高分子化合物的制造方法及高分子化合物的制作方法

文档序号:3687768阅读:234来源:国知局
高分子化合物的制造方法及高分子化合物的制作方法
【专利摘要】本发明的高分子化合物的制造方法包括下述工序(a)、(b)。工序(a):在酸催化剂或碱催化剂的存在下得到高分子化合物的工序。工序(b):使工序(a)所得到的含有高分子化合物的溶液接触阴离子交换树脂和阳离子交换树脂的混合树脂的工序。
【专利说明】高分子化合物的制造方法及高分子化合物

【技术领域】
[0001] 本发明涉及高分子化合物的制造方法及高分子化合物。
[0002] 本申请以2012年6月26日在日本提出申请的特愿2012-142968号和2012年12 月3日在日本提出申请的特愿2012-264381号为基础主张优先权,在此引用其内容。

【背景技术】
[0003] 在半导体元件、液晶元件等的制造工序中,在基板上形成抗蚀剂膜,曝光该抗蚀剂 膜,显影,形成抗蚀剂图案。
[0004] 近年来,由于光刻技术的进步,抗蚀剂图案的微细化在急速进行。作为微细化的手 法,有照射光的短波长化。具体地,照射光可从g线(波长:438nm)和i线(波长:365nm) 朝着波长300nm以下的DUV(Deep Ultra Violet,深紫外光)短波长化。现在,KrF准分子 激光(波长:248nm)光刻技术和ArF准分子激光(波长:193nm)光刻技术正被引入。
[0005] 此外,关于更短波长的EUV (波长:13. 5nm)的光刻技术也在被研宄。此外,关于电 子束光刻技术、在水等液体中进行曝光的浸液光刻技术也在被努力研宄。
[0006] 在光刻工序中,除上述的抗蚀剂膜之外,正在使用防反射膜、间隙填充膜、外涂层 膜等种种的薄膜。这些膜的形成中一般使用含有高分子化合物的膜。
[0007] 此处,在高密度集成电路、电脑芯片和电脑硬盘等的制造中产生金属污染时,常常 导致缺陷的增加和产量损失,成为引起性能低下的主要原因。
[0008] 例如,等离子体工艺中,在用于光刻工序的高分子化合物中存在钠和铁等金属杂 质(例如金属离子、金属粉体、过渡金属络合物等)时,等离子体剥离时可能会产生金属污 染。
[0009] 由于光刻技术等精细加工技术的发展,电子设备变得更为精巧,这些各种问题,变 得难以完全解决。常常观察到由于非常低含量的金属杂质的存在,半导体设备的性能和稳 定性降低。其主要原因,可确认特别是在于用于光刻工序的高分子化合物中含有的钠等轻 金属、或铁等重金属。进一步地,也很清楚高分子化合物中的不足IOOppb的金属杂质的浓 度,对这类电子设备的性能和稳定性带来恶劣影响。
[0010] 以往,高分子化合物中的金属杂质浓度是通过选择满足严格的杂质浓度规格的原 料、或进行彻底的流程管理以使高分子化合物的制造阶段中不混入金属杂质来管理的。但 是,伴随着金属杂质浓度的严格规范化,需要通过彻底的管理金属杂质的混入的方法进行 高分子化合物的制造。
[0011] 作为降低高分子化合物中的金属杂质的方法,被提出的有使高分子化合物溶液通 过不含强酸性离子交换基、且含有产生ZETA电位(ζ电位)的电荷控制剂的过滤器的方法 (专利文献1)。
[0012] 此外,提出有将使高分子化合物溶液与阳离子交换树脂接触的工序(Tl)、使高分 子化合物溶液与阳离子交换树脂和阴离子交换树脂的混合树脂接触的工序(T2)、使高分子 化合物溶液通过含有带正ZETA电位的物质的过滤器的工序(T3)组合实施的方法(专利文 献2)。
[0013] 现有技术文献
[0014] 专利文献
[0015] 专利文献1 :日本专利特表2010-189563号公报
[0016] 专利文献1 :日本专利特开2010-209338号公报


【发明内容】

[0017] 发明要解决的课题
[0018] 在酸催化剂或碱催化剂的存在下将单体聚合得到高分子化合物时,在得到的高分 子化合物中,在金属杂质之外,酸催化剂或碱催化剂会变为杂质残存。该酸催化剂或碱催化 剂杂质也会与金属杂质同样地影响半导体设备的性能和稳定性。
[0019] 此外,通常,在酸催化剂的存在下将单体聚合时,用作为反应终止剂的碱性化合物 使聚合反应停止。另一方面,在碱催化剂的存在下将单体聚合时,用作为反应终止剂的酸性 化合物使聚合反应停止。这些反应终止剂也会变为杂质残存于高分子化合物中,影响半导 体设备的性能和稳定性。
[0020] 如此一来,在酸催化剂的存在下得到高分子化合物时,高分子化合物中含有源自 酸催化剂的杂质和源自反应终止剂(碱性化合物)的杂质。另一方面,在碱催化剂的存在 下得到高分子化合物时,高分子化合物中存在源自碱催化剂的杂质和源自反应终止剂(酸 性化合物)的杂质。因此,也需要降低高分子化合物中的这些杂质的浓度。
[0021] 此外,源自酸催化剂及反应终止剂(酸性化合物)的杂质统称为"酸杂质",源自碱 催化剂及反应终止剂(碱性化合物)的杂质统称为碱杂质。
[0022] 然而,如专利文献1所述的方法,使用特定的过滤器时,要想充分降低高分子化合 物中的金属杂质浓度、和酸及碱杂质浓度这两者,需要使用多个过滤器。因此,过滤器的使 用数量越增多,换算为每个过滤器时的高分子化合物的生产率会降低。此外,用于除去金属 杂质的过滤器价格高,因而使用多个过滤器也伴随有制造成本的上升。
[0023] 专利文献2涉及(甲基)丙烯酸系共聚物的制法,没有记载能降低酸和碱杂质浓 度的要点。
[0024] 本发明鉴于上述内容而做成,目的在于提供一种能生产率良好地制造金属杂质浓 度较低、且酸和碱杂质浓度也充分被降低的高分子化合物的制造方法、和金属杂质浓度较 低且酸和碱杂质浓度也充分被降低的高分子化合物。
