使用负载金属的催化剂催化制备严重位阻的氨基-醚醇的制作方法

文档序号:3576152阅读:224来源:国知局
专利名称:使用负载金属的催化剂催化制备严重位阻的氨基-醚醇的制作方法
技术领域
本发明涉及制造严重位阻的氨基-醚醇、二氨基聚烯基醚及其混合物,其中使伯氨基化合物和聚烯基醚二醇的混合物在催化剂上进行反应而制造,该催化剂包含一种或多种沉积在载体上的催化活性金属组分,该催化过程在升高的温度和压力下进行。
背景技术
在文献中已经确立了严重位阻的氨基-醚醇的催化制造。如USP4,487,967中所述,通过使伯氨基化合物(例如叔丁胺(TBA))与聚烯基醚二醇(例如二甘醇(DEG))在存在催化有效量的含族VIII金属的负载氢化催化剂的情况下在升高的温度和压力(例如大约160℃至大约425℃和大约50至大约3000psig)下反应来制造这种严重位阻的氨基-醚醇。叔丁胺与二甘醇的反应产生了乙氧基乙醇-叔丁胺,称作EETB。EETB可用于从含H2S和CO2的混合物的气流中选择性去除H2S的气体处理法。在USP4,894,178;USP 4,405,585;USP 4,508,692;USP 4,618,481;USP 4,112,052;USP 4,961,873;USP 4,892,674;USP 4,417,075中描述了这种严重位阻的氨基-醚醇在这种分离法中的应用。
然而,需要一种新型的制造严重位阻的氨基-醚醇的方法,其产生更少量的不合意副产物并对所需产物具有改进的选择性。
本发明的一个目的是提供一种使用特定类型的催化剂制造严重位阻的氨基-醚醇的新型催化法,其以原材料高转化率和所需最终产物的高选择性为特征。
附图的简要说明

图1是对于下述四种工艺试验,二甘醇转化率与EETB/TBM摩尔比的关系图——其中一种工艺试验是使用用有机分散助剂制成的本发明可用的典型催化剂进行的,其它三种工艺试验是采用不使用有机分散助剂制成的本发明以外的典型催化剂进行的。TBM是不合意的副产物(N-叔丁基吗啉)。

