的一个塔顶冷凝器。
这里所用术语“平衡级”是指流出的汽液物流处于平衡态时的汽、液间的接触过程。
唯一的一张附图
是本发明低温精馏系统的一个较好实例之简要流程图。
在采用一个主塔系统和一个氩气侧臂塔的传统低温精馏布置中,氩气塔通常与双塔系统的上塔耦连,这样它们便在大致相同压力下操作。本发明包括了与主塔系统部分解耦的氩气塔,这样它就可以在比不解耦可能采用的较低压力下操作。此种较低压力提高了氩气塔内经受分之离进料中氩气与其他主要组分间相对挥发度,从而使加入塔内氩气的较大数量得以回收并减少随其他组分排出氩气塔的氩气量。氩气塔同主塔系统以某种方式热耦连,从而氩气塔内形成了一个小提馏段,这就降低了氩塔内降液中氩含量,因此使氩回收率大大提高。
下面将参照附图对本发明做详细说明,该图表示的是使用本发明由含有氧、氮以及氩的进料(例如,空气)生产粗氩气产品,其中主塔系统是一个双塔。
现在参看附图,进料空气经压缩机1压缩,经冷却器2冷却以撤除压缩热,然后再经过净化器3清除诸如水蒸汽,CO2及烃类等高沸点杂质。经清洁、冷却、压缩的进料空气21,接着经主热交换器22与返回物流间接换热而得到冷却,所得冷却进料空气23通入塔5,即作为实施本发明方案的主塔系统的双塔中的高压塔。塔5通常在65-220磅/平方英寸(绝压)下操作。
在塔5内,进料空气经低温精馏分离成富氧液体和富氮蒸汽。富氧液体由塔5下部抽出成为物流24,经换热器8与返回物流间接换热而被过冷,然后经过阀15再进入氩气塔塔顶冷凝器10,在其中,正如下面将要充分讨论的,它经过与富氩蒸汽间接换热而部分汽化。所产生的蒸汽和剩余液相从塔顶冷凝器10分别以物流25和26进入双塔系统的低压塔6。塔6操作压力低于塔5且一般在14.7至75磅/平方英寸(绝压)之间。
富氮蒸汽从塔5上部以物流27进入主冷凝器11,在此,它借助与低压塔6富氧塔底物间接换热而被冷凝。产生的富氮液,物流28,送入塔5作为回流。部分富氮液以物流29被送入热交换器9,在其中,它借助与返回物流间接换热而过冷,然后流经阀14再进入塔6作为回流。需要时部分富氮液可作为产品液氮回收。
在塔6内,进料经低温精馏分离成富氮流和富氧流。富氧蒸汽以流30从塔6下部抽出,流经主要换热器22被加热,然后可以作为产品氧气31回收。需要时,富氧液可由塔6的主冷凝器11区域抽出并作为产品液氧回收。富氮蒸汽从塔6上部以流32抽出,流经换热器9和8以及主换热器22而被加热,然后可作为产品氮气33被回收。
为控制产品纯度,从塔6的物流32抽出点以下的塔上部抽出一股废物流34。废物流34流经换热器9和8以及部分地流经主换热器22而被加热。然后物流34经透平膨胀机17膨胀而产生制冷,所产生的透平膨胀流35流经主换热器22而被加热,此间产生的冷量借传给进料空气而返回过程中。最后,所得废物流36排出系统。冷量也可以熟悉此项技术的人所熟知的其它方法加入系统,例如,借助部分进料空气膨胀再进入低压塔、来自高压塔氮的膨胀、产品物流膨胀或全部进料空气物流膨胀。
含氩蒸汽从主塔系统抽出。在附图所示实例中,含氩蒸汽以物流37从塔6的主冷凝器11区域上方至少一个平衡级处抽出,在此处富氮蒸汽与富氧液呈逆流被冷凝。较好是上述抽出点位于所述换热器上方10-40个平衡级处。含氩蒸汽一般含有从约5至20摩尔百分数的氩而其余大部分为氧。
至少部分含氩蒸汽进入潜热交换器或冷凝器12,在其中它被冷凝。冷凝器12可以如图所示位于氩气塔7内部,也可位于氩气塔7外面。所得含氩液流38借流经阀16而减压,减压含氩液流39作为进料送入氩气塔7。需要时,可将部分含氩蒸汽流或第二股含氩蒸汽流减压,然后不经冷凝直接作为进料送入氩气塔。
减压含氩液作为进料送入氩气塔7的位置位于中间某点,即高于氩气塔7的最低平衡级而又低于其最高平衡级处。氩气塔7在低于塔6的压力下操作。氩气塔7操作压较好地低于塔6压力至少3磅/平方英寸,且一般在10-70磅/平方英寸(绝压)范围内。需要时,氩气塔7的操作压力,至少在该塔上部之内,可低于环境压力。此种较低压力乃是氩气塔与主塔系统解耦的一个主要优点,而解耦的实现是依靠含氩蒸汽(物流37)在较高压力下冷凝,以及将加压贫氩液返回主塔系统,这一点下面将予说明。