[0025] 解决课题的手段
[0026] 本发明人等专心研宄的结果,着眼于对高分子化合物提纯的顺序。也就是说,发现 了:通过使含有在酸催化剂或碱催化剂的存在下得到的高分子化合物的溶液或含有将该高 分子化合物通过再沉淀法提纯后的高分子化合物的溶液接触阴离子交换树脂和阳离子交 换树脂的混合树脂,能够生产率良好地制造金属杂质浓度被降低自不待言、酸和碱杂质浓 度也被充分降低的高分子化合物。另外,还找出了若使含有高分子化合物的溶液接触混合 树脂后通过特定的过滤器,则可进一步降低金属杂质的浓度、酸和碱杂质的浓度,以至于完 成了本发明。
[0027] SP,本发明含有以下形态。
[0028] 〈1> 一种高分子化合物的制造方法,其包括下述工序(a)、(b),
[0029] 工序(a):在酸催化剂或碱催化剂的存在下得到高分子化合物的工序;
[0030] 工序(b):使工序(a)所得到的含有高分子化合物的溶液与混合了阴离子交换树 脂和阳离子交换树脂的混合树脂接触的工序。
[0031] 〈2>根据〈1>所述的高分子化合物的制造方法,所述阴离子交换树脂和阳离子交 换树脂的质量比(阴离子交换树脂/阳离子交换树脂)为60/40?99/1。
[0032] 〈3>根据〈1>或〈2>所述的高分子化合物的制造方法,所述高分子化合物的侧链上 加成有交联剂。
[0033] 〈4>根据〈1>?〈3>中任意一项所述的高分子化合物的制造方法,所述高分子化合 物是聚酯系高分子化合物。
[0034] 〈5>根据〈1>?〈4>中任意一项所述的高分子化合物的制造方法,所述酸催化剂是 磺酸。
[0035] 〈6>根据〈1>?〈4>中任意一项所述的高分子化合物的制造方法,所述碱催化剂是 叔胺。
[0036] 〈7>根据〈1>?〈6>中任意一项所述的高分子化合物的制造方法,进一步包括下述 工序(c),
[0037] 工序(C):使工序(b)中得到的含有高分子化合物的溶液通过过滤器,得到含有高 分子化合物的溶液的工序,其中,所述过滤器不含强酸性离子交换基,且含有产生ZETA电 位(ζ电位)的电荷控制剂。
[0038] 〈8>根据〈7>所述的高分子化合物的制造方法,进一步包括下述工序(d),
[0039] 工序(d):将工序(C)中得到的含有高分子化合物的溶液和高分子化合物的不良 溶剂混合,使高分子化合物析出,得到粉体状的高分子化合物的工序。
[0040] 〈9> 一种高分子化合物,酸和碱杂质浓度的合计在50ppm以下,且钠、钾、钙、铁的 各金属杂质浓度在80ppb以下,在薄膜化至膜厚400nm以下时的波长193nm下的折射率(η 值)为1.5?2.1,衰减系数(k值)为0.1?0.7。
[0041] 〈10>根据〈9>记载的高分子化合物,各金属杂质浓度为50ppb以下。
[0042] 〈11>根据〈9>或〈10>所述的高分子化合物,酸和碱杂质浓度的合计为2ppm以上。
[0043] 〈12>根据〈9>?〈11>中任意一项所述的高分子化合物,在所述高分子化合物的侧 链上加成有交联剂。
[0044] 〈13>根据〈9>?〈12>中任意一项所述的高分子化合物,所述高分子化合物是聚醋 系高分子化合物。
[0045] 发明的效果
[0046] 根据本发明的高分子化合物的制造方法,可生产率良好地制造金属杂质浓度较低 且酸和碱杂质浓度也被充分降低的高分子化合物。
[0047] 此外,本发明的高分子化合物中金属杂质浓度较低,且酸和碱杂质浓度也被充分 降低。

【专利附图】

【附图说明】
[0048] [图1]展示实施例1-1及比较例1-1的保存稳定性实验结果的图。
[0049] [图2]展示实施例1-1及比较例1-1的保存稳定性实验结果的图。
[0050] [图3]展示实施例2-1及比较例2-1的保存稳定性实验结果的图。
[0051] [图4]展示实施例2-1及比较例2-1的保存稳定性实验结果的图。

【具体实施方式】
[0052] 以下,对本发明进行详细说明。
[0053] 另外,本说明书中的"(甲基)丙烯酸"是指丙烯酸和甲基丙烯酸的总称。
[0054] 此外,本发明中的高分子化合物的质均分子量(Mw)及Z均分子量(Mz)是用凝胶 渗透色谱法(GPC),通过聚苯乙烯换算求出的值。
[0055] 本发明的高分子化合物的制造方法,包括下述工序(a)、(b)。该制造方法优选进 一步包括下述工序(c)、(d)。
[0056] 工序(a):在酸催化剂或碱催化剂的存在下得到高分子化合物的工序。
[0057] 工序(b):使工序(a)所得到的含有高分子化合物的溶液与混合了阴离子交换树 脂和阳离子交换树脂的混合树脂接触的工序。
[0058] 工序(C):使工序(b)所得到的含有高分子化合物的溶液通过不含强酸性离子交 换基、且含有产生ZETA电位的电荷控制剂的过滤器,得到含有高分子化合物的溶液的工 序。
[0059] 工序(d):将工序(C)中得到的含有高分子化合物的溶液和高分子化合物的不良 溶剂混合,使高分子化合物析出,得到粉体状的高分子化合物的工序。
[0060] 〈工序(a) >
[0061] 工序(a)是在酸催化剂或碱催化剂的存在下得到高分子化合物的工序。
[0062] 如上所述,通常,在酸催化剂的存在下将单体聚合时,使用碱性化合物作为反应终 止剂,将聚合反应停止。另一方面,在碱催化剂的存在下将单体聚合时,用酸性化合物作为 反应终止剂,将聚合反应停止。因此,工序(a)具体为下述工序(a-Ι)或工序(a-2)。
[0063] 工序(a-1):在酸催化剂的存在下将单体聚合,用碱性化合物使聚合反应停止而 得到高分子化合物的工序。