发明内容
本发明涉及通过使伯氨基化合物与聚烯基醚二醇在催化剂上反应来制造严重位阻的氨基-醚醇、二氨基聚烯基醚及其混合物(优选主要为严重位阻的氨基-醚醇)的方法,所述催化剂包含一种或多种负载在一种或多种载体材料上的催化活性的高度分散金属。
催化剂载体材料可以包含一种或多种有序的中孔载体材料。
催化载体材料还可以包含与一种或多种附加材料复合(matrixed)或结合的一种或多种有序的中孔载体材料,所述附加材料选自由常规无定形载体材料、结晶载体材料及其混合物组成的组。
催化剂载体材料还可以包含与一种或多种混合孔隙中孔载体材料混合的一种或多种有序的中孔载体材料。
催化剂载体材料还可以包含一种或多种选自由常规无定形载体材料、结晶载体材料及其混合物组成的组的载体材料。
催化活性金属包含除铂和钯以外的元素周期表过渡族VIII的至少一种金属(例如,铁、钴、镍、钌、铑、锇、铱),它们或者单独使用,或者与至少一种选自由过渡族1B(例如铜)、II A族(例如镁)及其混合物组成的组的附加金属一起使用,优选镍和钴,最优选镍。
具体实施例方式
在本发明的方法中,使伯氨基化合物与聚烯基醚二醇在存在包含一种或多种分散在一种或多种载体材料上的催化活性金属的催化剂的情况下反应。具有高的孔体积、高的表面积和至少2纳米的受控开孔大小的被确认为有序中孔材料的载体材料可用于制造严重位阻的氨基-醚醇。这种中孔载体材料可以原样使用,或与作为基体(matrix)/粘合剂材料的附加材料(例如,常规的二氧化硅或氧化铝)结合使用,或与作为基体/粘合剂材料的混合孔隙材料结合使用。高度分散的催化活性金属的其它有用载体是常规的无定形和/或结晶载体材料。
该方法包括通过使下列材料反应以分批或连续制造严重位阻的氨基醚醇(a)通式R1-NH2的伯氨基化合物其中R1选自含有3至8个碳原子的仲烷基和叔烷基、含有3至8个碳原子的环烷基、及其组合,优选含有4至6个碳原子的仲烷基或叔烷基,更优选含有4至6个碳原子的叔烷基,(b)下列通式的聚烯基醚二醇 其中R2、R3、R4和R5各自独立地选自由氢、C1-C4烷基和C3-C8环烷基组成的组,条件是如果R1的直接与氮原子连接的碳原子是仲烷基,则直接键合到与羟基键合的碳上的R2和R3中的至少一个是烷基或环烷基,x和y分别是独立地为2至4的正整数,Z是1至10,所述方法在存在下述催化剂的情况下在升高的温度和压力下进行——该催化剂包含除铂和钯以外的元素周期表族VIII的一种或多种催化活性过渡金属,它们或者单独使用,或者与一种或多种选自主族IIA和/或过渡金属族IB的附加金属一起使用,其中氨基化合物与聚烯基醚二醇的摩尔比为10∶1至0.5∶1,优选5∶1至1∶1,更优选3∶1至1∶1,条件是当Z大于1时,该比率低于2∶1。当Z为1时,该比率最优选在大约3∶1至大约2∶1之间。
优选地,R1是含有4至6个碳原子的烷基,R2和R3是氢、x和y是2,且Z是1。本发明中可用的典型仲烷基或叔烷基伯胺包括异丙胺、叔丁胺、1-甲基-1-乙基丙胺、和叔戊胺。最优选地,R1是叔丁基,R2、R3、R4和R5是氢,x和y是2,且Z是1。当如此定义反应物时,所得化合物主要是带有少量(如果存在的话)共同生成的二(叔丁基乙氧基)乙烷(一种二氨基聚烯基醚)的乙氧基乙醇叔丁胺(EETB)。
伯胺化合物与聚烯基醚二醇的反应在大约0至大约300psig、优选大约20至大约200psig、更优选大约20至大约150psig的在室温下充入的氢压力下,在大约150至大约350℃、优选大约160至大约300℃、更优选大约180至大约225℃的温度下进行,操作温度下的总反应器反应压力为大约50至大约1500psig,优选大约50至大约1000psig,更优选大约50至大约500psig。考虑到副产物的生成,反应进行的时间是重要的。特定反应所需的实际时间不等,并取决于所用的特定反应物、温度和压力,以及进行加工的批量。长反应时间通常有利于副产物生成,较高的反应温度也是如此。一般而言,反应进行大约0.5至大约24小时,优选大约1至大约12小时,更优选大约2至大约8小时。
在本方法中,包含一种或多种负载在一种或多种载体材料上的催化活性的高度分散金属的催化剂的浓度为足以促进伯胺和聚烯基醚二醇催化转化成严重位阻的氨基-醚醇、二氨基聚烯基醚和/或它们的混合物的浓度。因此,基于总反应物进料的重量,催化剂相对于反应物总量的存在量通常为大约0.001至大约10重量%,优选大约0.01至大约8重量%,更优选大约0.01至大约5重量%催化剂。
反应可以在能够承受进行该方法所必须的压力和温度的任何反应器中进行。反应物可以在分批法中与催化剂混合并反应。反应器中的催化剂可以在反应混合物中制浆或装在篮(basket)中。或者,可以使反应物在催化剂固定床上顺流或逆流通过。适用的其它反应器包括移动床反应器和连续搅拌反应器。例如,在连续搅拌反应器中,使催化剂循环并使反应物和反应产物以受控速率通过反应器。
反应可以在不存在任何附加溶剂的情况下进行,液体反应物起到促进反应的液体反应介质的作用。然而,惰性溶剂可以包括在反应介质中。
典型溶剂包括反应物(过量仲烷基或叔烷基胺试剂)会在其中溶解的链状或环状醚或含烃化合物。溶剂应该具有相对较低的分子量以利于从反应产物中去除。溶剂量不等,但是通常为所用反应物重量的大约10至50重量%,优选大约15至30重量%。典型溶剂的例子包括二甲醚、乙二醇、二甲醚、甲苯、四氢呋喃。由于过量胺试剂可以起到溶剂的作用,因此反应器中可以存在起到溶剂作用的过量异丙胺、叔丁胺、叔戊胺等。优选的溶剂包括四氢呋喃、二甲醚、乙二醇二甲醚和甲苯。
所用催化剂是在一种或多种载体材料上的一种或多种分散的被还原金属、在一种或多种中孔载体材料上的一种或多种分散的被还原金属、在与一种或多种大孔载体材料混合的一种或多种中孔载体材料上的一种或多种分散的被还原金属(这种大孔载体材料是基体(matrix)或粘合剂)、或在与一种或多种混合孔隙材料混合的一种或多种中孔载体材料上的一种或多种分散的被还原金属、或在一种或多种常规无定形载体材料和/或结晶载体材料上的一种或多种分散的被还原金属。
对于本发明,术语“大孔”和“中孔”的使用与它们在Pure Appl.Chem.,45(1976),79中的定义相同,也就是直径高于50纳米(大孔)或直径为2纳米至50纳米(中孔)的孔。在本发明的方法中,一种或多种催化活性金属沉积在特定的催化剂载体上。
该载体可以包括具有下述独特结构和孔几何构造的一种或多种有序中孔材料。优选的有序中孔材料是有机的多孔不分层材料,其在煅烧形式下具有在高于大约18埃单位()的d-间距有至少一个峰的X-射线衍射图。它们在50托和25℃下还具有高于15克苯/100克材料的苯吸附容量。本发明中可以使用的优选的有序中孔材料是可以使用两性分子化合物作为导向剂合成的那些有序中孔材料。在USP 5,250,282中描述了这种材料的例子,其全部内容经此引用并入本文。在Winsor,Chemical Reviews,68(1),1968中还提供了两性分子化合物的例子。在“Review of Ordered MesoporousMaterials”,U.Ciesla and F.Schuth,Microporous and MesoporousMaterials,27,(1999),131-49中也描述了其它合适的这种有序中孔材料。这些材料包括但不限于名为SBA(Santa Barbara)的材料,例如SBA-2、SBA-15和SBA-16,名为FSM(Folding Sheet Mechanism)的材料,例如FSM-16和KSW-2,名为MSU(Michigan State)的材料,例如MSU-S和MSU-X,名为TMS或“过渡金属筛”(Transition Metal Sieves)的材料,名为FMMS或在中孔载体上的官能化单层(functionalized monolayerson mesoporous supports)的材料,和名为APM或“酸制中孔结构”(AcidPrepared Mesostructure)的材料。在优选形式中,载体材料的特征在于,含有孔径高于2纳米并通常为2至50纳米、优选3至30纳米、最优选3至20纳米的均匀孔隙的基本均匀的六方形蜂巢微结构。特别优选的有序中孔材料是名为M41S(例如MCM-41、MCM-48和MCM-50)的硅酸盐或硅铝酸盐有序中孔材料。可以使用这些材料的混合物。在USP 5,102,643中详细描述了这些有序中孔材料,其全部内容经此引用并入本文。这类材料中特别适用于本发明的子类是名为MCM-41和MCM-48的中孔二氧化硅。这些材料中最优异的是名为MCM-41的有序中孔材料,通常通过在硅酸盐骨架内加入Al、Ga、B或Fe之类的四面体配位三价元素将其合成为含有布朗斯台德酸位点的金属硅酸盐。这些材料的优选形式是硅铝酸盐,但也可以使用其它金属硅酸盐。MCM-41的特征是具有直径为至少大约2纳米的孔隙的均匀六方形排列的微结构在煅烧之后,其表现出含有至少一个高于大约18的d-间距的X-射线衍射图、和可以用高于大约18的d100值(其对应于X-射线衍射图中峰的d-间距)标示的六方形电子衍射图。当存在氧化铝时,MCM-41分子筛通常具有高于100、优选高于200、最优选高于300的SiO2/Al2O3摩尔比。下文和在Ser.No.07/625,245,现在的USP 5,098,684(Kresge等)和授予Kresge等的USP 5,102,643中详细描述了这种材料,这两个专利都全部经此引用并入本文。
有序中孔材料可以是结晶的,其足够有序以便在煅烧后通过例如X-射线、电子或中子衍射提供具有至少一个峰的衍射图。这些中孔材料以其结构为特征,其包括大的孔开口(pore windows)以及高吸附容量。
此处使用的有序中孔材料可以通过它们大开孔的规律性区别于其它多孔无机固体,它们的孔径大小更近似于无定形或次晶材料,但是它们的规则排列和尺寸均一性(单相内的孔径大小分布为该相的平均孔径大小的例如+/-25%,通常+/-15%或更低)更近似于沸石之类的结晶骨架材料。术语“六方形”不仅包括在实验性测量的限度内表现出数学上完美的六方对称的材料,还包括明显可观察到偏离该理想状态的材料。对有序中孔载体材料的微结构使用的实用定义是,该材料中的多数通道被六个最邻近的通道以几乎相同的距离围绕。缺陷和不完整性会造成大量通道在不同程度上违背这一标准,其程度取决于材料制备的质量。与相邻通道之间的平均重复距离无规偏差多达+/-25%的样品仍然清楚地产生本发明的有序中孔材料的可识别图像。
用于制备催化剂载体的有序中孔材料优选具有下列组成Mn/q(WaXbYcZdOh)其中W是二价元素,例如二价第一列过渡金属,例如锰、钴和铁,和/或镁,优选钴;X是三价元素,例如铝、硼、铁和/或镓,优选铝;Y是四价元素,例如硅和/或锗,优选硅;Z是五价元素,例如磷;M是一种或多种离子,例如,铵、IA族、IIA族和VIIB族离子,通常是氢、钠和/或氟化物离子;n是除表现为氧化物的M以外的该复合物的电荷;q是M的加权摩尔1平均价态;n/q是M的摩尔数或摩尔分数;a、b、c和d分别是W、X、Y和Z的摩尔分数;h是1至2.5的数;且(a+b+c+d)=1。上述结晶材料的优选具体实施方式
是(a+b+c)大于d,且h=2。另一具体实施方式
是a和d=0,h=2。在如此合成的形式下,中孔材料在无水基础上具有凭经验如下表示的组成rRMn/q(WaXbYcZdOh)其中R是不以离子形式包含在M中的全体有机材料,且r是R的系数,即R的摩尔数或摩尔分数。M和R组分由于它们在材料合成过程中的存在而与该材料缔合并且容易去除,或者在M的情况下,被下文更特别描述的后合成法取代。
在所需的程度上,可以按照本发明公知的技术至少部分通过与其它离子的离子交换取代如此合成的材料的原始M,例如铵、钠或氯化物离子。优选的取代离子包括金属离子、氢离子、氢前体(例如铵)离子、及其混合物。其它离子包括稀土金属和元素周期表(Sargent-Welch Co.Cat.No.S-18806,1979)族IA(例如K)、IIA(例如Ca)、VIIA(例如Mn)、VIIIA(例如Ni)、IB(例如Cu)、IIB(例如Zn)、IIIB(例如In)、IVB(例如Sn)和VIIB(例如F)的金属及其混合物。
本发明的方法中使用的优选有序中孔材料是有序中孔二氧化硅。最优选的有序中孔二氧化硅是名为M41S的那些,最优选MCM-41。
本发明的方法中可用的中孔材料的例子是如USP 5,951,962所述并按照其制备的中孔二氧化硅,该专利的公开内容完全经此引用并入本文。在该具体实施方式
中,通过将二氧化硅前体在水和含反应介质的聚合物分散体中转化来制备中孔二氧化硅。优选的聚合物分散体是阳离子聚合物。
也可以使用高表面积中孔氧化铝固体制备在本发明的方法中使用的催化剂载体;这种高表面积中孔氧化铝固体可以按照USP 6,238,701中描述的方法制备,该专利公开的内容完全经此引用并入本文。
该载体还可以包含常规的无定形和/或结晶大孔材料。也可以使用既有大孔又有中孔的材料,例如美国专利5,936,126、6,248,924和6,284,917(它们公开的内容完全经此引用并入本文)中所述的那些,作为合适的催化剂载体。这些材料可以自身用作载体,也可以互相结合,或与之前在制备可用于本方法的催化剂时所述的中孔和/或有序中孔材料结合用作载体。
适合自身用作载体或用作基体或粘合剂材料的常规无定形和/或结晶大孔材料具有至少大约50纳米、优选至少大约100纳米、特别是至少大约500纳米的平均孔径。优选地,这些大孔材料具有最多大约30平方米/克、优选最多大约15平方米/克、更优选最多大约10平方米/克、特别是最多大约5平方米/克、更优选最多大约3平方米/克的BET表面积。这些大孔材料的平均孔径优选为大约100纳米至大约20000纳米,更优选大约500纳米至大约5000纳米,最优选500纳米至1000纳米。这些大孔材料的表面积优选为大约0.2至大约15平方米/克,更优选大约0.5至大约10平方米/克,特别是大约0.5至大约5平方米/克,更优选大约0.5至大约3平方米/克。这种大孔材料可以与中孔载体材料混合使用。
常规无定形和/或结晶大孔材料和混合孔隙材料的表面积可以通过BET法使用N2吸附测定,特别是按照DIN 66131测定。可以通过N2孔隙度测定法测定平均孔径和尺寸分布。使用ASTM法D-4222“通过静态容积测量法测定催化剂的氮吸附和解吸等温线的标准测试方法”(Standardtest method for determination of nitrogen adsorption and desorptionisotherms of catalysts by static volumetric measurements)测量BJH吸附等温线。
可以原样用作载体的常规无定形和/或结晶大孔材料和混合孔隙材料是,例如,含大孔的活性炭、碳化硅、氧化铝、二氧化硅、二氧化钛、二氧化锆、氧化镁、氧化锌或它们中两种或多种的混合物,优选使用含大孔的氧化铝(矾土)、二氧化硅(硅石)、及其混合物,优选二氧化硅。
当中孔和/或有序中孔材料与大孔材料和/或混合孔隙基体材料结合使用时,最终催化剂可以是包含由90至10重量%中孔材料和10至90重量%大孔材料构成的载体基体的组合物,优选80至20重量%中孔材料和20至80重量%大孔材料,更优选80至40重量%中孔材料和20至60重量%大孔材料。特别优选的组合物包含由70至60重量%(理想地65重量%)中孔材料和30至40重量%(理想地35重量%)大孔材料构成的载体基体。