在氩气塔7中,进料借低温精馏成分离富氩流和贫氩流。含氩蒸汽较好地在冷凝器12中与贫氩流体间接换热而冷凝。贫氩流体大部分为氧。一般地说,贫氩流体包含约82至97摩尔百分数氧,其余是氩。贫氩流从氩气塔7下部以物40抽出,借助流经例如泵13加压,再以物流41进入主塔系统的塔6中。如果氩气塔具有相对于其他塔的足够标高,贫氩流就可依靠液位压头来升压,这样就不再需要机械泵13。在这种情况下,为把富氧流从塔5送至塔顶冷凝器10,可能就需要一台机械泵。
富氩流体一般包括至少80%(摩尔)的氩。富氩流体以物流42从氩气塔7上部送至冷凝器10,在其中,它通过与部分蒸发富氧液间接换热而冷却。所产生富氩流体以物流43返回氩气塔7的上部,同时部分富氩流44作为产品氩回收。
本发明通过全套塔装置的热耦连同时使氩气塔压力要求与该装置中其他塔压力要求解耦,从而提高了氩气回收率。本发明的若干方面协调配合提高了氩气回收率。氩/氧二元相对挥发度随压力降低而提高。本发明在较低压力下便利地进行了氩氧分离。提高双塔系统低压塔压力不要求氩气塔也在同样压力下操作。
本发明采用了一个辅助冷凝器,较好地位于氩气塔底。氩气塔进料在进入氩气塔之前,先行冷凝。由于这种冷凝较好地出现在氩气塔底,从而在氩气塔内造成了一小段提馏段。这个小提馏段进一步降低了沿氩气塔下降并返回低压塔的富氧液中的氩含量。结果,氩气塔回收其进料中较大部分氩。此外,氩气塔进料在进氩气塔前先行减压。该降低的操作压力由于提高了氩/氧二元相对挥发度,故进一步有利于氩回收。
采用附图所示的本发明实例,对本发明做了计算机模拟。低压塔6顶部压力为27.3磅/平方英寸(绝压);而氩气塔7顶部压力为23.7磅/平方英寸(绝压);高压塔5底部压力为102.6磅/平方英寸(绝压)。所得氩气回收率是92.7%。相应的传统装置氩气回收率典型地仅有约86.5%。
可见,采用本发明可以提高由含氩进料所得氩气回收率,同时不需要使用诸如额外的压缩设备来向系统输入附加能量。虽然已就某一较好实例对本发明做了详细说明,但熟悉本门技术的人将会认识到,在本权利要求的原则和范围内尚有其他实例。例如,诸如液氧、液氮或液态空气等其他流体,也可应用于氩气塔冷凝器中。
权利要求
1.一种生产氩气的低温精馏方法,该方法包含(A)向主塔系统中加入含氩进料并在主塔系统内进行低温精馏;(B)从主塔系统抽出含氩蒸汽并将所述含氩蒸汽冷凝;(C)将所得含氩液减压;(D)以减压含氩液为进料在氩气塔的中间部位加入到氩气塔中并借助低温精馏将进料分离成富氩流体和贫氩流体;(E)将贫氩流体从氩气塔抽出,增压并将增压贫氩流体送入主塔系统;(F)回收富氩流体做为产品氩。
2.权利要求1的方法,其中含氩蒸汽通过与贫氩流体间接换热而冷凝。
3.权利要求1的方法,其中主塔系统是一个包含一个低压塔和一个高压塔的双塔系统,其中,含氩蒸汽从低压塔抽出且贫氩流体也通入该低压塔。
4.权利要求1的方法,其中氩气塔,至少在其上部内,在低于环境大气压力下操作。
5.权利要求3的方法,其中氩气塔操作压力至少比低压塔低3磅/平方英寸。
6.权利要求3的方法,它进一步包含将含氩蒸汽从低压塔送入氩气塔。
7.一种生产氩气的低温精馏装置,该装置包含(A)一主塔系统以及向该主塔系统进料的机构;(B)一个氩气塔、一个冷凝器的及将流体从主塔系统通入冷凝器的机构;(C)用于把流体从冷凝器在氩气塔中间部位通入氩气塔的机构;(D)用于使从冷凝器通入氩气塔的流体减压的机构;(E)用于把流体从氩气塔下部抽出的机构、用于把抽出流体增压的机构以及用于把增压抽出流体通入到主塔系统的机构;以及(F)用于回收来自氩气塔上部流体的机构。
8.权利要求7的装置,其中冷凝器位于氩气塔内的下部。
9.权利要求7的装置,其中主塔系统是包含一个低压塔和一个高压塔的双塔系统,其中将流体从主塔系统通入冷凝器的机构、将增压抽出流体通入到主塔系统的机构都与低压塔连通。
全文摘要
一种提高氩气回收率的低温精馏系统,其中氩气塔的压力低于系统内其他塔的压力,同时通过使用一台附加冷凝器/再沸器以及通过在塔的中间部位引入氩气塔进料,在氩气塔内造成了一个小的提馏段。
文档编号C01B23/00GK1086010SQ9311915
公开日1994年4月27日 申请日期1993年10月22日 优先权日1992年10月23日
发明者H·E·霍华德 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1