[0064] 工序(a-3):在碱催化剂的存在下将单体聚合,用酸性化合物使聚合反应停止而 得到高分子化合物的工序。
[0065] 作为酸催化剂无特别限制,但可举例如草酸、马来酸酐、马来酸等的羧酸或其酸 酐;对甲苯磺酸、甲磺酸、萘磺酸等的磺酸或其酸酐;硫酸、盐酸、硝酸等。其中,优选磺酸或 其酸酐,更优选磺酸。磺酸或其酸酐具有强酸性,反应性高,且成为缩聚的障碍的水分的含 量较少,因而适宜作为酸催化剂。
[0066] 这些酸催化剂可以单独使用一种,也可以两种以上并用。
[0067] 作为碱催化剂无特别限制,但可举例如二乙胺、三乙胺、吡啶等胺类;氢氧化钠、碳 酸钠、氢氧化钾、碳酸钾等的氢氧化物等。其中,从金属含量较少的方面出发,优选胺类,其 中尤其更优选叔胺(例如三乙胺等)。叔胺具有强碱性,反应性高,不含易发生副反应的活 泼氢,因而适宜作为碱催化剂。
[0068] 作为反应终止剂使用的酸性化合物,可使用与上述酸催化剂相同的物质。特别地, 从水分含量较少的观点出发,优选磺酸或其酸酐,更优选磺酸。
[0069] 另一方面,作为反应终止剂使用的碱性化合物,可使用与上述碱性催化剂相同的 物质。特别地,从金属含量较少方面出发,优选胺类。其中,特别地,从不含有易于发生副反 应的活泼氢方面出发,更优选叔胺(如三乙胺等)。
[0070] 作为在酸催化剂的存在下得到的高分子化合物无特别限制,可举例如聚酯系高分 子化合物、聚醚系高分子化合物、丙烯酸系高分子化合物等。
[0071] 另一方面,作为在碱催化剂的存在下得到的高分子化合物无特别限制,可举例如 丙烯酸系高分子化合物、硅氧烷系高分子化合物等。
[0072] 其中,作为优选的高分子化合物没有特别限制,但从蚀刻速度等优异、对半导体光 刻技术的适用最为适宜方面出发,优选聚酯系高分子化合物。
[0073] 作为得到高分子化合物的方法没有特别限制,例如,可采用溶液聚合法、乳液聚合 法、悬浮聚合法、本体聚合法等的公知的聚合方法。特别地,将高分子化合物作为光刻用高 分子化合物使用时,优选使用溶液聚合法。
[0074] 以下,以得到聚酯系高分子化合物的情况为例,具体说明工序(a)。
[0075] 聚酯系高分子化合物,例如可通过使二羧酸和二醇作为单体溶解于聚合溶剂,在 酸催化剂的存在下,加热至对聚合反应适宜的温度并进行缩聚反应,接着冷却至适当的温 度后,添加作为反应终止剂的碱性化合物,停止缩聚反应,从而得到。从直至达到目标分子 量的反应时间的缩短及分子量的精密控制的观点出发,上述缩聚反应优选在100?150°c 下进行,更优选在120?145°C下进行。
[0076] 作为用于上述聚酯系高分子化合物的聚合的聚合溶剂没有特别限制,优选能溶解 单体、酸催化剂及得到的聚合物(聚酯系高分子化合物)中的任一种的溶剂。作为这样的 有机溶剂,可举例如甲氧苯甲酰、1,4-二氧杂环己烷、丙酮、四氢呋喃(THF)、甲基乙基酮 (MEK)、甲基异丁基酮(MIBK)、甲苯、二甲苯等。
[0077] 上述缩聚反应中,优选使用将二羧酸的官能团(羧基)用烷基保护后的单体,控制 脱水及脱醇反应等。据此,由于可抑制凝胶化等,因此可得到适于用于光刻用高分子化合 物、尤其适宜用于防反射膜用高分子化合物的聚酯系高分子化合物。
[0078] 工序(a)所得到的高分子化合物,优选在侧链上加成有交联剂。通过在侧链上加 成有交联剂,可防止具有成为异物的原因的可能性的交联剂的升华,获得降低流程污染等 的效果。
[0079] 作为交联剂,可使用具有吸收光刻工序中使用的活性光线的部位的化合物,例如, 选自包括甘脲、甲基化甘脲、丁基化甘脲、四甲氧基甘脲、甲基化三聚氰胺树脂、N-甲氧基甲 基-三聚氰胺、聚氨酯脲、氨基或乙烯基醚的群。
[0080] 尤其,从得到防反射膜性能优异的高分子化合物方面出发,优选甘脲、四甲氧基甘 脲。此外,它们因兼具非芳香族的特征,所以可使蚀刻速率提高。
[0081] 要在高分子化合物的侧链上加成交联剂,只要向含有高分子化合物的(反应)溶 液中添加交联剂使之进一步反应即可,据此交联剂加成于高分子化合物所含的官能团上, 得到侧链上加成有交联剂的高分子化合物。
[0082] 从交联剂加成反应的高效进行和分子量的精密控制这双方面的观点出发,交联剂 加成反应优选在50°C以下进行,更优选15?30°C,进一步优选18?22°C。
[0083] 此外,上述工序(a)虽以聚酯系高分子化合物为例进行说明,但本发明并不限于 此。例如工序(a)中,在聚合溶剂的存在下用聚合引发剂使单体聚合,得到(甲基)丙烯酸 系高分子化合物、聚醚系高分子化合物、聚酰胺系高分子化合物等高分子化合物后,通过向 含有这些高分子化合物的溶液中添加酸催化剂和交联剂进行交联剂加成反应,可得到侧链 上加成有交联剂的高分子化合物。
[0084] 工序(a)所得到的高分子化合物,多含有来自原料或制造工序中的金属杂质与酸 性和碱杂质,也很明显这些杂质会使电子设备的性能和稳定性受到恶劣影响。因此,需要通 过以下的工序(b)将杂质除去至低浓度。此外,工序(b)之后,若进一步进行工序(C)、工序 (d),可将杂质除去至更低浓度。
[0085] 〈工序(b) >
[0086] 工序(b)是使工序(a)所得到的含有高分子化合物的溶液接触混合了阴离子交换 树脂和阳离子交换树脂的混合树脂的工序。
[0087] 工序(b)中,可使含有高分子化合物的溶液原样接触混合树脂,也可使将含有高 分子化合物的溶液和不良溶剂混合析出的高分子化合物再溶解的溶液与混合树脂接触。尤 其优选使通过不良溶剂析出的高分子化合物再溶解后的溶液接触混合树脂。通过用不良溶 剂使高分子化合物析出,可除去高分子化合物中残存的未反应的单体、酸催化剂或碱催化 剂、聚合引发剂、反应终止剂等,能将高分子化合物再沉淀提纯。