在本方法中,最终催化剂可以仅包含一种或多种沉积在一种或多种前述载体表面上的被还原金属。优选的是,本发明中使用的催化剂包含一种或多种沉积在一种或多种中孔和/或有序中孔载体材料上的被还原金属。催化剂可以不含添加的无机粘合剂,但是也包括以粘合形式使用催化剂。可以将其上沉积或未沉积被还原金属的载体成型成各种粒度。通常,粒子可以是粉末、颗粒、或模制品形式,例如具有足以通过2目(Tyler)筛并可以保留在400目(Tyler)筛上的粒度的挤出物。在例如通过挤出法模制催化剂的情况下,它们可以在干燥之前挤出或部分干燥然后挤出。在这些具体实施方式
中,可以在挤出或成形法中与一种或多种溶剂一起使用各种挤出或成形助剂,所有技术都是本领域中公知的。
其上沉积或未沉积一种或多种催化金属的载体材料可以与能耐受本方法中使用的温度和其它条件的无机粘合剂或基体材料一起制成复合材料。这种粘合剂或基体材料也可以辅助最终催化剂的形成和制造。这些粘合剂或基体材料包括活性和非活性材料以及合成或天然生成的沸石,以及无机材料,例如粘土和/或氧化物,例如氧化铝、二氧化硅或二氧化硅-氧化铝。后者可以是天然生成的,或是包括二氧化硅与金属氧化物的混合物的凝胶状沉淀物或凝胶的形式。与沸石联合使用(即与其结合或存在于其合成过程中)、本身具有催化活性的材料可以改变催化剂的转化率和/或选择性。可以在天然生成的粘土(例如膨润土和高岭土)中加入这些材料,以改进催化剂在商业操作条件下的压碎强度并起到催化剂粘合剂或基体的作用。包含一种或多种催化金属的载体可以制成包含大孔基体材料的组合物,其中催化剂载体与基体材料的重量比为99∶1至5∶95、优选99∶1至10∶90、更优选99∶1至20∶80、最优选99∶1至50∶50。优选地,如果使用附加的基体材料,其保持为最小量,通常低于催化剂载体与基体材料结合重量的50重量%,理想地低于40重量%,优选低于30重量%,更优选低于20重量%,更优选低于15重量%,最优选低于10重量%,并在最优选具体实施方式
中低于5重量%。可以通过常规方式实现组合物的形成,包括将这些材料一起研磨,然后通过挤出以制粒成所需的最终催化剂颗粒。理想地,附加粘合剂基体材料选自前述常规无定形和/或结晶大孔材料,或是具有混合孔隙的材料,也就是既有大孔又有中孔的材料。
催化剂包含被还原金属作为催化组分。通过金属或金属的组合提供催化组分。可用催化金属优选为除铂和钯以外的元素周期表过渡族VIII的一种或多种金属,它们或者单独使用,或者与一种或多种1B族的金属结合使用,也可以与一种或多种主族IIA的金属结合使用。优选地,催化剂金属选自镍、铁、钴、锇、铱、钌、铑、及其混合物,优选镍、铁、钴及其混合物,更优选镍和钴,最优选镍,它们可以与选自铜、银、金及其混合物(优选为铜)的附加催化组分结合使用,并且可以进一步包含选自铍、镁、钙、锶、钡及其混合物(优选镁、钙及其混合物,更优选镁)的附加金属。优选地,催化金属包括镍;镍和钴;镍和铜;镍、铜和镁;镍、钴和镁;更优选为镍。
催化剂通常包含在载体材料上的占被还原催化剂总重量的大约2.5至80重量%、优选大约10至65重量%的被还原金属。在是镍的情况下,被还原金属的量优选为被还原催化剂总重量的至少10%,优选至少大约12%,更优选至少大约14%。
由于表面积非常高(其可以在保持高金属分散性的同时获得相对较高的金属负载量),中孔载体材料,尤其是MCM-41,是明显优选的。催化金属组分可以交换到载体材料上,浸渍入载体材料内,或与载体材料物理混合,但是优选交换或浸渍。
如果是载体上施用了多种活性金属的催化剂,则可以同时或依次施用金属盐或金属盐溶液。
当有序中孔材料与大孔和/或混合孔隙基体材料结合使用时,优选在有序中孔材料与基体材料结合之后将金属组分施用到其上。
使用下述方法制造催化剂——其中通过使用特定次序的工艺步骤为载体提供一个或多个催化活性的金属位点。在第一步骤中,对载体提供一种或多种金属的一种或多种有机络合物,在第二步骤中,使有机络合物完全或部分分解。
在一个
具体实施例方式
中,使一种或多种催化金属的化合物或盐与一种或多种有机化合物结合以形成混合物,然后使该混合物与载体接触以沉积有机络合物。在该具体实施方式
中,络合物可以在形成混合物时形成,或者可以在与载体接触后和在去除混合物形成过程中使用的任何溶剂后形成。在另一具体实施方式
中,首先使载体与一种或多种催化金属的化合物或盐接触,然后用一种或多种有机化合物处理以便在载体上形成有机络合物。在再一具体实施方式
中,使载体首先与一种或多种有机化合物接触,然后用一种或多种催化金属的化合物、盐或它们的混合物处理以便在载体上形成络合物。在进一步具体实施方式
中,使一种或多种有机化合物和一种或多种催化金属的一种或多种化合物和/或盐同时与载体接触以形成有机络合物。在再一具体实施方式
中,可以合成所需金属的合适的有机络合物,并经由络合物在合适溶剂中的溶液施用到载体上。然而,在所有情况下,无论用于使有机化合物与催化金属盐互相接触和使所得络合物与载体接触的次序如何,都要使载体与一种或多种催化金属的有机络合物接触。
适用于制备金属盐溶液的催化金属盐是例如相应金属的硝酸盐、亚硝酰基硝酸盐、卤化物、碳酸盐、羧酸盐,乙酰丙酮化物、含氯络合物、亚硝酸基络合物或胺络合物,优选硝酸盐和亚硝酰基硝酸盐,最优选硝酸盐。
可以使用能够与金属的一种或多种盐或化合物形成有机络合物的任何有机化合物。通常这些是能够形成在沉积催化金属时常用的条件下稳定的络合物的有机化合物。理想地,选择有机化合物以提供在用一种或多种催化金属浸渍之后干燥催化剂载体时常用的条件下稳定的金属有机络合物。合适的有机化合物是过渡金属化学领域中公知的,并包括过渡金属配位络合物制备中常用的诸如有机螯合剂、有机单齿配体、双齿配体和多齿配体之类的有机化合物。在许多这样的络合物中,络合物中可以存在一种或多种作为共价键合分子和/或离子的配体。有机化合物也可以是载体制造中使用的或在其合成过程中存在的一种或多种有机化合物。在有机化合物与催化金属盐分开的情况下,催化金属盐、有机化合物、有机化合物与催化金属盐的有机络合物可以以任何次序或同时通过浸渍或物理混合交换到载体上。这可以通过将载体浸泡在适当的溶液中或通过浸渍、喷洒或任何其它适当的技术实现。
特别合适的有机化合物是含有一个或多个氨基的化合物,例如胺或氨基酸,最优选为同时含有氨基和醇基团的有机化合物。
含有一个或多个氨基的化合物可以是脂族胺、脂环族胺、芳烷基胺和烷芳基胺。它们可以是伯胺、仲胺和叔胺。它们也可以是含有抗衡离子的季铵盐。优选的是,含氮的化合物是一种或多种伯胺、仲胺或叔胺,优选一种或多种脂族胺,最优选一种或多种含有一个或多个羟基的胺,例如羟烷基胺。至少一种所用胺是脂族胺,并且优选的是,脂族胺含有一个或多个羟基。
按照本发明使用的含氮的化合物具有下列通式NR1R2R3(I)其中R1、R2和R3独立地为一种或多种下列基团C1-C50烷基、C3-C50环烷基、芳族基、烷基取代的芳族基(例如C1-C50烷基取代的芳族基)、芳族基取代的脂族残基(例如被一个或多个芳族基取代的C1-C50亚烷基残基)、C1-C50羟烷基、氨基和/或羟基取代的C1-C50烷基、烷氧基烷基(例如C2-C50烷氧基烷基)、二烷基氨基烷基(例如C3-C50二烷基氨基烷基)、烷基氨基烷基(例如C2-C50烷基氨基烷基)、杂环、芳族杂环、烷基取代的杂环和烷基取代的芳族杂环(例如C1-C50烷基取代的杂环和芳族杂环化合物)和杂环取代的脂族残基(例如由一个或多个芳族基取代的C1-C50亚烷基残基)。此外,R1和R2可以独立地为氢。在另一具体实施方式
中,R1和R2可以与氮原子一起形成含氮的杂环、芳族杂环、烷基取代的杂环或烷基取代的芳族杂环。
烷基的例子包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基、1,2-二甲基丙基、正己基、异己基、仲己基、正庚基、异庚基、正辛基、异辛基、2-乙基己基、正癸基、2-正丙基-正庚基、正十三烷基、2-正丁基-正壬基和3-正丁基-正壬基,特别优选的是乙基、异丙基、2-乙基己基、正癸基、2-正丙基-正庚基、正十三烷基、2-正丁基-正壬基和3-正丁基-正壬基和C40-C200烷基,例如聚丁基、聚异丁基、聚丙基、聚异丙基和聚乙基。最优选的脂族胺是含有一个或多个有1至20个碳原子并更优选有2至14个碳原子的烷基的脂族胺。
环烷基的例子包括C3-C12环烷基,优选C3-C8环烷基,例如环丙基、环丁基、环戊基、环己基、环庚基和环辛基。
芳族基的例子包括苯基、1-萘基、2-萘基、1-蒽基、2-蒽基和9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基和9-菲基。
烷基取代的芳族基的例子包括C7-C50烷基芳族基,优选C7-C40烷基苯基,例如2-壬基苯基、3-壬基苯基、4-壬基苯基、2-癸基苯基、3-癸基苯基、4-癸基苯基、2,3-二壬基苯基、2,4-二壬基苯基、2,5-二壬基苯基、3,4-二壬基苯基、3,5-二壬基苯基、2,3-二癸基苯基、2,4-二癸基苯基、2,5-二癸基苯基、3,4-二癸基苯基和3,5-二癸基苯基,更优选C7-C12烷基苯基,例如2-甲基苯基、3-甲基苯基、4-甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二甲基苯基、3,4-二甲基苯基、3,5-二甲基苯基、2,3,4-三甲基苯基、2,3,5-三甲基苯基、2,3,6-三甲基苯基、2,4,6-三甲基苯基、2-乙基苯基、3-乙基苯基、4-乙基苯基、2-正丙基苯基、3-正丙基苯基和4-正丙基苯基。
芳族基取代的脂族残基的例子包括被一个或多个芳族取代基取代的C7-C50亚烷基残基,优选C7-C12苯基烷基,例如苄基、1-苯乙基、2-苯乙基、1-苯丙基、2-苯丙基、3-苯丙基、1-苯丁基、2-苯丁基、3-苯丁基和4-苯丁基,特别优选苄基、1-苯乙基和2-苯乙基。
羟烷基的例子包括C1-C50羟烷基,优选C1-C8羟烷基,特别优选C1-C4羟烷基,例如羟甲基、1-羟乙基、2-羟乙基、1-羟基-正丙基、2-羟基-正丙基、3-羟基-正丙基和1-羟基-甲基-乙基。特别优选的含羟烷基的氮化合物包括单取代、二取代和三取代的脂族羟烷基胺,例如甲醇胺、二甲醇胺、三甲醇胺、乙醇胺、二乙醇胺、三乙醇胺、丁醇胺、二丁醇胺、三丁醇胺、丙醇胺、二丙醇胺和三丙醇胺。
氨基烷基和羟基烷基的例子包括C1-C50烷基,优选氨基和/或羟基取代的C1-C8烷基,特别优选氨基和/或羟基取代的C1-C4烷基,例如N-(羟乙基)氨基乙基和N-(氨基乙基)氨基乙基。
烷氧基烷基的例子包括C2-C50烷氧基烷基,优选C2-C20烷氧基烷基,特别优选C2-C8烷氧基烷基,例如甲氧基甲基、乙氧基甲基、正丙氧基甲基、异丙氧基甲基、正丁氧基甲基、异丁氧基甲基、仲丁氧基甲基、叔丁氧基甲基、1-甲氧基乙基和2-甲氧基乙基,特别优选C2-C4烷氧基烷基,例如甲氧基甲基、乙氧基甲基、正丙氧基甲基、异丙氧基甲基、正丁氧基甲基、异丁氧基甲基、仲丁氧基甲基、叔丁氧基甲基、1-甲氧基乙基和2-甲氧基乙基。
二烷基氨基的例子包括C3-C50二烷基氨基烷基,优选C3-C20二烷基氨基烷基,特别优选C3-C10二烷基氨基烷基,例如二甲基氨基甲基、二甲基氨基乙基、二乙基氨基乙基、二正丙基氨基乙基和二异丙基氨基乙基。
烷基氨基烷基的例子包括C2-C50烷基氨基烷基,优选C2-C20烷基氨基烷基,特别优选C2-C8烷基氨基烷基,例如甲基氨基甲基、甲基氨基乙基、乙基氨基甲基、乙基氨基乙基和正丙基氨基乙基。
芳族杂环的例子包括2-吡啶基、3-吡啶基、4-吡啶基、吡嗪基、3-吡咯基、2-咪唑基、2-呋喃基和3-呋喃基。烷基取代的芳族杂环的例子包括C4-C50单杂芳基烷基,例如2-吡啶基甲基、2-呋喃基-甲基、3-吡咯基甲基和2-咪唑基甲基,以及C4-C50烷基杂芳基,例如2-甲基-3-吡啶基、4,5-二甲基-2-咪唑基、3-甲基-2-呋喃基和5-甲基-2-吡嗪基。
二烷基氨基烷基的例子包括C3-C50二烷基氨基烷基,优选C3-C16二烷基氨基烷基,例如二甲基氨基甲基、二甲基氨基乙基、二乙基氨基乙基、二正丙基氨基乙基和二异丙基氨基乙基。
杂环化合物的例子包括吡啶、吡咯、咪唑、噁唑、噻唑、吡唑、3-吡咯啉、吡咯烷、嘧啶和这些杂环化合物的取代例子。有机腈化合物的例子包括丙烯腈、烷基腈,例如甲基腈、乙基腈。
合适的氨基酸包括天然和合成氨基酸。天然氨基酸包括下列物质的所有异构体丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、胱氨酸、3,5-二溴酪氨酸、3,5-二碘酪氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、羟基赖氨酸、羟基脯氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、甲状腺素、色氨酸、酪氨酸和缬氨酸,特别优选的氨基酸是L-精氨酸。
优选的用于形成有机络合物的有机化合物是有机含氮化合物,更优选胺,更优选含有一个或多个醇基团的胺。
有机化合物可以加入载体的制造或合成中。当载体是分子筛时,有机化合物可以是载体合成中所用的有机模板。这种有机模板是本领域公知的,并优选为含氮的有机模板,尤其是进一步包含羟基官能的含氮有机模板。还可以在载体制造或合成过程中加入任何有机模板以外的有机化合物。在将用于制备有机络合物的任一或所有组分加入载体中或将有机络合物本身加入载体中的所有情形中,都可以使用生坯状态的载体。
有机化合物可以相对于催化金属的盐或化合物的量以任何合适的量使用。有机化合物的存在量可以超过形成有机络合物所需的量。理想地,这些化合物以适当的摩尔比使用,以便将催化金属的所有的盐或化合物转化成一种或多种有机络合物。这可以根据金属与有机化合物络合的能力、有机化合物与金属络合物的能力和其它络合配体(例如单齿配体)的存在情况为1∶1或更高的摩尔比。然而,可以使用不足以与所有催化金属络合的有机化合物量;在这种情况下,并非所有金属都转化成有机络合物,并且所得催化剂可以含有来自络合和非络合的金属中间体的催化金属位点。理想地,有机化合物与催化金属的摩尔比为0.1∶1至40∶1,优选0.1∶1至30∶1,更优选0.2∶1至25∶1,再优选0.5∶1至10∶1,最优选0.5∶1至5∶1。当在载体制造或合成过程中在载体内加入有机化合物时,可以存在过量有机化合物。
当在与载体接触之前在混合物中形成络合物时,该混合物通常并优选与溶剂一起形成,溶剂可以是水或有机溶剂或水与溶剂的混合物。溶剂用量可以在宽的范围内变化,但是通常足以确保混合物可以与载体有效接触以润湿载体,并且当载体是多孔时,使混合物可以渗入多孔载体。通常,一种或多种催化金属的盐或化合物和有机化合物的用量为根据它们的形式可以在混合物中达到上述所述摩尔比的量。混合物其余部分包括一种或多种溶剂,它们的存在量可以为全部混合物重量的1至99重量%,优选为全部混合物重量的5至90重量%,更优选为全部混合物重量的5至80重量%,再优选为全部混合物重量的10至70重量%,最优选为全部混合物重量的10至65重量%。还可以使用附加溶剂以利于施用制造催化剂所需的一种或多种组分。
