一种制造氢化芳香聚合物的方法

文档序号:3647599阅读:360来源:国知局
专利名称:一种制造氢化芳香聚合物的方法
技术领域
本发明涉及一种制备氢化芳香聚合物的方法。
使用多种方法和氢化技术可以生产氢化芳香聚合物。氢化芳香聚合物的方法在技术上已经公开,例如美国专利号5,700,878中Hahn和Hucul描述的,在非均质金属氢化催化剂存在的条件下,通过将芳香聚合物和氢化试剂接触,芳香聚合物得到氢化。这个过程通常包括氢化预先制备并分离得到的聚合物,在氢化反应开始前将这种聚合物溶解在氢化反应过程所需的溶剂中,并纯化。但是,由于催化剂受在聚合反应过程或终止步骤时带入的毒素,例如稳定剂的影响中毒而造成催化效率低下对这项方法影响很大。
因此,仍然有必要采用一种使用催化氢化效率得到增强的催化剂生产氢化芳香聚合物的方法。
本发明涉及一种生产氢化聚合物或共聚物的方法,包括a) 制备一份含有至少一种乙烯芳香单体和一种溶剂的溶液;b) 将这份溶液置于聚合反应条件中,使乙烯芳香单体发生聚合反应,形成一种芳香聚合物和溶剂的芳香聚合物溶液。c) 非必要地,纯化芳香聚合物溶液,并且,d) 将芳香聚合物溶液置于氢化反应条件中,使芳香氢化过程完成,其中芳香聚合物是在氢化反应之前未分离的聚合物。
令人惊讶的是,与氢化经分离的芳香聚合物的方法相比,上述的整个过程氢化催化剂中毒的更低。因此,可以分离这些催化剂并在其它氢化反应中再次使用。
本发明涉及一种完整的方法,其中,聚合反应之后就发生氢化反应,不需要在氢化反应发生之前将聚合物分离出来。这些被氢化的聚合物可以通过任何可采用的聚合过程制备,但通常是用阴离子聚合方法制备。乙烯芳香单体的阴离子聚合在本领域是已知的,并在美国申请4,942,209和美国申请4,871,814中有例证。WO96/27623公开了阴离子悬浮聚合反应。作为一种聚合反应阴离子聚合反应在本领域是已知的,其中当聚合反应在阴离子引发剂的作用下发生时,会出现颜色变化。有代表性的聚合反应系统见以下的美国专利美国申请-2,975,160;美国申请-3,030,346;美国申请-3,031,432;美国申请-3,139,416;美国申请-3,157,604;美国申请-3,159,587;美国申请-3,231,635;美国申请-3,498,960;美国申请-3,590,008;美国申请-3,751,403;美国申请-3,954,894;美国申请-4,183,877;美国申请-4,196,153;美国申请-4,196,154;美国申请-4,200,713;美国申请-4,205,016;和美国申请-4,859,748。
被聚合的乙烯芳香单体包括,但不局限于美国专利4,666,987、4,572,819和4,585,825描述的那些乙烯芳香单体。这些单体优选应符合以下分子式 其中R’是氢或甲基,Ar是含有1到3个带有或不带有烷基,卤原子或卤烷基取代基的芳香环的芳香环状结构,其中任何烷基含有1-6个碳原子、卤烷基指卤原子取代的烷基。Ar优选是苯基或烷基苯,其中烷基苯是指烷基取代的苯基,其中苯是最优选的。通常能使用的乙烯芳香单体包括苯乙烯,α-甲基苯乙烯,所有乙烯甲苯的同分异构体,特别是对乙烯甲苯,所有乙基苯乙烯的同分异构体,丙基苯乙烯,乙烯联二苯,乙烯萘,乙烯蒽及其混合物。均聚物包含间同,全同或无规立构的任何立体结构,但是,无规立构聚合物是优选的。