[0088] 工序(a)中通过溶液聚合法得到高分子化合物时,可将聚合反应液原样作为含有 高分子化合物的溶液使用。
[0089] 此外,将高分子化合物再沉淀提纯时,可根据需要通过稀释溶剂将聚合反应液稀 释至适当的溶液粘度。作为稀释溶剂,可举出甲氧苯甲酰、1,4-二氧杂环己烷、丙酮、THF、 ΜΕΚ、ΜΙΒΚ、γ-丁内酯、丙二醇单甲醚乙酸酯(PGMEA)、丙二醇单甲基醚(PGME)、乳酸乙酯、 甲苯、二甲苯、2-羟基异丁酸甲酯(HBM)等。这些可以使用1种,也可以2种以上并用。
[0090] 进行稀释时,稀释后的聚合反应液中的溶剂(聚合溶剂和稀释溶剂的混合物)的 溶解度参数(以下记作"SP值"。)和用于再沉淀提纯的不良溶剂的SP值的差,从能够得到 高分子化合物的良好的分散性、高效地除去单体方面出发,优选差值较小。
[0091] 溶液的SP值,例如,可通过"聚合物手册(Polymer Handbook)"第四版VII-675 页?VII-711页所述的方法求出。具体地,记载于表I (VII-683页)、表7?8 (VII-688页? VII-711页)。此外,多种溶剂的混合溶剂中的SP值,可通过公知的方法求出。例如,混合 溶剂的SP值可以假设加成性成立,作为各溶剂的SP值和体积分数的积的总和来求出。
[0092] 高分子化合物的再沉淀提纯所用的不良溶剂是使目标高分子化合物溶解的能力 较小、可使该高分子化合物析出的溶剂,根据高分子化合物有所不同。根据目的高分子化合 物的组合,不良溶剂可以适当选择公知的溶剂使用。
[0093] 例如,高分子化合物用于光刻时,从将未反应的单体等高效除去方面出发,作为不 良溶剂,优选甲醇、2-丙醇、二异丙基醚、甲基叔丁基醚(MTBE)、己烷、庚烷、水。
[0094] 不良溶剂可以1种单独使用,也可以2种以上并用。
[0095] 通过将不良溶剂中所析出的析出物过滤,以湿粉的状态得到被再沉淀提纯了的高 分子化合物。使将该高分子化合物再溶解于溶剂后的溶液接触混合树脂。
[0096] 作为高分子化合物的再溶解所用的溶剂,若可溶解高分子化合物,则无特别限制, 可举例如上述的稀释溶剂等。
[0097] 工序(b)所用的混合树脂是阴离子交换树脂和阳离子交换树脂的混合物。
[0098] 阴离子交换树脂主要起到吸附并除去工序(a)中使用的作为酸催化剂和作为反 应终止剂的酸性化合物的作用。此外,通过阴离子交换树脂,有时也可除去高分子化合物中 残存的单体。例如,作为单体使用二羧酸得到聚酯系高分子化合物时,通过阴离子交换树 月旨,可在某种程度上除去二羧酸。
[0099] 作为阴离子交换树脂,可举出强碱性阴离子交换树脂(I型、II型)、弱碱性阴离子 交换树脂。
[0100] 强碱性阴离子交换树脂的总交换容量,相对于膨润树脂lmL,优选0. 8mg当量以 上,更优选I. Omg当量以上。
[0101] 强碱性阴离子交换树脂的含水率优选75%以下,更优选70%以下。
[0102] 强碱性阴离子交换树脂的表观密度优选为650?750g/L。
[0103] 弱碱性阴离子交换树脂的总交换容量,相对于膨润树脂lmL,优选I. 2mg当量以 上,更优选I. 5mg当量以上。此外,相对于干燥树脂lg,优选4. 6mg当量以上。
[0104] 弱碱性阴离子交换树脂的含水率优选为70%以下,更优选60%以下。
[0105] 弱碱性阴离子交换树脂的表观密度优选300?700g/L。
[0106] 作为阴离子交换树脂可使用市售品。作为强碱性阴离子交换树脂的市售品, 可举例如Organo (才;力、y )株式会社的''Amberlite (7>只一歹彳卜)IRA400"、 "Oruraito (才;卜)DS_2"、"0ruraito (才;卜)DS-5";和光纯药工业株式会社 的'Oowex(久、々工7夕只)SBR-P C(OH) "、"Dowex(久、々工7夕只)MSA_2";三菱化学株式会 社制的"Diaion(久、彳亇彳才y )PA系列"、"Diaion(久、彳亇彳才y )HPA25"、"Diaion(久、 彳亇彳才y ) SA系列"等。
[0107] 作为弱碱性阴离子交换树脂的市售品,可举例如Organo(才;1/力'7 )株式会社 的''AmberlisU 7 y 只卜)B20-HG · Dry"、''Amberlite ( 7 y 只卜)IRA96"、 ''Oruraito (才;I/歹彳卜)DS_6";和光纯药工业株式会社制的"Dowex(久、々工7夕只)66"; 三菱化学株式会社制的"Diaion(夂彳亇彳才> )WA10"、"Diaion(夂彳亇彳才> )M20系 列"、"Diaion (久、彳亇彳才y )WA30"等。
[0108] 另一方面,阳离子交换树脂主要起到吸附并除去高分子化合物中所含的金属杂 质、特别是钠、钾、钙等轻金属和工序(a)所用的碱催化剂和作为反应终止剂的碱性化合物 的作用。
[0109] 作为阳离子交换树脂,可举出强酸性阳离子交换树脂、弱酸性阳离子交换树脂。
[0110] 强酸性阳离子交换树脂的总交换容量,相对于膨润树脂lmL,优选I. 2mg当量以 上,更优选I. 5mg当量以上。此外,相对于干燥树脂lg,优选4. 7mg当量以上。
[0111] 强酸阴离子交换树脂的含水率优选为70 %以下,更优选60 %以下。
[0112] 强酸性阴离子交换树脂的表观密度优选为550?900g/L。
