组合物及其制备方法

文档序号:3581161阅读:231来源:国知局
专利名称:组合物及其制备方法
技术领域
本发明为1997年11月17日提交的申请号为97199721.7发明名称为“可磁化的器件”的发明的分案申请。
本发明涉及一种包括由磁畴分离的毫微米数量级(例如,1-100nm)的铁磁性粒子所组成的磁层的可磁化器件。本发明的这种可磁化器件可以用于具有改进的数据存储特性的磁存储器件。特别是,本发明涉及这样的磁存储介质,它包括单独磁畴的、磁畴分离的、均匀的、铁磁性毫微米数量级(例如1-100nm)的粒子,这些粒子可以排列为在信息存储中有用的规则的2-D封装阵列。
向超高密度(>=1Gbit/in2)磁介质发展的可能途径是使用毫微米数量级(1-100nm)的粒子。除了对于磁介质的标准要求之外,一个可用的粒子介质应该在粒子大小上具有一个小的标准偏差以及具有被交换去耦的一些粒子。这些要求是必需的以便于防止有害的介质噪声。产生毫微米数量级粒子的诸如弧光放电或多目标离子束溅射这样的当前方法不能完全满足这两个要求。另外,如果这些均匀粒子被排列成一个有序数组,那么每个粒子在可预定的位置处能代表信息的“位”进一步增加了介质的效率。本发明详述了满足超高密度记录这些要求的制造粒子介质的方法。本发明还是一个可以允许制造各种磁材料的开放系统,从而使该介质可以被调节以用于不同的应用。
具体地,本发明详述了铁存储蛋白即铁蛋白的使用,该铁蛋白的内部空腔可用来产生这种毫微米数量级的粒子。铁蛋白用于贯穿生命物种的铁代谢作用之中,并且它的结构在它们中间是高度守恒。它由24个子单元所组成,这些子单元排列成直径大约为8nm的一个空腔壳体。该空腔通常能以顺磁性的水铁矿的形式存储4500个铁(III)原子。然而,这种水铁矿可以被去除(一个没有水铁矿的铁蛋白被称为“去铁铁蛋白”)并且可以加入另外的物质。这样的例子包括陶瓷,超顺磁性铁磁矿,对乙酰氨基酚甚至还有香化糖精。为了满足磁介质的需要,本发明加入了铁磁顺序的材料。
本发明提供了一种用于数据存储的磁记录介质,该磁记录介质包括一个可磁化层,该可磁化层包括多个铁磁性粒子,每个铁磁性粒子所具有的最大尺寸不超过100nm,并且这些粒子中的每一个都表示一个分离的铁磁性磁畴,而且其中在构成这种磁记录介质的处理过程中,这些铁磁性粒子被包围在或部分地包围在一个有机大分子中。
该可磁化层最好被支撑在非磁性基底上。最好是所述的有机大分子是其中通常的磁心水铁矿已经去除并由铁磁粒子所替代的铁蛋白。
本发明还提供了一种组合物,该组合物包括多个均匀尺寸的亚铁磁性或铁磁性金属合金粒子,每个粒子被包围在或部分包围在一个有机大分子中,并且每个粒子所具有的最大尺寸不超过100nm。
本发明另外还提供了一种组合物,该组合物包括多个均匀尺寸的亚铁磁性或铁磁性金属合金粒子,每个粒子形成在一个去铁铁蛋白质有机大分子的腔体中。
本发明还提供了一种方法,用于制备均匀尺寸的亚铁磁性或铁磁性金属合金粒子,其中每个粒子所具有的最大尺寸不超过100nm,该方法包括步骤将所述粒子形成在有机大分子中。
这里所使用的术语“铁磁的”既指“铁磁的”也指“亚铁磁的”物质。在电子工程技术中这种用法是很普遍的。
在本发明中所使用的铁磁粒子应该是这样一种物质和尺寸,即要使它们在环境温度(例如15℃到30℃)下具有铁磁特性。