另外,共聚物与乙烯芳香单体聚合而制备的共聚单体包括无规,伪无规,嵌段和接枝共聚物。例如,可以制备至少一种乙烯芳香单体和至少一种选自腈,丙烯酸盐,酸,乙烯,丙烯,顺式丁烯二酸酐,顺丁烯二酰亚胺,醋酸乙烯酯和氯乙烯的共聚单体的氢化共聚物。典型的共聚物包括苯乙烯-丙烯腈,苯乙烯-α-甲基苯乙烯和苯乙烯-乙烯。也可制备乙烯芳香单体和共轭二烯如丁二烯,异戊二烯的嵌段共聚物。共轭二烯单体可以是任何有2个共轭双键的单体。这些单体包括例如1,3-丁二烯,2-甲基-1,3-丁二烯,2-甲基-1,3戊二烯,异戊二烯和类似的化合物,以及它们的混合物。嵌段共聚物的更多实施例在美国专利4,845,173、4,096,203、4,200,718、4,210,729、4,205,016、3,652,516、3,734,973、3,390,207、3,231,635和3,030,346中。还可以制备这些聚合物与其它包括含有芳香聚合物的冲击改性,接枝橡胶的聚合物的共混物。另外,乙烯芳香单体的聚合反应可以在预溶解高弹体存在条件下进行,以制备含冲击改性或接枝橡胶产品。这项实施例在美国专利3,123,655、3,346,520、3,639,522和4,409,369中描述。
在一个实施方案中,,聚合物是乙烯芳香族-共轭二烯嵌段共聚物,其中共轭二烯聚合物嵌段是从经过氢化反应过程后仍保持无定形态的物质或经过氢化反应后能结晶的物质中选取。氢化聚异戊二烯嵌段维持无定形态,而氢化聚丁二烯根据它们的结构可以是无定形态或结晶态。聚丁二烯可以含1,2位构型,氢化后得到相当于1-丁烯的重复单位,或者1,4-聚合结构,氢化后得到相当于乙烯的重复单位。以聚丁二烯嵌段重量为基准,聚丁二烯嵌段含至少约40%重量百分含量的1,2-丁二烯,氢化反应中提供玻璃化转变温度基本上较低的无定形嵌段。以聚丁二烯嵌段重量为基准,聚丁二烯嵌段含少于约40%重量百分含量的1,2-丁二烯在氢化过程中形成结晶嵌段。对1,2-丁二烯含量的改进方法在本领域是公知的。根据该聚合物的最终使用,可能希望引入结晶嵌段(改善抗溶解能力)或无定形,更柔顺嵌段。共轭二烯聚合物嵌段也是共轭二烯的共聚物,共聚物的共轭二烯部分占共聚物至少50重量%。
其中嵌段定义为共聚物中由于聚合物片断的结构或组成不同而与共聚物产生微相分离的共聚物的聚合部分。产生微相分离是由于嵌段共聚物内聚合片断不相容所致。微相分离和嵌段共聚物在“嵌段共聚物-合成柔顺物质”,PHYSICS TODAY,二月,1999,32-38页中有讨论。
乙烯芳香单体和阴离子引发剂相接触,这种阴离子引发剂通常是有机金属阴离子聚合反应引发化合物。该引发剂通常是烷基或芳香碱金属化合物,特别是含C1-6烷基,C6芳香基,或C7-20芳香烷基的锂化合物。这些引发剂可以是单官能团或多官能团的金属化合物,包括美国申请-5,171,800和美国申请-5,321,093描述的多官能团化合物。使用有机锂化合物如乙基-,丙基-,异丙基-,正-丁基-,2-丁基,3-丁基-,苯基-,己基-二苯基-,丁间二烯基-,聚苯乙烯-锂,或者多官能团化合物如环己烷-二锂,1,4-二锂-丁烷,1,6-二锂-正己烷,1,4-二锂-2-丁烯,或1,4-二锂-苯是有益处的,优选的引发剂是正-丁基-和/或2-丁基-锂。
引发剂的量在本领域是已知的,无须过多实验就可以通过该本领域普通技术人员容易地确定。
在制备均聚物的连续过程中,乙烯芳香单体的聚合也可以在W098/07765描述的二,或三价烷基金属化合物或其盐存在条件下进行。这类化合物作为速率调节剂或迟滞剂使用,它们通常是含元素周期表IIA,IIB,或IIIA族元素的化合物。通常,这类化合物含碱土金属,锌,镁或铝。优选的化合物是一个C1-6烷基或C6-C20芳香碱土,锌或铝的化合物。也可能使用芳香金属氢化物如二丁基-铝氢化物。更优选是使用烷基镁,烷基铝或烷基锌,尤其是甲基,乙基,丙基,丁基,己基,辛基或十二烷基化合物。特别优选的调节剂包括丁基-乙基-镁,二丁基-镁,丁基-辛基-镁,二己基-镁,二乙基-锌,二丁基-锌,三甲基-铝,三乙基-铝,三-异丁基-铝,三-正-己基-铝,二-异丁基-铝氢化物,或者它们的混合物。以上提到的调节剂的任何混合物均可在本发明方法中使用。