[0113] 弱酸性阳离子交换树脂的总交换容量,相对于膨润树脂lmL,优选2. Omg当量以 上,更优选2. 5mg当量以上。
[0114] 弱酸性阴离子交换树脂的含水率优选为70%以下,更优选60%以下。
[0115] 弱酸性阴离子交换树脂的表观密度优选600?700g/L。
[0116] 作为阳离子交换树脂可使用市售品。作为强酸性阳离子交换树脂的市售品,可 举例如 Organo (才;P 力、y )株式会社的 "Amberlite - 歹彳卜)15JS-HG · Dry"、 "Amberlite ( 7 A -歹彳卜)IR120B"、"0ruraito (才少歹彳卜)DS-l"、"Oruraito (才 少7 <卜)DS-4" ;和光纯药工业株式会社的"Dowex(久、々工7夕只)HCR_S"、"Dowex(久、 夕工7夕只)HCR-W2(H)" ;三菱化学株式会社制的"Diaion(久'彳亇彳才y )SK系列"、 "Diaion(夂彳亇彳才y )UBK系列"、"Diaion(夂彳亇彳才y )PK系列"等。
[0117] 作为弱酸性阳离子交换树脂的市售品,可举例如Organo (才;1/力'7 )株式会社的 "Amberlite( 7 >只一歹彳卜)IRC76"、三菱化学株式会社制的"Diaion(夂彳亇彳才y )WK 系列"、"Diaion(夂彳亇彳才y )WK40L系列"等。
[0118] 阴离子交换树脂和阳离子交换树脂的质量比,例如,优选阴离子交换树脂/阳离 子交换树脂=1/99?99/1,更优选20/80?99/1,特别优选60/40?99/1。特别地,高分 子化合物是聚酯系高分子化合物时,优选阴离子交换树脂和阳离子交换树脂的质量比在上 述范围内。
[0119] 此外,阳离子交换树脂的比例过多时,交联剂在高分子化合物的侧链上加成等,高 分子化合物具有能和酸发生化学反应的结构时,由于和混合树脂的接触而变得易于进行交 联反应。其结果,存在高分子化合物的化学结构和分子量在工序(a)和工序(b)后、或工序 (b)中的再沉淀提纯后和在与混合树脂接触后发生变化的情况,例如,有产生高分子化合物 溶液的白浊等情况。另一方面,阴离子交换树脂的比例过少时,工序(a)中使用酸催化剂 时,工序(b)中酸催化剂无法充分完全除去。其结果,在之后的工序中进行交联反应,高分 子化合物的化学结构和分子量会变化。
[0120] 在工序(b)中,如上述所述,高分子化合物中的酸和碱杂质被除去。此外,工序(b) 中,金属杂质,特别是轻金属被大致除去。
[0121] 进一步地,若进行以下的工序(C),可除去工序(b)中除去不完的轻金属或重金属 等,可再降低金属杂质浓度。
[0122] 〈工序(c) >
[0123] 工序(C)是使工序(b)中得到的含有高分子化合物的溶液通过不含强酸性离子 交换基、且含有产生ZETA电位的电荷控制剂的过滤器,得到含有高分子化合物的溶液的工 序。
[0124] 通过用上述过滤器,不会产生由高分子化合物和强酸性离子交换基的反应导致的 化学结构等的变化,可高效地除去高分子化合物中所含的金属杂质(轻金属及重金属)。因 此,通过进行工序(c),工序(b)中没有完全除去的轻金属或重金属可通过过滤器除去。
[0125] 作为上述强酸性离子交换基,可举例如磺酸基等。
[0126] 例如,交联剂在高分子化合物的侧链上加成等,高分子化合物具有能和酸产生化 学反应的结构时,使含有高分子化合物的溶液通过含强酸性离子交换基的过滤器时,进行 交联反应,高分子化合物的化学结构和分子量发生变化。因此,通过使用不含强酸性离子交 换基的过滤器过滤含有高分子化合物的溶液,可抑制上述那样的交联反应的进行等。
[0127] 作为产生ZETA电位的电荷控制剂,例如,一般使用日本专利特公昭63-17486号公 报所记载的那样的聚酰胺-胺环氧氯丙烷阳离子树脂、特公昭36-20045号公报所记载的那 样的使N,N-二乙醇哌嗪、三聚氰胺、福尔马林及邻苯二甲酸甘油酯反应得到的树脂、美国 专利第4007113号说明书所记载的那样的三聚氰胺-甲醛阳离子树脂、美国专利第2802820 号说明书所记载的那样的双氰胺、单乙醇胺及甲醛的反应物、美国专利第2839506号说明 书所记载的那样的氨基三嗪树脂等。其中,特别地,聚酰胺-胺环氧氯丙烷阳离子树脂向过 滤器提供稳定的阳离子电荷,因而优选使用。
[0128] 此处,"ZETA电位"是表示液相中分散的粒子的表面电位的值。ZETA电位的一般 测定方法是将电泳和光散射组合的方法。通过向粒子施加电场使该粒子移动(电泳),向移 动的粒子照射激光,从照射光和散射光的频率的变化计算电泳移动速度,据此算出ZETA电 位。本实施方式的ZETA电位是指,制作分散有电荷控制剂的稀薄水溶液,通过电泳光散射 测定法(激光多普勒法)求出的值。
[0129] ZETA电位的测定可通过市售的ZETA电位测定仪器进行,例如,可使用大塚电子株 式会社的 "ELS800" ;Dispersion Technology 公司制的 "DT-1200" 等。
[0130] 工序(C)所使用的过滤器的形状虽无特别限制,但优选为片状。作为过滤片使用 时,过滤片的平均孔径和张数,虽可在制造工序中适当选择,但优选例如平均孔径0.5? 10 μ--左右。
[0131] 工序(C)所使用的过滤器,可含有自支撑性纤维基质。此外,该自支撑性纤维基质 可在其中含有不移动的粒状过滤助剂和根据需要而含有粘合剂树脂。进一步地,粒状过滤 助剂和粘合剂树脂优选在自支撑性纤维基质的截面上均一地分布。