铁磁粒子每个所具有最大的尺寸优选为不超过50nm,较好的是小于25nm并且最好小于15nm。铁磁粒子的最大尺寸不应该这么小以致于该粒子在记录介质所希望的工作温度下将丧失它的铁磁特性并且变得超顺磁性。一般地,在环境温度下工作时,这意味着磁性粒子通常的最大直径将不小于大约3nm。
在本发明所提供的用于数据存储的磁性记录介质中,相邻铁磁磁畴之间的距离最好尽可能地小以便于允许在一个给定区域中有最大数目的独立的磁畴,并且为记录介质提供最大的存储容量。实际的最低限度将由于不同的物质和其它诸如使用记录介质时的温度这样的情况而不同。但是,基本要求是相邻的磁畴彼此间进行的磁性干扰不能够造成由相邻的磁畴来改变任何磁畴的磁性取向。典型地,这些磁畴的空间间隔最低限度为大约2nm。相邻磁畴间的距离将通过所需的离散磁畴的密度来确定。但是,一般地,利用由本发明提供的小型化可能性,相邻磁畴之间的距离将不超过10nm。
通常,粒子在尺寸上将是均匀的,我们指的是这些粒子在最大直径上的改变不超过大约5%。在本发明中使用有机大分子的一个好处是,通过有机大分子包围来束缚磁性粒子可以用来选择均匀尺寸的粒子。
在这些粒子是球状的情况中,这些粒子的直径必须不能大于100nm。
在本发明所有方面的实施例中,每个铁磁粒子被包含或者是部分包含在一个有机大分子中。术语“大分子”表示一个分子,或分子的组合体,并且其重量可能超过1500kD,一般的分子重量小于500kD。铁蛋白有一个重量为400kD的分子。
大分子应该能够通过包住来约束或组织磁性粒子,并且因此组成能够包含该粒子的适宜的腔体;一个腔体将通常将完全地被封闭在大分子中。另一方面,大分子可以包括一个不完全包围的适当开口,但是仍然能够接收和支撑磁性粒子;例如,这个开口可以通过大分子中的一个环状空间来确定。例如,在本发明中所使用的合适的大分子可以是蛋白质,例如蛋白质去铁铁蛋白(它是其中腔体是空的铁蛋白)、鞭毛L-P环、环糊精、自组织的环状肽。作为在大分子中装入磁性粒子的替代物,它们可以被组织在大分子上,诸如在细菌S层上。
可用于本发明来组织铁磁粒子的其它物质是诸如MCM型物质的无机二氧化硅网、枝状物(dendrimers)——一种三维合成支链聚合物——和胶束型系统和胶束型系统。
目前在本发明中使用的优选大分子是具有直径为8nm数量级的腔体的去铁铁蛋白蛋白质。在这种蛋白质中所容纳的亚铁或铁磁粒子应该具有不大于8nm的直径。
带有阻止聚合和氧化的外壳的本发明的束缚粒子还帮助它们成为磁畴分离状态。
在本发明第一方面的可磁化器件和本发明第二方面的磁记录介质中,这些粒子最好是排列成2-D的有序阵列,从而可以产生一个超高密度的磁介质。
铁磁材料可以是诸如钴、铁或镍这样的金属;金属合金,诸如包含铝、钡、铋、铈、铬、钴、铜、铁、锰、钼、钕、镍、铌、铂、镨、钐、锶、钛、钒、镱、钇或它们的混合物的合金;金属铁氧体,诸如包含钡、钴、或锶的铁氧体;或者有机铁磁材料。