另外,调节剂可以是烷基或芳香基混合的金属或盐。这类化合物通常包含至少下列物质中的2种碱土金属,锌,镁或铝。优选的化合物是C1-C6或C6-C20芳香基化合物,并且该化合物还含有碱土,锌或铝中的至少2种不同金属。优选的混合金属化合物范例包括二丁基镁,二乙基铝,二乙基镁二乙基铝,和二丁基镁二异丁基铝复合物。这些复合物在市场上均有售并且在本领域是已知的。除了混合金属复合物,烷基和芳香基配体能转化成氧原子,烷氧基,或硫代烷基。例如,甲基铝环氧乙烷是通过将水加至三甲基铝制备得到的结构为MexAlyOz的物质。混合金属复合物也能通过将混合金属烷基或芳香复合物和试剂例如乙醇或硫醇反应制得。非羟配体金属盐的范例包括苯氧二乙基铝,氧化二异丁基铝,甲氧基二乙基铝和二乙基铝苯硫酚。以上提到的调节剂的任何混合物均可在本发明的方法中使用。
引发剂和速率调节剂在本发明的方法中作为引发剂混合物使用。这种引发剂优选在路易斯碱不存在条件下(也就是不加路易斯碱)使用,并且,它可能含有例如A分子式为R1M1的烷基或芳香基金属A。
B分子式为(R2)nM2的烷基或芳香基金属B,烷基或芳香基混合金属,或前文描述的盐。其中,M1是Li,Na或K;R1是氢原子,C1-C6烷基或C6-C20芳香基,C7-C20烷基取代的芳香基;M2是元素周期表的IIa,IIb,或IIIa族n-价(n=2或3)元素;以及R2是氢原子,卤素,C1-C6烷基或C6-C20芳香基,其中当n≥2时,每个R2相同或不同,其中B∶A的摩尔比从10∶1到100∶1。
此外,组分A也可以是烷基或芳香基金属的低分子量反应产物A′,A′能作为引发剂使用,具有R3(M3)x的分子式,其中x是从2到5的整数,R3是具有x化合价的脂肪族,芳香-脂肪族或芳香烃。例如,少量的多乙烯化芳香化合物和碱金属烃反应形成一些R3(M3)x的合适产物,或者通过碱金属和多芳香基化合物反应直接得到这些R3(M3)x的产物。应用这些反应产物,通过已知方法可以生产二官能团或多官能团聚合物-例如直线型或辐射型嵌段共聚物。
速率调节剂的一般使用量和引发剂使用量的摩尔比为0.1∶1到500∶1,优选0.5∶1到100∶1,更优选0.8∶1到30∶1。使用多官能引发剂的情况下,其作用相当于相应的金属化合物的作用。
通常,不同情况使用的不同速率调节剂都有其特定的质量比例。例如,对二丁基-镁来说,引发剂/迟滞剂的比例是从1∶0.1到1∶500,优选1∶0.5到1∶200,更优选1∶1到1∶50。优选使用三甲基,三乙基和三-异丁基-铝和二-异丁基-铝氢化物,其引发剂/迟滞剂的比例是从1∶0.1到1∶1,优选1∶0.4到1∶0.99,更优选1∶0.7到1∶0.98。使用三己基-铝时引发剂/迟滞剂的优选比例是从1∶0.5到1∶500,优选1∶0.8到1∶100,更优选1∶1到1∶30。
每一种情况都应预先做预实验以决定准确的迟滞剂/引发剂比例,然后在不超过所需的反应温度,或反应速率前提条件下,选择迟滞剂的用量。
聚合反应通常在饱和烃溶剂或醚、苯、甲苯、二甲苯或乙基苯、中进行,但优选烃,例如环己烷或甲基环己烷。本发明聚合反应过程中使用的溶剂量占单体/溶剂混合物总重量的50到90重量%。
乙烯芳香单体的聚合反应能在活塞式流动型或逆向混合型系列聚合反应器中进行,这种反应器在美国申请-2,745,824;美国申请-2,989,517;美国申请-3,035,033;美国申请-3,747,899;美国申请-3,765,655;美国申请-4,859,748和美国申请-5,200,476中描述。
聚合反应温度根据具体组分,特定的引发剂不同而不同,但一般在60℃到140℃范围内变动。
通常,聚合反应之后,聚合物溶液用结束步骤例如高温排除挥发组分处理,以除去溶剂,和残留单体。在加工过程中也可以加入稳定剂是使降解和胶凝现象达到最小化。但是,本发明方法中的聚合物溶液是为氢化反应制备,因而不需要用这种结束步骤处理。