在载体上形成有机络合物后,可以并优选干燥载体以去除络合物形成过程中存在的大部分溶剂和/或水。干燥可以在室温之类的环境条件下实现,或者可以在升高的温度下实现,优选地,干燥在100至150℃下进行。优选地,在干燥阶段几乎或完全不发生有机络合物的分解,并且干燥仅仅去除未络合的挥发材料。如果需要,可以在200至600℃、优选350至450℃煅烧负载金属的载体。
一旦制成了含有一种或多种有机络合物的载体,就处理该载体以完全或部分分解载体上的有机络合物。尽管不希望受制于任何理论,但这种完全或部分分解被认为导致就地形成了催化活性金属位点的一种或多种前体。人们相信,部分上正是这些前体的形成和它们随后的转化,确保了在这些情况下,最终催化剂表现出高度的催化活性并在催化剂内具有高金属分散性。催化金属活性中的一个重要参数是载体上金属的形式和载体上金属的分散程度。本发明的方法产生的催化剂包含相对较小并高度分散的催化活性金属位点。此外,分散程度相对稳定。
“部分分解”是指有机络合物的化学组成改变;这可能是由于有机络合物结构的变化或可能是由于络合物的一部分或组分的化学破坏引起的。当这种破坏是部分的时,选择破坏方法以确保不完全去除与络合物相关的非金属化学物类。当这种破坏是完全的时,如果破坏是在氧化条件下进行的,则络合物残留的唯一主要元素是一种或多种氧化物形式的催化金属,如果破坏是在存在氢的情况下进行的,则络合物残留的唯一元素是被还原金属。还可以存在由有机络合物分解生成的残余物,例如碳残余物。部分分解是由于结构和/或组成的变化引起的,其在催化制备法常用的干燥条件下通常不会发生。在第二阶段的条件下的结构和/或组分变化可以使用本领域公知的各种分析技术检测和监控,例如红外光谱法、质谱分析法、热解重量分析法、气相或液相色谱法和光谱法。
可以使用各种方法引发有机络合物的部分或完全破坏。这些包括化学方法,例如化学引发的水解或分解,例如用酸或碱或臭氧或类似化学反应材料进行处理。其它引发完全或部分分解的方法包括热法,例如热解和/或煅烧,它们都是优选方法,特别优选的是煅烧。另一方法是用蒸汽进行处理。在一个具体实施方式
中,热解可以在存在氢的情况下进行;在这种情况下,可以省略后续用氢进行的任何处理。
当使用煅烧或热解作为有机络合物完全或部分分解的方法时,所用的确切条件取决于络合物的性质,尤其是热稳定性和在升高温度下的分解程式。通过使用与有机络合物的受控热分解相关的热解重量分析法或质谱分析法,可以测定在煅烧条件或热解条件下有机络合物发生最初分解和完全分解时的温度。这代表了进行这种部分分解阶段应该采用的温度范围或完全分解应该选择的最小温度。或者,当通过红外透射光谱法进行分析时,可以测定在该处理中从有机络合物中去除或在有机络合物中形成某种官能团时的点;发生这一情况时的温度,如果低于总分解温度,就可以选择其作为部分分解温度,如果高于总分解温度,就可以选择其作为完全分解温度。在使用胺作为有机化合物的情况下,可以选择下述温度作为引发部分分解的处理温度——低于该温度会产生大量的氮的氧化物。对于其它有机化合物,其可以是从络合物中去除CO或CO2时的温度。在是胺、尤其是含羟基的胺或氨基酸作为有机化合物的情况下,其可以是形成在红外光谱中在2100-2200cm-1之间出现的新振动带,且该振动带可以暂时归属于络合碳氮物类,例如在部分分解的有机络合物中存在的腈和异腈。另一种可用的方法是,TGA分析显示了有机络合物的完全重量损失;可以选择低于完全重量损失的温度用于部分分解,并可以选择等于或高于完全重量损失的温度用于完全分解。
当使用煅烧部分或完全分解有机络合物时,所用煅烧温度通常为200至1000℃,优选250至600℃。所用确切温度取决于有机络合物需要完全分解还是部分分解,并且取决于有机络合物的性质。可以影响有机金属络合物分解温度的因素包括络合物内金属和/或有机化合物的性质。当金属以盐形式加入时,另一因素可以是存在的抗衡离子的性质。优选地,当需要部分分解时,在比通过TGA在空气中测定的、发生有机络合物的完全重量损失时的温度低的温度下将其上沉积了有机络合物的载体煅烧。优选地,其在200℃至发生有机络合物的完全重量损失时的温度之间。优选地,当需要完全分解时,在与通过TGA测定的、发生有机络合物的完全重量损失时的温度相等或更高的温度下,将其上沉积了有机络合物的载体煅烧。优选地,其在发生有机络合物的完全重量损失时的温度至1000℃之间。在煅烧条件下,存在氧作为另一惰性稀释剂的组分,或作为在空气中进行煅烧的后果。当使用热解法时,热解可以在无氧惰性气氛中进行,或在可以是无氧并优选无氧的氢气氛中进行。当使用热解法时,有机络合物可以在与煅烧条件下观察到的温度相比更高的温度下分解。如煅烧中那样,可以使用各种方法测定热解条件下部分或完全分解所用的温度,其中TGA是优选的。优选地,当需要在惰性气氛中或在氢气下在热解条件下部分分解时,在比通过TGA在惰性气氛或在氢气下测定的、发生有机络合物的完全重量损失时的温度低的温度下,在惰性气氛中或在氢气下将其上沉积了有机络合物的载体热解。优选地,其在200℃至在热解条件下在惰性气氛中或在氢气下发生有机络合物的完全重量损失时的温度之间。优选地,当需要完全分解时,在与通过TGA测定的、在热解条件下在惰性气氛中或在氢气下发生有机络合物的完全重量损失时的温度相等或更高的温度下,将其上沉积了有机络合物的载体热解。优选地,其在在热解条件下在惰性气氛中或在氢气下发生有机络合物的完全重量损失时的温度至1000℃之间。优选地,其上沉积了有机络合物的载体在氮气或氢气中在低于1000℃的温度热解。包含有机络合物的载体可以在部分分解温度下煅烧或热解至足以确保发生有机络合物的部分分解的时间。通常,这是至少20分钟,优选至少30,更优选至少45分钟,最优选1小时或更久。通常,该时间为48小时或更短,优选24小时或更短,最优选12小时或更短。当需要完全分解时,包含有机络合物的载体可以在完全分解温度下煅烧或热解至足以确保有机络合物的完全分解的时间。
如果在载体上施用多种活性金属并且施用是依序进行的,那么在每次施加或浸渍之后,载体可以在100至150℃干燥,并且如果需要,在200至600℃煅烧。
在络合物的部分或完全分解之后,将部分分解或完全分解的络合物转化成催化活性金属,也就是将金属转化成还原形式。优选地,通过在将部分或完全分解的络合物还原的条件下、在存在还原剂源的情况下处理部分或完全分解的络合物,从而实现活化。在优选具体实施方式
中,还原剂源是氢和/或一氧化碳源。可以通过在设计使用最终催化剂的工艺过程中加入包含一种或多种完全或部分分解的有机络合物的载体来实现这种转化;在这种具体实施方式
中,在工艺条件或与该工艺过程相关的催化剂再生或再循环装置中存在的条件下发生转化。在优选具体实施方式
中,使用催化剂活化常用的条件和方法进行这种处理。选择这些条件和方法以确保将完全或部分分解的络合物催化剂前体转化成催化活性金属。在一个具体实施方式
中,通过使包含部分分解的络合物的载体与包含还原剂(例如氢和/或CO源)的气流在30至600℃、优选100至550℃、更优选200至500℃、最优选200至450℃接触,从而实现用还原剂(例如氢和/或CO源)进行的处理。当还原剂流包含游离氢时,其优选包含50至100体积%H2和0至50体积%N2。可以在还原剂(例如氢和/或CO源)的连续流下在大气压下进行这种处理,或在静态条件下在最高100巴、优选1至90巴、更优选1至20巴的升高压力下进行这种处理。活化可以进行最多48小时,优选不超过36小时,更优选小于24小时,最优选30分钟至12小时。在载体包含部分分解的络合物的情况下,将其在大气压下暴露在还原剂(例如氢和/或CO源)下,并使温度以2℃/分钟的速率升至处理温度,在此使还原处理再持续1至10小时,优选2至8小时,最优选3至6小时。选择确切的温度和时间以确保在还原处理下,去除任何残余的部分分解的有机络合物;因此还原处理温度通常高于有机络合物的分解温度,尤其是部分分解的有机络合物的分解温度。在是镍的情况下,还原温度优选足够高,以便将镍氧化物或盐的有机络合物或部分分解的有机络合物转化成占还原催化剂总重量的至少大约10%的被还原金属,优选至少大约12%的被还原金属,更优选至少大约13%的被还原金属。对于镍而言,在约350℃至500℃、优选约400℃的温度进行初始还原至少约1小时是合意的。
此处制成的催化剂样品或获自商业来源的催化剂样品可以照供应时原样使用,或可以进行活化程序以提高催化剂上转化成还原的或零价金属态的活性金属的量。这些程序是非常完善的并且是本领域技术人员已知的。一般而言,提高还原的或金属态金属的量可以相应地提高催化活性。市售催化剂通常由制造商还原/活化,并在船运之前钝化或浸在油中船运。顾客可以照接收时原样使用催化剂或进行单独的再活化步骤。根据所用催化剂金属和所用催化剂的还原性质,在所用工艺温度和氢压力下使用催化剂的过程中可能发生足够的金属还原,这样就不需要单独的再活化步骤。如果在工艺条件下的金属活化度不足,可以在使用之前还原催化剂。如果必须在催化反应器外部进行还原,可以进行还原然后钝化,以进行有氧催化剂转移。在所列实施例中,如果存在任何活化规程,则会进行描述,并且在这些条件下的被还原金属含量会作为与总催化剂组合物的百分比给出。
通常使用化学吸附测量法评测负载的金属催化剂的尺寸和金属表面积。在J.Lemaitre等,“Characterization of Heterogenous Catalysts”,Francis Delanney编辑,Marcel Dekker,New York(1984)第310-324页描述了通过化学吸附测量金属表面积的通用方法。催化剂上的总金属表面积优选为0.01至100平方米/克催化剂,特别优选0.05至50平方米/克催化剂,更优选0.05至25平方米/克催化剂。由于适当选择的用于化学吸附测量的滴定剂仅吸附在位于表面上的金属原子上,因此由化学吸附测量可以评测分散百分比(位于金属粒子表面的金属原子的百分比)。因此,分散值越高,表明粒子越小,且表面上存在的金属原子越多。对于许多反应,活性与分散性相关联。优选的测定金属分散性的方法是如下在高真空静止条件下使用氢作为化学吸附探针分子。使样品保持在40℃,并使用H2作为化学吸附探针分子获得8点等温线(压力在80至400托之间)。该等温线的直线部分被外推至零压力以获得化学吸附的氢的总量;这是总分散值(combined dispersion)。然后使样品在40℃排气以去除任何弱吸附的氢,并重复滴定以确定所谓的弱吸附等温线。该弱吸附等温线的直线部分被外推至零压力以获得弱化学吸附的氢的量。将总分散和弱分散的这两个值相减,产生强化学吸附的量。因此,该方法提供了总金属分散值、由弱化学吸附的氢引起的分散值和由强化学吸附的氢引起的分散值。强化学吸附的氢的值是金属分散性的精确指标。在许多现有技术参考文献中,提供的金属分散性图是以总化学吸附探针为基础的,并且没有分成强和弱部分。在本方法中,所用催化剂优选具有与强化学吸附组分有关的、超过5%、更优选超过10%、最优选超过15%的分散值。
当提到以相对较小的金属粒子作为活性金属位点时,其是指金属粒子具有25纳米或更小、优选15纳米或更小、最优选9纳米或更小的平均粒度。
在评测用于合成EETB的新型催化剂时,必须注意活性和选择性。活性是通过DEG原材料在给定时间段的转化程度表示的。选择性是通过比较在给定DEG转化率下所需产物的产量和副产物的产量获得的。在本发明的催化剂的性能中,观察到明显的活性优势。在较高的转化率下产生所需产物的选择性高于催化剂的现有技术状况(也就是在提高的转化率下生成的副产物较少)。选择性和活性在工业操作中是重要的,因为工业制造中的转化率会由于TBM副产物的生成而被限制为低的DEG转化率。对于本发明的催化剂,DEG转化率高于现有技术的催化剂,同时在高的EETB/TBM比率下产生高的EETB产量。
在实施例中,除非另行说明,表中所列数据都是使用来自GC的所有产物和所有反应物的标准化重量百分比值获得的。通过下列方法计算转化率将加入的DEG浓度减去相关时间点的DEG浓度,将该量除以加入的DEG浓度并乘以100,获得转化的DEG百分比。注意,1摩尔DEG与1摩尔TBA反应以形成1摩尔EETB,并且以DEG转化率为基础的标准化考虑到了这一点。在一些实施例中,转化的DEG百分比表示为负值。这发生在低活性催化剂的情况下,并且是样品标准化和在高温下取样时的TBA挥发的人为结果。GC描述了各反应物和产物组分在整个样品中的相对浓度。由于少量TBA蒸发,所以样品中DEG的相对量较高。当与反应器装料时的初始浓度相比,DEG的浓度似乎提高了。根据计算结果记录转化率的值,并且尽管表示成负值,但它们实际上应该被视为零转化。在转化率的其它计算中也会一定程度上产生这种趋势,因此这些数值可能代表了较低的转化率界限,但是在所有样品中应该达到相同程度,并且可以在试验之间进行有意义的比较。通过简单采用来自GC轨迹的各自重量百分比,获得EETB/TBM和EETB/Bis-SE比率的重量百分比。通过将每一组分的重量百分比除以分子量,将比率从克/克转化成摩尔/摩尔,从而测定摩尔比率。
在一些实施例中,将催化剂样品照接收到的原样加入高压釜中,并在不进行氢再活性的情况下使用。在这些情况下,通过在氢气中在200℃还原1小时后催化剂中被还原金属含量的TGA测量,评测催化剂中还原Ni的含量。这被认为非常接近在高压釜加料、用氢气加压并达到反应温度后在其中产生的还原程度。
实施例实施例1在溶液中制备在与TEA添加剂结合的MCM-41/氧化铝上的19.5%Ni将19.28克六水合硝酸镍溶于6.82克水和2.47克三乙醇胺,用由此制成的溶液浸渍15.0克结合了MCM-41挤出物的氧化铝载体(其中MCM-41是有序含硅中孔材料,氧化铝是基体)至初始润湿点。然后将样品在空气中于100℃干燥4小时。按照下列规程使温度逐渐升高以便在硝酸镍和氨基醇之间进行剧烈的氧化反应,由此在流动空气中煅烧干燥样品2℃/分钟至140℃并保持30分钟,1℃/分钟至175℃并保持30分钟。然后按照下列规程在大气压下在流动氢气(200立方厘米/分钟H2和50立方厘米/分钟N2)中于400℃进行还原以活化催化剂在流动氢气中以2℃/分钟从室温加热至400℃,并在400℃保持1小时。将由此还原的催化剂钝化以便可以有氧转移到高压釜中进行测试。通过将还原催化剂在氢气流下冷却至室温来实现钝化。当冷却时,将氢气替换成氮气,并将催化剂在氮气中吹扫1小时,并逐渐暴露在在氮稀释剂中的浓度越来越高的氧气中。首先,使用在氮气中的0.02%氧气30分钟,然后使用在氮气中的0.1%氧气30分钟,然后使用在氮气中的0.3%氧气30分钟,然后使用在氮气中的10%氧气30分钟,最后使用在氮气中的20%氧气30分钟。
实施例2EETB的合成使用实施例1的材料(压碎成粉末)——1.95克载Ni(19.5%)的结合MCM-41的氧化铝合成EETB。
在使用之前,将催化剂在200℃/1psi的50立方厘米/分钟的氢气中就地再活化18小时,产生占整个还原催化剂的大约14%的还原镍金属。然后在氮气和室温下在反应器中加入108.0克叔丁胺和76.4克二甘醇,TBADEG的摩尔比为2∶1。将高压釜反应器的内容物在180℃加热并以1800rpm搅拌6小时,每隔1小时进行GC取样。使反应器温度保持在180℃。室温下的初始氢压力为100psig,在180℃的总的反应器压力为372psig。
结果显示如下