当产生毫微米数量级粒子时,主要关心的是所产生的粒子是不是超顺磁性的。超顺磁性粒子是那些具有永久磁性的偶极矩,但是这些矩的方向相对于结晶的座标轴而随时间起伏变化。这对于粒子磁存储介质是没有用的。超顺磁性取决于粒子的体积、温度和其各向异性。从能量方面考虑,能推导出与这些参数有关的方程。在一个粒子变成超顺磁性时的体积(Vp)由下式给出Vp=25kT/K,其中k是波尔兹曼常数,T是该粒子以开尔文度表示的温度,K是材料的各向异性常数。使用这个方程,可以确定在一个固定的体积处对于一个给定的材料一个粒子变成超顺磁性时的温度(即“阻塞温度”)(blocking temperature)。在具体例子中,铁蛋白中固定的体积是8nm。如果仅具有晶态各向异性(值为45×1015)的钴金属粒子是直径为8nm的球状体,阻塞温度是353°K。这在硬盘驱动器可以承受的温度范围内,并且该钴粒子可以证明是一个有用的存储介质。显然,还有其它考虑的方面,诸如材料的矫磁力,矩,饱和磁化强度和松驰时间。通过调整在铁蛋白中所含有的这些材料,使它们仍然可以被访问。
在整个生物物种中的铁代谢作用中使用铁蛋白并且其结构在其中是高度恒定的。它由以432对称形式排列的24个子单元构成,其中这些子单元提供了直径大约为8nm的一个空心壳体。这个腔体通常以顺磁性水铁矿的形式存储了4500个铁(III)原子。但是,这个水铁矿可以被去除(没有水铁矿的铁蛋白被称为“去铁铁蛋白”)并且可以加入其它物质。铁蛋白部分中的子单元是密封的,但是其中在3重和4重座标轴处有一些通道进入腔体中。嵌入3重通道的是束缚诸如镉、锌和钙等金属的剩余物。通过引入这种二价铁,可以大致地将铁蛋白大分子束缚在一起,或者至少促使它们有最接近的排列。
制备均匀尺寸多达8nm的铁磁顺序粒子的2-D封装阵列的一种方法包括从水溶液中的自然铁蛋白中去掉水铁矿的核心,通过将Co(II)水溶液中的硼氢化钠还原将铁磁顺序的钴金属粒子加入铁蛋白腔体,通过超速离心来产生窄尺寸的分布,将粒子注入2-D阵列的MES/葡萄糖亚期水溶液中,以及将2-D阵列转换为涂有碳的基底。在这种方法中,铁蛋白源可以是脊椎动物、无脊椎动物、植物、菌类、酵母、细菌、或通过重组细胞技术产生的一种物质。
在所描述的方法中,通过水溶性金属盐的硼氢化钠还原可以产生一个金属合金核。其它还原方法包括碳、一氧化碳、氢、或水合肼溶液。另外,合适的溶液可以氧化来产生一个金属铁氧体核。氧化可以是用化学或电化学来产生金属铁氧体。
在这个方法中,可以使用诸如短或长柱弯液面减损方法或磁场分离等这样的选择窄尺寸分布的其它方法。
另外,在这个方法中,可以将含有镉、钙或锌的二价金属盐加入亚期溶液中以帮助粒子排序。
此外,在这个方法中,还可以使用将粒子排列成2-D阵列的其它方法,比如将溶液蒸发到固体基底上。
另外,在这个方法中,可以在2-D阵列上涂上以碳为基础的膜,诸如氢化或氮掺杂的钻石型碳,或者用以硅为基础的膜比如二氧化硅。
在本发明中,可以使用铁蛋白来封闭铁磁粒子,使它的最大尺寸受到铁蛋白内部8nm直径的限制。首先通过去除水铁矿核来产生去铁铁蛋白来制造粒子。这是通过在氮流动下相对于缓冲乙酸钠溶液渗析来完成的。使用氢硫基乙酸的还原螯合作用来去掉水铁矿核。这是通过重复相对于氯化钠溶液的渗析来完全地从溶液中去掉还原的水铁矿核而紧随着发生的。一旦制造出去铁蛋白,就以随后的方式加入亚铁或铁磁粒子。首先,在去铁铁蛋白存在的情况下还原金属盐溶液。这是在惰性环境下实现的以阻止金属粒子氧化,氧化会减小它们的磁性效能。溶液中金属盐的组合还能被还原以产生合金或合金前身。磁场中的烧结和退火处理是有必要的,可以产生有用的金属合金。另一个方法是氧化2价铁盐和另一个金属盐的组合物。这样给出了一个免受氧化作用负面影响的金属铁氧体粒子。这些有用的金属盐包括铝、钡、铈、铬、钴、铜、铁、锰、钼、钕、镍、铌、铂、镨、钐、锶、钛、钒、镱、钇等盐。