但是,在氢化反应发生之前,芳香聚合物和溶剂的溶液可用附加或可选择的纯化步骤处理。这个纯化步骤的一种包括活化铝床。该方法作为除去包括聚合反应终止剂,盐,极化改良剂和抗氧剂在内的含氧,氮或硫的有机化合物的方法在本领域是已知的。这些纯化方法在工艺上普遍应用。任何可以达到该去除目的的方法可以在本发明的方法中使用。
乙烯芳香单体的嵌段共聚物在本发明的方法中也能被使用。通过阴离子聚合反应制造嵌段共聚物的方法在本领域是公知的,具体例证在阴离子聚合反应∶原理和实际运用,H.L.Hsieh and R.P Quirk,MarcelDekker,New York,1996。在一个实施方案中,,嵌段共聚物是通过连续往碳负离子引发剂例如2-丁基锂或正-丁基锂内加入单体制备。在另一个实施方案中,,一个五嵌段共聚物能够通过应用二价偶联剂例如1,2-二溴乙烷,二氯二甲基硅烷,或苯甲酸苯酯偶联三嵌段物而得到。在该实施方案中,共轭二烯聚合物小链(少于10个单体重复单位)能和乙烯芳香聚合物偶联端基反应以加速这种偶联反应。乙烯芳香聚合物嵌段通常很难偶联,因此,这项技术被用于实现乙烯芳香聚合物端基偶联。由于没有实现微相分离,二烯聚合物的小链就不能形成明显的嵌段。通过这种方法得到的偶联结构被认为其官能等价于ABABA的五嵌段共聚物结构。偶联试剂和偶联方案已经被证明在不同的阴离子聚合反应中发挥作用,这在Hsieh和Quirk,第十二章,307-331页中有讨论。在另一个实施方案中,,一个二官能团阴离子引发剂用于从嵌段系统中心引发聚合反应,其中,单体连续相同地连接到不断伸长的聚合物链的两个端基上。美国专利4,200,718和4,196,154中描述一个用有机锂化合物处理1,3-双(1-苯乙烯基)苯得到二官能团引发剂的例子。
如同美国专利5,700,878,Hahn和Hucul描述的,氢化芳香聚合物的方法在本领域是公知的,其中以硅土为载体,具有大孔径和窄的孔径分布的金属氢化催化剂存在条件下,将芳香聚合物和氢化试剂相接触,芳香聚合物得到氢化。
可选择地,聚合物溶液也可采用混合氢化催化剂氢化。混合氢化催化剂的特征在于它包括至少2种成分。第一种成分含有任何能增加氢化反应速率的金属构成,并且这些金属包括镍,钴,铑,钌,钯,铂,或其它VIII族金属,或者它们的结合物。铑和/或铂是优选使用的金属。但是,已知铂对腈而言是差的氢化反应催化剂,因此,铂不优选用于催化腈共聚物的氢化反应中。混合氢化催化剂使用的第二种组分包括一个抑制VIII族金属暴露在极性物质中失活的助催化剂构成,此处该组分认为是抗失活成分。这些组分优选包括铼,钼,钨,锂或铌或它们的混合物。
抗失活组分的量应至少能显著抑制同一聚合物中VIII族金属组分在聚合组合物中暴露于含有极性不纯物后的失活,这里是指作为失活抑制量。VIII族金属失活表现在氢化反应速率的显著降低。对此,将混合氢化催化剂和只含VIII族金属组分催化剂在相同的反应条件、存在极化不纯物的条件下混合的比较可以得到例证,其中,只含VIII族金属组分的催化剂显示的氢化反应速率低于混合氢化催化剂所达到的速率的75%。
抗失活组分的优选量为VIII族金属组分和抗失活组分的比例为0.5∶1到10∶1,较优选1∶1到7∶1,最优选1∶1到5∶1。
催化剂可能只是有这些组分构成,但优选的催化剂还有一个催化组分可以沉积其上的载体。在一个实施方案中,金属沉积的载体可以是硅土,矾土或碳。在更加具体的实施方案中,使用的硅土载体的孔隙大小分布窄,表面积超过每克10平方米(m2/g)。
载体的孔隙大小分布,孔隙容积,和平均孔直径都能根据ASTMD-4284-83记载的水银孔隙率检测仪测定得到。