(1)TBM是N-叔丁基吗啉,不需要的副产物(2)Bis-SE是2,2’-叔丁基氨基乙基醚或二(叔丁基氨基乙氧基)乙烷在6小时后,在24%的二甘醇转化率下,所得EETB/TBM的摩尔比为35。EETB/TBM的摩尔比是用于比较所测催化剂的选择性的转化率。其主要描述了在给定转化率下每摩尔TBM产生了多少摩尔EETB。EETB/TBM摩尔比越高,催化剂的选择性就越高。
实施例3EETB的合成重复实施例2的程序,不同的是使用107.0克叔丁胺和75.6克二甘醇(2∶1的摩尔比)。催化剂是实施例2的催化剂,在200℃、1psi的50立方厘米/分钟流速的氢气下就地再活化18小时。催化剂是占整个还原催化剂的大约14%的还原镍金属。将反应器温度保持在200℃,以1800rpm搅拌7小时,并且总的反应器压力为385psig。室温下的初始氢压力为100psig。
结果显示如下实施例3的结果

在200℃6小时后,在57.9%的二甘醇转化率下,EETB/TBM的摩尔比为19。比较实施例3与实施例2,显而易见的是,较高温度的操作明显提高了转化率。
对比例为了进行比较,试验两种用于合成EETB的现有技术催化剂。
对比例AE480-P是含大约65%沉积在载体上的镍的镍催化剂。其具有9微米的平均粒径和20磅/立方英尺的表观堆密度。
对比例B使用与实施例1中类似的EETB合成程序。
在180℃评测用于EETB合成的新制E 480-P(对比例A)样品。在使用之前,将催化剂在200℃、1psi的50立方厘米/分钟的氢气中再活化19小时,产生占整个还原催化剂的大约53%的金属性还原镍含量。然后在氮气和室温下在高压釜反应器中加入108.0克TBA和76.4克DEG(2∶1的摩尔比)。加入1.57克催化剂。室温下的初始氢压力为100psig。将高压釜加热至180℃并将内容物以1800rpm搅拌6小时。总的容器压力为262psig。结果显示如下。
对比例B的结果(180℃)