[0132] 作为自支撑性纤维基质,可举例如,由聚丙烯腈纤维、尼龙纤维、人造丝纤维、聚氯 乙烯纤维、纤维素纤维(例如木浆和棉等)、醋酸纤维素纤维等组成的基质。其中,优选由纤 维素纤维组成的基质。
[0133] 纤维素纤维优选如美国专利第4606824号说明书所公开的那样的,由含有约 +400?约+800mL的具有加拿大标准游离度的未叩解纤维素浆及约+100?约-600mL的具 有加拿大标准游离度的被高度叩解的纤维素浆的纤维素浆混合物衍生。
[0134] 作为粒状过滤助剂,可举例如,硅藻土、氧化镁、珍珠岩、滑石、胶体二氧化硅、聚合 物性粒状物、聚苯乙烯、聚丙烯酸酯、聚醋酸乙烯酯、聚乙烯、活性炭、粘土及它们的类似物 等。
[0135] 作为粘合剂树脂,可举出美国专利第4007113号说明书和美国专利第4007114号 说明书所公开的三聚氰胺甲醛胶、美国专利第4859340号说明书所公开的聚酰胺-聚胺环 氧氯丙烷树脂、美国专利第4596660号说明书所公开的聚烯化氧等。
[0136] 作为不含强酸性例子交换基、且含有产生ZETA电位的电荷控制剂的过滤器,适宜 的有住友3M株式会社制的"CUNO? ZETA Plus ?滤芯EC GN级(CUN0?七'一夕7。歹只τ m7 4少夕一力一卜y 7 ECGN夕b -卜'、)',等。
[0137] 使含有高分子化合物的溶液在过滤器上通过时的溶液pH优选3. 5?11. 0,溶液的 温度优选〇?40°C,更优选10?30°C。溶液的pH和温度若在上述范围内,则可抑制交联 反应的进行和酯键的分解,维持最适于过滤的粘度。
[0138] 此外,使含有高分子化合物的溶液通过前,优选用超纯水和溶解高分子化合物的 溶剂洗涤过滤器。通过使含有高分子化合物的溶液通过洗涤后的过滤器,金属杂质变得易 于电位吸附于过滤器所含有的粒状过滤助剂,可将金属杂质除去至非常低的浓度。
[0139] 可将工序(C)所得到的含有高分子化合物的溶液原样用于抗蚀剂膜或防反射膜 的形成,从能得到更高纯度的高分子化合物方面出发,在工序(c)之后优选进行下述工序 ⑷。
[0140] 〈工序(d)>
[0141] 工序(d)是将工序(c)中得到的含有高分子化合物的溶液和高分子化合物的不良 溶剂混合,使高分子化合物析出,得到粉体状的高分子化合物的工序。
[0142] 在工序(d)中,可将工序(C)中通过了过滤器的含有高分子化合物的溶液原样与 不良溶剂混合,也可将含有高分子化合物的溶液用稀释溶剂稀释至适当的溶液粘度后与不 良溶剂混合。
[0143] 工序(d)中所用的不良溶剂和稀释溶剂,可使用与工序(b)中所使用的不良溶剂 和稀释溶剂相同的溶剂。
[0144] 通过将不良溶剂中析出的析出物过滤,以湿粉的状态得到被再沉淀提纯的高分子 化合物。通过干燥该高分子化合物,可得到粉体状的高分子化合物。
[0145] 干燥方法只要能将湿粉状态的高分子化合物干燥至所期望的含液率即可,可以使 用公知的干燥方法。从能更短时间内干燥方面出发,优选在干燥气氛下减压的减压干燥法、 在干燥气氛下加热的加热干燥法、或在干燥气氛下减压且进行加热的减压加热干燥法。
[0146] 通过干燥所得的粉体状的高分子化合物中的含液率,从光刻性能的观点出发,优 选5质量%以下,更优选3质量%以下,特别优选1质量%以下。
[0147] 〈作用效果〉
[0148] 若按照以上说明的本发明的高分子化合物的制造方法,在酸催化剂或碱催化剂的 存在下得到高分子化合物后(工序(a)),使含有该高分子化合物的溶液或含有再沉淀提纯 后的高分子化合物的溶液接触阴离子交换树脂和阳离子交换树脂的混合树脂(工序(b)), 即可除去高分子化合物中所含的金属杂质(主要是轻金属)、酸和碱杂质。
[0149] 进一步地,工序(b)之后,若使接触混合树脂的含有高分子化合物的溶液通过特 定的过滤器(工序(C)),则可除去高分子化合物中所含的金属杂质(工序(b)中未能完全 除去的轻金属和重金属)。
[0150] 此外,若在工序(b)和工序(d)中对高分子化合物进行再沉淀提纯,则可除去未反 应的单体等。
[0151] 因此,若按照本发明的高分子化合物的制造方法,可制造金属杂质浓度较低、且酸 和碱杂质浓度也被充分降低的高分子化合物。具体地,可得高纯度的高分子化合物,其中高 分子化合物中存在的金属杂质的浓度,对于各金属均为80ppb以下,优选50ppb以下,高分 子化合物中存在的酸和碱杂质的浓度合计为50ppm以下。
[0152] 此外,如上所述,工序(c)所用的过滤器,除了重金属外,还可除去轻金属。因此, 即使不进行工序(b),或在工序(b)之前进行工序(c),也可降低金属杂质浓度。
[0153] 但是,若不进行工序(b)或在工序(b)之前进行工序(C),则因用过滤器连轻金属 也除去,因此对过滤器的负担会增加。而且,由于使残存有工序(a)所用的酸催化剂或碱催 化剂、反应终止剂的含有高分子化合物的溶液通过过滤器,因此过滤器的离子交换能力降 低,其结果金属吸附量会降低。因此,为了不进行工序(b)或通过在工序(b)之前进行工序 (c)从而充分降低金属杂质浓度,需要增加过滤器的使用数量。但是,过滤器的使用数量越 增多,换算为每个过滤器时的高分子化合物的生产率会降低。此外,用于金属杂质的除去的 过滤器价格高,因而使用多个过滤器也导致制造成本的上升。
[0154] 然而,若是本发明,由于使含有高分子化合物的溶液在通过过滤器之前接触比较 廉价的阴离子交换树脂和阳离子交换树脂的混合树脂,因此高分子化合物中的轻金属和酸 以及碱杂质的大部分即被除去。如此,由于使轻金属和酸和碱杂质的大部分被除去后的含 有高分子化合物的溶液通过过滤器,因此对过滤器的负担降低,可削减使用数量。