孔隙大小分布通常使用水银孔隙率检测仪检测。但是,这种方法只能用于测定孔隙大于60埃的孔。因此,必须使用可以测定小于60埃的孔隙的其它方法。一种方法是根据ASTMD-4641-87记载测定小于600埃的孔隙直径的氮解吸附法。因此,根据要求,窄的孔隙分布被定义为孔隙体积的至少98%被具有孔隙直径超过300埃的孔隙限定,对直径小于300埃的孔隙通过氮解吸附法测定的孔隙容量占通过水银孔隙率检测仪检测的总孔隙容量的不到2%。
根据ASTMD-3663-84可以测定表面积。表面积通常在10到100m2/g之间,优选在15到90m2/g之间,最优选在50和85m2/g之间。
所需的平均孔隙直径依赖于被氢化的聚合物和它的分子量(Mn)。对于具有较大分子量的聚合物的氢化反应优选使用具有较大平均孔隙直径的载体,以获得所需的氢化反应量。对于高分子量聚合物(例如Mn>200,000),通常需要的表面积在15到25m2/g之间变动,需要的平均孔隙直径在3,000到4,000埃之间。对于低分子量聚合物(例如Mn<100,000),通常需要的表面积在45到85m2/g之间变动,需要的平均孔隙直径在300到700埃之间,虽然较大的孔隙直径也可以接受。
优选硅土载体,美国专利4,112,032有其制备范例。在水中将硅酸钾和胶凝剂,例如甲酰胺混合,聚合以及沥滤后得到。然后,按照Iler,R.K.,硅土的化学(The Chemistry of Silica),John Wiley和Sons,1979,539-544页,湿热煅烧硅土,一般包括从600℃到850℃加热硅土同时使饱和水蒸气通过硅土2小时或更多时间。湿热煅烧使硅土孔隙直径分布狭窄,孔隙平均直径增大。可选择地,这种载体也可以通过Iler,R.K.,硅土的化学(The Chemistry of Silica),John Wiley和Sons,1979,510-581页中公开的方法制备。
美国专利5,110,779描述了制备以硅土为载体的催化剂的方法。优选的金属,金属组分,含金属化合物或者它们的混合物通过气相沉积,水或非水浸渍后煅烧,升华或其它任何传统方法沉积在载体上,这些方法在表面科学和催化剂的研究(Studies on Surface Science andCatalysis),“催化剂的成功设计”V.44,146-158页,1989和实用多相催化剂75-123页,Institute Francais du Pétrole Publications,1987中有例证说明。浸渍方法中,优选的含金属化合物可以是任何含一种金属的化合物,就如前文所述的,它能得到有用的氢化反应催化剂,并能抗失活。这些化合物可以是盐,配位化合物,有机金属化合物或共价复合物。
通常,载体催化剂的总金属含量占硅土载体催化剂总重量的0.1到10wt.重量百分含量。以催化剂总量为基础,优选2到8wt.%,更优选0.5到5wt.%。
助催化剂例如含碱,碱土或镧系元素化合物能用于辅助金属组分分布在硅土载体上或者在反应时起稳定作用。
在氢化反应过程中使用的载体型催化剂的量远小于传统不饱和聚合物氢化反应所需的催化剂的量,因为氢化反应催化剂有很高的反应性。通常,一克不饱和聚合物需要的载体型催化剂的量少于1克,优选少于0.5克,更优选少于0.2克。载体型催化剂的使用量依赖于反应过程的类型,即不论这个反应过程是连续的,半连续的或一次性的,和反应过程的条件,例如温度,压力和反应时间,其中通常反应时间在5分钟到5小时内变动。连续反应按重量计通常200,000或更多份不饱和聚合物使用1份载体催化剂,因为这种载体催化剂在连续反应过程中可以反复使用很多次。一次性反应按重量计通常15份不饱和聚合物使用1份载体型催化剂。高温和高压同样使载体型催化剂的用量减少。