对比例C使用催化剂E 480-P的新制样品。在该对比例中,评测之前不将其再活化。早期操作表明该商业催化剂无论是再活化还是照接受时原样使用,都类似地发挥作用。在氮气和室温下在高压釜反应器中加入107.8克TBA和76.2克DEG(2∶1的摩尔比)。加入1.59克催化剂。室温下的初始氢压力为100psig。将高压釜加热至200℃,并将内容物以1800rpm搅拌7小时。基于在该催化剂上在200℃在氢气中进行的1小时还原实验,被认为在工艺操作中在200℃和在氢气中使用催化剂的过程中发生还原,被还原金属含量被认为是占整个还原催化剂的大约47-48%的镍。总的容器压力为385psig。结果显示如下。
对比例C的结果(200℃)

E-480P不仅活性低于实施例3的催化剂,并且在相同和甚至更高的DEG转化率下,EETB的选择性明显低于实施例3中所述的催化剂。
对比例D
使用1.14克E 480-P(对比例A)合成EETB。催化剂照接收时的原样使用。然后在氮气和室温下在反应器中加入66.0克叔丁胺、47.9克二甘醇和119.0克甲苯(作为惰性溶剂)。在室温下在高压釜中加入100psig的氢气。然后将高压釜反应器的内容物加热至200℃,并以1800rpm搅拌6小时。基于在该催化剂上在200℃在氢气中进行的1小时还原实验,被还原金属含量被认为是整个还原催化剂的大约47-48%,参看对比例C,在工艺操作中在200℃和在氢气中使用催化剂的过程中发生还原。在200℃的总的容器压力为310psig。通过NMR分析最终反应器产物。结果显示如下。
对比例D的结果