粒子的窄尺寸分布是有必要的,可以避免介质噪声。能够通过各种处理过程获得这样一种分布,这些过程包括(但不仅限于此)密度梯度离心法或磁场分离过程。
当所述的制造过程使用自然的马脾脏铁蛋白时,本发明不应被看作仅限于那个来源。可以在脊椎动物、无脊椎动物、植物、菌类、酵母、细菌、或通过重组细胞技术产生的物质中找到铁蛋白。通过产生缺少二价结合部位的突变型去铁铁蛋白,可以发现突变型蛋白质组配成倾斜配置而与常规的六方紧密堆积不同。
尽管铁氧体似乎是用于产生毫微米数量级粒子的理想系统时,它不是唯一可以利用的系统,例如,鞭毛L-P环是具有13nm内部直径的管式蛋白质。通过产生这些蛋白质的2-D阵列,金属膜可以淀积入管的中心从而产生磁性材料的垂直棒。同样,还可以使用在微乳状液中存在的金属还原作用来产生外部涂有表面活性剂的毫微米数量级的粒子。本发明可用于其它毫微米数量级粒子制造方法。
最后希望粒子是有序排列的。一种实现这样的方法是通过将粒子的水解溶液注射入保存在聚四氟乙烯斜槽中的MES/葡萄糖亚期溶液中。这些粒子在空气亚期(air-subphase)界面扩散,并且一部分变性形成一种单分子层膜。在这个单分子层下面产生包住粒子的2-D排列。在室温10分钟之后,通过将基底直接放置在单分子层上5分钟,将粒子排列和单分子层都转移到一个基底。撤出基底之后,所附着的粒子排列被包上一层薄的碳层以用于保护。诸如将溶液蒸发在基底上这样的其它方法也可能给出2-D排列,并且本发明不应被认为仅限于它的排列方法。
实例1这个例子说明了来自马脾脏铁蛋白的去铁铁蛋白的制备过程。去铁铁蛋白是这样从无镉(cadmium-free)自然马脾脏铁蛋白(calBiochem,100mg/ml)中制造出来的通过用氢硫基乙酸(0.3M)的还原螯合作用在氮流下相对于PH为5.5的缓冲乙酸钠(0.2M)溶液渗析(减去10-14kDalton的分子量)来去掉水铁矿核。随后通过相对氯化钠溶液(0.15M)反复渗析从而完全地从溶液中去掉还原的水铁矿核。
实例2这个例子说明去铁铁蛋白里面的钴金属的制备过程。将脱辅蛋白质加入在PH7.5处缓冲的脱氧的TES/氯化钠溶液(0.1/0.4M)以获得近似1mg/ml的蛋白质工作溶液。将脱氧的钴(II)(例如,作为醋酸盐)溶液(1mg/ml)逐渐增量地加入以使所加入的原子总数为大约500原子/脱辅基蛋白大分子。这样允许在惰性环境中一天的室温下激活。随后将带有硼氢化钠的钴(II)盐还原为钴(O)金属。最后产物是钴粒子溶液,每个钴粒子都被一个铁蛋白壳所包围。
实例3这个例子说明了诸如去铁铁蛋白内部的钴钇合金(YCo5)这样的金属合金的制备过程。金属合金与实例2的制备过程相同但是使用钇(III)(例如,作为醋酸盐)对钴(II)(例如,作为醋酸盐)的比率为1∶5。最后产物是钇钴合金粒子的溶液,每个粒子都被一个铁蛋白壳所包围。