氢化反应优选在聚合物可以溶解并且不会阻碍氢化反应进行的烃类溶剂中进行。这种溶剂优选能和进行聚合反应使用的溶剂一致。通常,在氢化反应发生之前,将从聚合反应步骤中得到的聚合物溶液添加溶剂进一步稀释。通常,聚合物溶液含有占氢化反应之前溶液总重量的10到25wt.%,优选10到20wt.%的聚合物。优选的溶剂是饱和溶剂例如环己烷,甲基环己烷,乙基环己烷,环辛烷,环庚烷,正十二烷,二噁烷,支链烃,尤其是支链点上不超过1个氢原子,沸点超过45℃,以及燃点大于280℃的支链烃,异戊烷,十氢化萘或它们的混合物,其中环己烷是最合适的溶剂。
进行氢化反应的温度可以是能发生氢化反应而没有聚合物显著降解的任何温度。聚合物的降解能够通过氢化反应后Mn降低,多分散性增加或玻璃态转化温度下降而检测出。具有介于1.0和1.2之间多分散性的聚合物的显著降解定义为在氢化反应之后,多分散性增加30%或更多。优选在氢化反应之后,聚合物的降解而导致的多分散性的增加应少于20%,最优选少于10%。在多分散性超过1.2的聚合物中,氢化反应之后分子量显著下降暗示降解的发生。这种情况中显著的降解的定义是指Mn下降20%或者更多。优选的氢化反应后Mn的下降应少于10%。但是,聚合物例如聚-α-甲基苯乙烯或其它α取代乙烯芳香聚合物易于发生聚合物降解,这种聚合物允许的Mn下降值的上限为30%。
通常氢化反应温度是从40℃,优选从100℃,更优选从110℃,以及最优选从120℃至250℃,优选至200℃,更优选至180℃,最优选至170℃。
氢化反应的压力不是关键的,尽管随着压力升高,氢化反应速率增大。通常压力范围是从大气压到70MPa,0.7到10.3Mpa是优选压力。
反应容器用惰性气体净化,以除去反应区域的氧气。惰性气体包括但并不局限于氮气,氦气和氩气,氮气是优选的净化气体。
氢化试剂可以是任何可提供氢原子的化合物,它能有效地氢化不饱和聚合物。氢化试剂包括但不局限于氢气,肼,和氢硼化钠。在一个优选的实施方案中,氢化试剂是氢气。
烯的氢化反应的量可用红外线或质子NMR测定。芳香化合物氢化反应的量可用UV-VIS分光镜测定。聚苯乙烯的环己烷溶液在260.5nm处有一个非常清楚的芳香环吸收谱带。在1cm槽中每升溶液含0.004980mol芳香化合物时谱带的吸光度是1.000。用过滤方法除去催化剂(用一张0.5微米(μm)“TEFLONTM”有机滤膜,MilliporeFHUP047)后将反应混合物置于一个UV槽中测定其吸光度。吸光度依赖于浓度。氢化聚合物产物一般在高浓度下测量,因为在测定吸光度之前未被稀释。因为反应物溶液浓度是标准品的15到30倍,所以少量的残留不饱和物的量也能准确测定。
通常已得到的氢化聚合物的芳香化合物氢化水平在20%到100%范围内。通过本发明的方法生产得到的聚合物的芳香氢化水平至少为80%,一般至少为85%,通常至少为90%,有效的百分率至少为95%,更有效的百分率至少为98%,优选值至少为98%,更优选值至少为99.5%,最优选值至少为99.8%。术语“氢化水平”是指氢化反应后,初始的不饱和键变为饱和键的百分率。已氢化的乙烯芳香聚合物的氢化水平用UV-VIS分光镜检测,氢化二烯聚合物的氢化水平用质子NMR检测。
氢化得到的芳香聚合物的重均分子量(Mn)从10,000到3,000,000,更优选在50,000到1,000,000之间,最优选在50,000到500,000之间。这里的Mn指用凝胶渗透色谱(GPC)测定的平均分子量。
然后,氢化聚合物非必要地通过采用终止方法例如脱挥发组分处理氢化聚合物溶液而分离。任何传统的终止方法都可以用于分离产生的氢化聚合物。
以下实施例是用于说明本发明。这些实施例并不意在限制本发明的范围,也不能被这样解释。除非特别说明,以下实施例以重量份或重量百分含量为单位计量。
该溶液通过一根矾土柱直接转移至氢化反应器中。氢化反应在150℃,6.2MpaH2压力下,使用的催化剂按总的嵌段共聚物溶液重量计有5wt.%的铂附着在超宽孔隙硅土催化剂上,而该催化剂只占总重量的0.65%。大约0.5小时后,超过99%的氢化反应完成。