对比例ENi 5132-P是含有大约60%沉积在载体上的镍的镍催化剂。其具有大约160平方米/克的表面积、大约6微米的平均粒度和大约0.00508毫升/克的孔体积。
对比例F使用1.11克Ni-5132-P(对比例E)合成EETB。催化剂照接收时的原样使用。然后在氮气和室温下在反应器中加入66.0克叔丁胺、47.9克二甘醇和119.0克甲苯(作为惰性溶剂)。在室温下在高压釜中加入100psig的氢气。然后将高压釜反应器的内容物加热至200℃,并以1800rpm搅拌6小时。基于在该催化剂上在200℃在氢气中进行的1小时还原实验,被还原金属含量被认为是整个还原催化剂的大约52%,在这种情况下在工艺步骤中原地发生还原。在200℃的压力为290psig。通过NMR分析最终反应器产物。结果显示如下。
对比例F的结果

对比例D和F表明,在相同条件下运行的两种现有技术催化剂具有比实施例1的催化剂低的选择性。
对比例G在另一试验中评测用于合成EETB的对比例E的催化剂。在氮气和室温下在高压釜反应器中加入109.5克TBA和77.6克DEG。将1.61克对比例E的催化剂按照从供应商处接收来的原样加入反应器中。室温下的初始氢压力为100psig。将反应器内容物在200℃加热并以1800rpm搅拌4小时,每1小时进行GC取样。基于在该催化剂上在200℃在氢气中进行的1小时还原实验,还原镍含量被认为是整个还原催化剂的大约52%,在这种情况下在工艺步骤中原地发生还原。在反应温度下的总的反应器压力为385psi。结果显示如下。
Ni-5132-P 200℃

对比例H在溶液中不用TEA添加剂制备在MCM-41上的19.5%Ni
将6.44克六水合硝酸镍溶于2.10克水,用由此制成的溶液浸渍5.0克结合MCM-41挤出物的氧化铝载体(其中MCM-41是有序含中孔材料,氧化铝是基体)至初始润湿点。然后将样品在空气中在60℃干燥2小时并在100℃干燥2小时。按照下列规程使温度逐渐升高,由此在流动空气中煅烧干燥样品1℃/分钟至205℃并保持2小时,1℃/分钟至300℃℃并保持2小时。然后按照下列规程在流动氢气(200立方厘米/分钟H2和50立方厘米/分钟N2)中在400℃还原以活化催化剂在流动氢气中以2℃/分钟从室温加热至400℃并在400℃达1小时。将由此还原的催化剂钝化以便可以有氧转移到高压釜中进行测试。通过将还原催化剂在氢气流下冷却至室温来实现钝化。当冷却时,将氢气替换成氮气并将催化剂在氮气中吹扫1小时,并逐渐暴露在在氮稀释剂中的浓度越来越高的氧气中。首先,使用在氮气中的0.02%氧气30分钟,然后使用在氮气中的0.1%氧气30分钟,然后使用在氮气中的0.3%氧气30分钟,然后使用在氮气中的10%氧气30分钟,最后使用在氮气中的20%氧气30分钟。
对比例I在室温和氮气下在高压釜中加入107.8克TBA和78.0克DEG(2∶1摩尔比)。在加入TBA/DEG混合物之前,在反应器中将1.60克实施例H的催化剂在200℃/1psi的50立方厘米/分钟的氢气流中再活化18小时,产生占整个还原催化剂的大约17%的还原镍金属。室温下的初始氢压力为100psig。将反应器内容物以1800rpm搅拌并在200℃加热8小时,其中在下示时间进行GC。结果显示如下


图1比较了实施例3、对比例C、对比例G和对比例I的数据。从图中清楚看出,基于在相似时间段的EETB/TBM比率和DEG转化率,使用TEA分散助剂制成的实施例3的催化剂在性能上明显优异。实施例3表明,在高EETB/TBM比率下获得比使用其它催化剂的任何其它实施例都高的DEG转化率。实施例3在大约14%还原镍的还原镍载量下实现这种优异的结果。将其与对比例C和G进行比较,它们使用了分别含有占整个还原催化剂的大约47-48%和52%的还原镍的催化剂。因此,实施例3的催化剂以低大约70%的活性金属含量获得了相同至略微更好的结果。比较实施例3与对比例I,可以看出,采用使用有机分散助剂(TEA)制成的催化剂进行的方法,在相对于DEG转化率的EETB/TBM比率方面获得了更好的结果。实施例3的特征是在相似时间段与对比例I相比更高的DEG转化率。这种较高的DEG转化率是通过较高的EETB/TBM比率实现的,这表明在实施例3中产生了更多的所需EETB产物。
对比例J和K评测用于EETB制造的两种其它催化剂。一种在MCM-41/SiO2基底(14×25目)上含有1.2%的铂,另一种在MCM-41/Al2O3上含有0.9%的钯/0.3%的铂。两种催化剂都使用了分散形式的金属。通过本申请所述技术以外的技术使金属呈现分散形式。
在两种情况下,都在氮气和室温下在高压釜反应器中加入108.0克TBA和76.4克DEG(2∶1的摩尔比)。催化剂各自在200℃在1psi的氢气中以50立方厘米/分钟的氢气流速再活化19小时。室温下的初始氢压力为100psig。将高压釜加热至180℃并以1800rpm搅拌6小时,并以所示时间间隔进行GC取样。结果显示如下。
铂在MCM-41/SiO2上

钯/铂在MCM-41/Al2O3上

可以看出,负载铂和钯金属的MCM-41不能起到良好的EETB合成催化剂的作用。
实施例4在溶液中使用TEA添加剂制备在SiO2上的29.8%Ni将58.40克六水合硝酸镍溶于20.68克水和7.48克三乙醇胺,用由此制成的溶液浸渍25.0克常规无定形(无定形中孔材料)二氧化硅载体(250平方米/克)至初始润湿点。然后将样品在空气中于100℃干燥过夜。按照下列规程使温度逐渐升高以便在硝酸镍和氨基醇之间进行剧烈的氧化反应,由此在流动空气中煅烧干燥样品2℃/分钟至160℃并保持30分钟,1℃/分钟至185℃并保持30分钟,1℃/分钟至215℃并保持30分钟,1℃/分钟至300℃并保持1小时。将27.00克由此制成的样品用将25.18克六水合硝酸镍溶于8.92克水和3.23克三乙醇胺制成的溶液再浸渍至初始润湿点。然后将样品在空气中在100℃干燥4小时。按照下列规程使温度逐渐升高,由此在流动空气中煅烧干燥样品1℃/分钟至150℃并保持1小时,1℃/分钟至300℃并保持1小时。
实施例5使用负载了分散镍的SiO2合成EETB使用1.50克在250平方米/克二氧化硅(150孔隙)(29.8%镍)上的Ni合成EETB。
在使用之前,将催化剂在200℃在1psi的50立方厘米/分钟的氢气流中活化13小时,产生占整个还原催化剂的大约23%的还原镍金属,然后将其加入高压釜反应器中。在氮气和室温下在反应器中加入108.0克TBA和76.4克二甘醇(DEG)(2∶1的摩尔比)。室温下高压釜中的初始氢压力为100psig。将高压釜内容物在180℃加热,同时以1800rpm搅拌8小时,在所示时间进行GC取样。在反应温度下的总反应器压力为253psig。结果显示如下。

实施例6重复实施例5的程序,不同的是在这种情况下,催化剂在400℃还原,并使用实施例1中所述的程序钝化。在使用之前,将催化剂在200℃在1psi的50立方厘米/分钟的氢气流中再活化13小时。催化剂为占整个还原催化剂的大约28%的还原镍金属。同样将反应器温度保持在180℃,同时以1800rpm搅拌8小时,在下示时间进行GC取样。室温下的初始氢压力为100psig。反应温度下的总的反应器压力为253psig。结果显示如下。