[0155] 因此,根据本发明的高分子化合物的制造方法,可高生产率地制造金属杂质浓度 较低、且酸和碱杂质浓度也被充分降低的高分子化合物。
[0156] 〈高分子化合物〉
[0157] 本发明的高分子化合物中存在的酸和碱杂质浓度的合计为50ppm以下。酸和碱杂 质浓度的合计若在50ppm以下,则由于分子量的增加被抑制等,获得了保存稳定性优异等 的效果。酸和碱杂质浓度越少越优选。但是,例如将高分子化合物用于在抗蚀剂膜的下层 形成的防反射膜(BARC)的形成中使用的防反射膜等时,酸杂质和碱杂质有作为在膜形成 时的交联的催化剂发挥作用的情况。因此,按照用途,高分子化合物中也可含有少量酸杂质 和碱杂质。具体地,酸和碱杂质浓度的合计也可在2ppm以上。
[0158] 此外,高分子化合物中存在的各种金属杂质的浓度(具体地如,钠、钾、妈、铁的各 金属杂质的浓度)为80ppb以下,优选50ppb以下。各金属杂质的浓度在80ppb以下,优选 50ppb以下时,能够作为光刻工序所用的光刻用高分子化合物表现出充分的性能。
[0159] 进一步地,薄膜化至膜厚400nm以下时的波长193nm下的折射率(η值)为L 5? 2. 1,衰减系数(k值)为0. 1?0. 7。折射率及衰减系数为上述范围内的高分子化合物,适 宜用于在抗蚀剂膜的下层形成的防反射膜(BARC)的形成中采用的防反射膜。
[0160] 折射率和衰减系数,可如下所述地测定。
[0161] 首先,使高分子化合物溶解于溶剂中,调制高分子化合物溶液。将该高分子化合物 溶液涂布于硅片上以使干燥后的膜厚变为400nm以下,通过烘烤使之干燥,除去溶剂,形成 薄膜。用光谱椭偏仪测定得到的薄膜在波长193nm下的折射率和衰减系数。
[0162] 此外,薄膜化时的膜厚若为400nm以下,则测定任何膜厚下的折射率和衰减系数, 测定值的差都很小。因此,膜厚若在400nm以下则无特别限制,但优选20?100nm。
[0163] 高分子化合物优选在侧链上加成有交联剂。若侧链上加成交联剂,可防止具有成 为异物的原因的可能性的交联剂的升华。
[0164] 此外,从蚀刻速度等优异、对半导体光刻技术的适用最适合方面出发,高分子化合 物优选聚酯系高分子化合物。
[0165] <高分子化合物的用途>
[0166] 高分子化合物适宜作为光刻工序中使用的光刻用高分子化合物。作为光刻用高分 子化合物,可举出,用于抗蚀剂膜的形成的抗蚀剂用高分子化合物、在抗蚀剂膜的上层形成 的防反射膜(TARC)、或在抗蚀剂膜的下层形成的防反射膜(BARC)的形成所用的防反射膜 用高分子化合物、用于间隙填充膜的形成的间隙填充膜用高分子化合物、用于外涂层的形 成的外涂层膜用高分子化合物。
[0167] 光刻用高分子化合物的质均分子量(Mw)优选1000?200000,更优选2000? 40000。Z均分子量(Mz)优选1000?400000,更优选2000?100000。
[0168] 高分子化合物通常以溶液的状态用于抗蚀剂膜或反射防止膜等的形成。
[0169] 不进行上述的工序(d)时,可将工序(c)中得到的含有高分子化合物的溶液原样 作为高分子化合物溶液用于各种用途。此外,也可将工序(C)中得到的含高分子化合物的 溶液浓缩至所期望的浓度,再用工序(b)的说明中示例的稀释溶剂等稀释等后用于各种用 途。
[0170] 另一方面,进行上述的工序(d)时,也可将工序(d)中得到的粉体状的高分子化合 物溶解于溶剂而得的高分子化合物溶液用于各种用途。作为使高分子化合物溶解的溶剂没 有特别限制,可举出例如工序(b)的说明中示例的稀释溶剂等。
[0171] 高分子化合物溶液因含有通过本发明的高分子化合物的制造方法制造的高纯度 的高分子化合物,所以金属杂质浓度较低,且酸和碱杂质浓度也被充分降低。具体地,高分 子化合物溶液中存在的金属杂质的浓度,相对于高分子化合物的固态组分,对于各金属为 80ppb以下,优选50ppb以下,高分子化合物溶液中存在的酸和碱杂质的浓度,相对于高分 子化合物的固态组分为50ppm以下。
[0172] 实施例
[0173] 以下的实施例和比较例是使用本发明制造高分子化合物的例子。然而,这些例子 并没有任何限定或缩小本发明的范围的意图,不应当被解释为教导了为实施本发明必须排 他性地利用的条件、参数或值。此外,没有特别说明时,所有的份和百分率均是以质量为基 准的值。
[0174] [测定?评价]
[0175] 〈质均分子量(Mw)、Z均分子量(Mz)的测定〉
[0176] 高分子化合物的质均分子量(Mw)及Z均分子量(Mz)是通过GPC(凝胶渗透色谱 法:
[0177] 东曹株式会社制,"HLC8220GPC")用聚苯乙烯换算求出的。测定条件如下所述。
[0178] ?测定样品:干粉50mg/洗脱液5mL,
[0179] ?洗脱液:I. 7mM 磷酸 /THF,
[0180] ?分离柱:昭和电工株式会社制的" Shodex GPC K-805L",
[0181] ?测定温度:40°C,
[0182] ?检测器:示差折光检测器。
[0183] 〈折射率和衰减系数的测定〉
[0184] 如下所述地求出高分子化合物在波长193nm下的折射率和衰减系数。
[0185] 首先,将高分子化合物的干粉0. 40g溶解于2-羟基异丁酸甲酯(HBM)9. 60g中,调 制高分子化合物溶液。