实施例2实施例1中制备了SBS三嵌段共聚物。聚合物样品在惰性气体环境中,用异丙醇终止反应后可以从阴离子反应器中直接得到。样品含的25%是固体,其中含42%苯乙烯,平均分子量在60,000。样品用环己烷稀释至含15%固体,然后通过活化矾土床转移至氢化反应器中。催化剂是一种从Engelhard获得的附着于的超宽孔硅土上的铂/铼合金。一份以总的聚合物溶液为基础的1wt.%的催化剂用于氢化反应,反应温度为155℃,氢气压力为6.2Mpa。将产品过滤,催化剂回到反应器参与随后的氢化反应。同一催化剂可用于5次氢化反应而不降低它的催化活性。所有的5次氢化反应的氢化率都达到并超过99.9%。
对照例获得的SBS三嵌段共聚物(VectorTM6241,从Dexco购买)以分离的聚合物小丸形式存在。制备15wt.%的该聚合物的环己烷溶液。该样品通过活化的矾土床转移至氢化反应器中。如同实施例2,此处也是用从Engelhard购得的氢化反应催化剂,它是一种附着在超宽孔硅土上的铂/铼合金。,反应在155℃和6.2Mpa氢气压力下进行,使用的催化剂的量占聚合物溶液的1%。大约5小时后,超过99%的聚合物发生氢化反应。产品过滤,催化剂回到反应器中参加随后的氢化反应。同样的反应条件30小时后,使用同一催化剂的第二次氢化反应获得的氢化反应少于90%。
因此,很明显,通过直接氢化聚合物溶液而无须之前分离聚合物,催化剂活性得到增强。
权利要求
1.一种制备氢化聚合物或共聚物的方法,包括a)制备一份含有至少一种乙烯芳香单体和一种溶剂的溶液;b)将这份溶液置于聚合反应条件中,使得乙烯芳香单体发生聚合反应,形成芳香聚合物和溶剂的芳香聚合物溶液。c)非必要地,纯化芳香聚合物溶液,以及,d)将芳香聚合物溶液置于氢化反应条件中,使芳香氢化过程完成,其中芳香聚合物在氢化反应之前并不分离。
2.根据权利要求1所述的方法,其中所述的乙烯芳香单体是苯乙烯。
3.根据权利要求1所述的方法,其中所述的乙烯芳香单体是在一个附加的共聚单体存在条件下发生聚合反应,共聚单体选自腈,丙烯酸盐,酸,乙烯,丙烯,顺式丁烯二酸酐,顺丁烯二酰亚胺,醋酸乙烯酯和氯乙烯和共轭二烯。
4.根据权利要求3所述的方法,其中所述的附加的共聚单体是共轭二烯。
5.根据权利要求4所述的方法,其中所述的共轭二烯是丁二烯。
6.根据权利要求1所述的方法,其中所述的芳香聚合物是苯乙烯和丁二烯的嵌段共聚物。
7.根据权利要求3所述的方法,其中所述的共轭二烯是异戊二烯。
8.根据权利要求7所述的方法,其中所述的芳香聚合物是苯乙烯和异戊二烯的嵌段共聚物。
9.根据权利要求1所述的方法,其中所述的溶剂选自饱和烃溶剂或醚,环己烷,甲基环己烷,乙基环己烷,环辛烷,环庚烷,正十二烷,二噁烷,支链烃,异戊烷,十氢化萘或其混合物。
10.根据权利要求1所述的方法,其中所述的聚合物溶液用活化矾土床纯化。
11.根据权利要求1所述的方法,其中所述的氢化反应条件包括使用以硅土作载体的铂氢化反应催化剂。
12.根据权利要求1所述的方法,其中所述的芳香聚合物氢化反应率从20到100%。
13.根据权利要求10所述的方法,其中所述的芳香聚合物氢化反应率至少为80%。
全文摘要
本发明涉及一种在聚合物分离或完成之前通过氢化反应生产氢化聚合物或共聚物的方法。
文档编号C08F8/04GK1418226SQ01806879
公开日2003年5月14日 申请日期2001年2月26日 优先权日2000年4月3日
发明者J·L·哈恩费尔德, A·M·帕特尔, T·H·纽曼 申请人:陶氏环球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1