实例4这个例子说明诸如去铁铁蛋白内部的钴铁酸盐(CoO·Fe2O3)这样的金属铁酸盐的制备。将脱辅蛋白质加入在PH6处缓冲的脱氧MES/氯化钠溶液(0.1/0.4M)中以提供一个近似于1mg/ml蛋白质的工作溶液。将脱氧的钴(II)溶液(例如,作为醋酸盐)和铁(II)(例如,作为硫酸铵盐)以1∶2的比率逐渐增量地加入并允许空气氧化。最后产生钴铁酸盐粒子的溶液,每个粒子都被一个铁蛋白壳所包围。
实例5这个实例说明了铁蛋白包围的磁性粒子的2-D分布。将粒子的水溶液(从实例2-4中,并且其大小的均匀性已经选择的粒子)注射入保存在一个倾斜槽中的MES/葡萄糖亚期溶液(0.01M/2%)中。这些粒子在空气亚期(air-subphase)界面处扩散,并且一部分变性构成一种单分子层膜。在这个单分子层膜下面产生包住粒子的2-D排列。在室温10分钟之后,通过将基底直接放置在单分子层上5分钟,将粒子分布和单分子层都转移到一个基底。撤出基底之后,所附着的粒子分布被包上一层薄的碳层来用于保护。
权利要求
1.一种组合物,包括多个均匀尺寸的亚铁磁性或铁磁性金属合金粒子,每个粒子被包围在或部分包围在一个有机大分子中,并且每个粒子所具有的最大尺寸不超过100nm。
2.根据权利要求1的组合物,其中所述亚铁磁性或铁磁性粒子的最大尺寸相差不超过5%。
3.根据权利要求1或2所述的组合物,其中所述有机大分子包括蛋白质。
4.根据权利要求3所述的组合物,其中所述有机大分子为去铁铁蛋白。
5.根据前述权利要求中任一项权利要求所述的组合物,其中所述粒子为球状。
6.根据前述权利要求中任一项权利要求所述的组合物,其中所述金属合金包含铝、钡、铋、铈、铬、钴、铜、铁、锰、钼、钕、镍、铌、铂、镨、钐、锶、钛、钒、镱、钇或它们的混合物。
7.一种组合物,包括多个均匀尺寸的亚铁磁性或铁磁性金属合金粒子,每个粒子形成在一个去铁铁蛋白质有机大分子的腔体中。
8.一种方法,用于制备均匀尺寸的亚铁磁性或铁磁性金属合金粒子,其中每个粒子所具有的最大尺寸不超过100nm,该方法包括步骤将所述粒子形成在有机大分子中。
9.根据权利要求8所述的方法,其中所述亚铁磁性或铁磁性粒子的最大尺寸相差不超过5%。
10.根据根据权利要求8或9所述的方法,其中所述粒子为球状。
11.根据权利要求8、9或10所述的方法,其中所述有机大分子为蛋白质。
12.根据权利要求11所述的方法,其中所述有机大分子为去铁铁蛋白。
13.根据权利要求11所述的方法,其中所述金属合金粒子通过在去铁铁蛋白存在的情况下还原溶液中的金属盐的组合而形成。
14.根据权利要求13所述的方法,其中所述金属合金粒子在磁场中进行退火。
全文摘要
本发明公开了一种组合物,该组合物包括多个均匀尺寸的亚铁磁性或铁磁性金属合金粒子,每个粒子被包围在或部分包围在一个有机大分子中,并且每个粒子所具有的最大尺寸不超过100nm。
文档编号C07K14/47GK1532854SQ20031011432
公开日2004年9月29日 申请日期1997年11月17日 优先权日1996年11月16日
发明者埃里克·利·梅斯, 马尔文·尼古拉斯·泰勒, 尼古拉斯 泰勒, 埃里克 利 梅斯 申请人:纳磁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1