比较对比例5和实施例6,可以看出在足以确保金属呈现活性/还原形式的高温下进行还原是成功实施本发明的关键。
对比例L将19.24克六水合硝酸镍溶于6.26克水,用由此制成的溶液浸渍15.0克二氧化硅载体(250平方米/克)至初始润湿点。然后将样品在空气中在60℃干燥2小时,然后在100℃干燥1小时并在120℃干燥2小时。按照下列规程使温度逐渐升高,由此在流动空气中煅烧干燥样品1℃/分钟至205℃并保持2小时,1℃/分钟至300℃并保持2小时。使用前述规程在400℃在流动氢气(200立方厘米/小时H2和50立方厘米/小时N2)中还原催化。将由此还原的催化剂钝化以便可以有氧转移到高压釜中进行测试。通过将还原催化剂在氢气流下冷却至室温来实现钝化。当冷却时,将氢气替换成氮气并将催化剂在氮气中吹扫1小时,并逐渐暴露在在氮稀释剂中的浓度越来越高的氧气中。首先,使用在氮气中的0.02%氧气30分钟,然后使用在氮气中的0.1%氧气30分钟,然后使用在氮气中的0.3%氧气30分钟,然后使用在氮气中的10%氧气30分钟,最后使用在氮气中的20%氧气30分钟。
对比例M在高压釜反应器中,将1.57克对比例L的催化剂在200℃下、在1psi的50立方厘米/分钟的氢气流中活化18小时,就地产生占整体还原催化剂的大约16%的还原镍金属。在氮气和室温下在高压釜反应器中加入106.0克TBA和76.7克DEG(2∶1的摩尔比)。室温下的初始氢压力为100psig。将反应器内容物在200℃加热,同时以1800rpm搅拌8小时,在下示时间进行GC取样。在该温度下的总反应器压力为383psig。结果显示如下。

可以看出,在相同的反应时间下获得的转化率方面,使用用有机分散体助剂制成的催化剂进行的方法(实施例6)优于使用名义上相同、但未使用有机分散体助剂制成的催化剂进行的方法(对比例M)。
对比例N重复实施例2的方法,不同的是在该对比例中,不对催化剂Ni MCN-41进行在氢气中的400℃活化和随后的钝化。而是简单地对催化剂进行200℃活化步骤,从而产生占整个还原催化剂的大约9%的还原镍金属。合成反应按照实施例2在180℃、100psig的H2下进行。该实施例表现出最低的DEG转化率和不可测量的小EETB产量,表明优选在足以确保活性镍催化剂含有占整个还原催化剂的至少10%的被还原金属的高温下进行活化。
权利要求
1.合成严重位阻的氨基醚醇、二氨基聚烯基醚及其混合物的方法,通过使伯氨基化合物与聚(亚烷基)二醇在升高的温度和压力下在存在催化剂的情况下反应而合成,所述催化剂含有分散在载体上的催化活性的被还原金属,该含有分散金属的催化剂是通过包括下列步骤的方法制备的在载体上加入一种或多种催化金属的一种或多种有机络合物,使载体上的所述一种或多种有机金属络合物分解,并将所述一种或多种分解的有机金属络合物转化为催化活性的被还原金属。
2.根据权利要求1的方法,其中所述一种或多种催化金属的有机络合物以有机化合物与一种或多种催化金属的化合物或盐混合的混合物形式加到载体上。
3.根据权利要求1的方法,其中如下将所述一种或多种催化金属的有机络合物加到载体上用一种或多种有机化合物处理载体,然后用一种或多种催化金属的一种或多种化合物或盐处理含有所述一种或多种有机化合物的载体,从而形成所述一种或多种催化金属的一种或多种有机络合物。
4.根据权利要求1的方法,其中如下将所述一种或多种催化金属的有机络合物加到载体上用一种或多种催化金属的一种或多种化合物或盐处理载体,然后用一种或多种有机化合物处理含有所述一种或多种催化金属的一种或多种化合物或盐的载体,从而形成所述一种或多种催化金属的一种或多种有机络合物。
5.根据权利要求1的方法,其中如下将所述一种或多种催化金属的有机络合物加到载体上同时用一种或多种催化金属的一种或多种化合物或盐和一种或多种有机化合物处理载体,从而形成所述一种或多种催化金属的一种或多种有机络合物。
6.根据权利要求1、2、3、4和5的方法,其中所述分解是部分分解。
7.根据权利要求1、2、3、4和5的方法,其中所述分解是完全分解。
8.根据权利要求1、2、3、4和5的方法,其中所述载体包含一种或多种中孔材料。
9.根据权利要求1、2、3、4和5的方法,其中所述载体包含一种或多种有序中孔材料。
10.根据权利要求1、2、3、4和5的方法,其中所述载体包含一种或多种混合孔隙材料。
11.根据权利要求1、2、3、4和5的方法,其中所述载体包含选自由一种或多种常规无定形材料、一种或多种结晶载体材料及其混合物组成的组的载体。
12.根据权利要求1、2、3、4和5的方法,其中所述载体包含与一种或多种混合孔隙载体材料结合的一种或多种中孔载体材料。
13.根据权利要求1、2、3、4和5的方法,其中所述载体包含与一种或多种混合孔隙载体材料结合的一种或多种有序中孔载体材料。
14.根据权利要求1、2、3、4和5的方法,其中所述载体包含与一种或多种选自由常规无定形材料、结晶材料组成的组的附加材料及其混合物结合的一种或多种中孔载体材料。
15.根据权利要求1、2、3、4和5的方法,其中所述载体包含与一种或多种选自由常规无定形材料、结晶材料组成的组的附加材料及其混合物结合的一种或多种有序中孔载体材料。
16.根据权利要求9的方法,其中中孔载体材料包含一种或多种名为M41S的材料。
17.根据权利要求16的方法,其中中孔材料是MCM-41。
18.根据权利要求11的方法,其中所述载体材料包含选自由活性炭、碳化硅、氧化铝、二氧化硅、二氧化钛、二氧化锆、氧化镁、氧化锌及其混合物组成的组的载体材料。
19.根据权利要求18的方法,其中所述载体材料选自由氧化铝、二氧化硅及其混合物组成的组。
20.根据权利要求1、2、3、4和5的方法,其中所述有机化合物选自一种或多种含有机氮的化合物。
21.根据权利要求20的方法,其中所述一种或多种含有机氮的化合物选自一种或多种胺。
22.根据权利要求21的方法,其中至少一种胺是脂族胺。
23.根据权利要求22的方法,其中所述脂族胺包含一个或多个羟基。
24.根据权利要求6的方法,其中有机络合物的分解是通过煅烧实现的。
25.根据权利要求7的方法,其中有机络合物的分解是通过煅烧实现的。
26.根据权利要求6的方法,其中有机络合物的分解是通过热解实现的。
27.根据权利要求7的方法,其中有机络合物的分解是通过热解实现的。
28.根据权利要求1、2、3、4和5的方法,其中所述被还原金属的含量为整个被还原催化剂的大约2.5至大约80重量%。
29.根据权利要求1、2、3、4和5的方法,其中所述催化金属包含一种或多种过渡族VIII的金属。
30.根据权利要求29的方法,其中所述催化金属还包含至少一种选自由过渡族1B、IIA族及其混合物组成的组的附加催化金属。
31.根据权利要求30的方法,其中所述催化金属是镍。
32.根据权利要求28的方法,其中所述催化金属是镍。
33.根据权利要求32的方法,其中所述被还原金属的含量为整个被还原催化剂的大约10至大约65重量%,且该金属是镍。
34.根据权利要求1、2、3、4和5的方法,其中伯胺与二醇的摩尔比为大约10∶1至0.5∶1。
35.根据权利要求34的方法,其中所述伯胺化合物具有以下通式R1-NH2其中R1选自由含有3至8个碳原子的仲烷基和叔烷基、含有3至8个碳原子的环烷基及其组合组成的组,且所述聚烯基二醇具有以下通式 其中R2、R3、R4和R5各自独立地选自由氢、C1-C4烷基和C3-C8环烷基组成的组,条件是如果R1的直接与氮原子连接的碳原子是仲烷基,则直接键合到与羟基键合的碳上的R2和R3中的至少一个是烷基或环烷基,x和y分别是独立地为2至4的正整数,z是1至10,且当z大于1时,烷基取代的伯胺与二醇的比率低于2∶1。
36.根据权利要求1、2、3、4和5的方法,所述伯胺与所述二醇的反应在下述条件下进行大约0.5至24小时室温下充入的氢压力为大约0至大约300psig,温度为大约150℃至大约350℃,操作温度下的总的反应器反应压力为大约50至1500psig。
37.根据权利要求36的方法,其中室温下充入的氢压力为大约20至大约200psig,温度为大约160℃至大约300℃,操作温度下的总的反应器压力为大约50至1000psig,且反应时间为大约1至大约12小时。
38.根据权利要求36的方法,其中室温下充入的氢压力为大约20至大约150psig,温度为大约180℃至大约225℃,操作温度下的总的反应器反应压力为大约50至500psig,反应时间为大约2至大约8小时,且伯胺与二醇的比率为大约2∶1至大约1∶1。
39.根据权利要求36的方法,其中所述伯胺是叔丁胺,且所述二醇是二甘醇。
全文摘要
本发明涉及使用催化剂制造严重位阻的氨基-醚醇的方法,该催化剂基于一种或多种催化活性金属的组合,所述催化活性金属以分散形式负载在一种或多种作为载体的有序中孔材料上。
文档编号C07C217/08GK1922129SQ200580005240
公开日2007年2月28日 申请日期2005年2月1日 优先权日2004年2月17日
发明者A·马莱克, C·N·伊利亚, A·R·毕晓普, E·J·莫则尔斯基, M·希什金 申请人:埃克森美孚研究工程公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1