[0186] 将得到的高分子化合物溶液涂布于硅片上使干燥后的膜厚变为40nm以下,通过 烘烤使之干燥,除去溶剂,形成薄膜。使用光谱椭偏仪(J. A. Woollam公司制"VUV-VASE VU-302"),测定得到的薄膜在波长193nm下的折射率和衰减系数。
[0187] 〈金属杂质浓度的测定〉
[0188] 如下所述地求出高分子化合物中的各金属杂质的浓度(固态组分,单位:ppb)。
[0189] 首先,将高分子化合物的干粉I. 5g用蒸馏提纯的N-甲基-2-吡咯烷酮稀释100 倍,调制样品。
[0190] 对于得到的样品,通过高频电感耦合等离子体质谱仪(ICP-MS(InduCti vely Coulped Plasma Mass Spectrometer) :Agilent Technologies 公司制,"7500cs")对钠 (Na)、钾(K)、妈(Ca)、铁(Fe)进行金属分析,求出各金属杂质浓度。
[0191] 〈酸杂质的浓度的测定〉
[0192] 如下所述地求出来自高分子化合物中的酸催化剂(pTSA)的酸杂质的浓度(固态 组分换算,单位:ppm)。
[0193] 首先,将高分子化合物的干粉LOg溶解于21mL乙腈、9mL水的混合溶液中,调制样 品。
[0194] 对于所得的样品,通过高速液相色谱法(HPLC :株式会社岛津理化制,"LC-20A"), 分离柱:GL Science株式会社制,"Intersil ODS-2")求出酸杂质(残余pTSA)浓度。
[0195] 〈碱杂质的浓度的测定〉
[0196] 如下所述地求出来自高分子化合物中的反应终止剂(碱性化合物:三乙胺)的碱 杂质的浓度(固态组分换算,单位:ppm)。
[0197] 首先,将高分子化合物的干粉I. Og溶解于21mL乙腈、9mL水的混合溶液,调制样 品。
[0198] 对于得到的样品,通过气相色谱法(GC :Aglient · technology株式会社 制,"Aglient7890A GC 系统",分离柱:Aglient · Technology 株式会社制"Aglient HP-INNOWAX"),求出碱杂质(残留三乙胺)浓度。
[0199] 〈保存稳定性试验方法〉
[0200] 保存稳定性试验按以下那样实施。
[0201] 首先,在高分子化合物的干粉2. Og中添加 HBM 8. Og稀释5倍,调制样品。
[0202] 将得到的样品在50°C下保温,在8小时、24小时、48小时后分别采样,按与上述质 均分子量(Mw)、Z均分子量(Mz)的测定同样的方式求出各分子量。
[0203] [合成例1]
[0204] 将1,3,5_三(2-羟乙基)异氰脲酸酯(67. 128,0.258111〇1)、2,3-萘二羧酸二甲 醋(63. Olg,0. 258mol)、对甲苯横酸一水合物(pTSA) (2. 606g,13. 7mmol)和甲氧苯甲酰 (79. 60g)填充到三口烧瓶中,用Dean-Stark分离器进行脱水和脱甲醇反应,同时在130°C 下聚合8小时。之后,冷却至50°C,加入三乙胺(I. 386g,13. 7mmol)使反应停止(工序(a))。
[0205] 将得到的聚合溶液用四氢呋喃(THF) (89. 4g)稀释,得到稀释液。将该稀释液加 入到环己烷(580. Og)和2-丙醇(IPA) (1740. Og)的混合物(不良溶剂)中再沉淀(工序 (b)的再沉淀提纯),得到以下述式(1)为结构单元的聚酯系高分子化合物1(质均分子量 (Mw) :6300, Z 均分子量(Mz) : 12500,产率:约 50% )。
[0206] [化 1]
[0207]

【权利要求】
1. 一种高分子化合物的制造方法,其包括下述工序(a)、(b), 工序(a):在酸催化剂或碱催化剂的存在下得到高分子化合物的工序; 工序(b):使含有工序(a)所得到的高分子化合物的溶液与混合了阴离子交换树脂和 阳离子交换树脂的混合树脂接触的工序。
2. 根据权利要求1所述的高分子化合物的制造方法,所述阴离子交换树脂和阳离子交 换树脂的质量比、即阴离子交换树脂/阳离子交换树脂为60/40?99/1。
3. 根据权利要求1或2所述的高分子化合物的制造方法,所述高分子化合物的侧链上 加成有交联剂。
4. 根据权利要求1或2所述的高分子化合物的制造方法,所述高分子化合物为聚酯系 高分子化合物。
5. 根据权利要求1或2所述的高分子化合物的制造方法,所述酸催化剂为磺酸。
6. 根据权利要求1或2所述的高分子化合物的制造方法,所述碱催化剂为叔胺。
7. 根据权利要求1或2所述的高分子化合物的制造方法,进一步包括下述工序(c), 工序(c):使工序(b)中得到的含有高分子化合物的溶液通过过滤器,得到含有高分子 化合物的溶液的工序,其中,所述过滤器不含强酸性离子交换基,且含有产生G电位的电 荷控制剂。
8. 根据权利要求7所述的高分子化合物的制造方法,进一步包括下述工序(d), 工序(d):将工序(c)中得到的含有高分子化合物的溶液和高分子化合物的不良溶剂 混合,使高分子化合物析出,得到粉体状的高分子化合物的工序。
9. 一种高分子化合物,酸和碱杂质浓度的合计在50ppm以下,且钠、钾、1?、铁的各金属 杂质浓度在80ppb以下,在薄膜化至膜厚400nm以下时的波长193nm下的折射率为1. 5? 2. 1,衰减系数为0. 1?0.7。
10. 根据权利要求9所述的高分子化合物,各金属杂质浓度为50ppb以下。
11. 根据权利要求9所述的高分子化合物,酸和碱杂质浓度的合计为2ppm以上。
12. 根据权利要求9?11中任意一项所述的高分子化合物,在所述高分子化合物的侧 链上加成有交联剂。
13. 根据权利要求9?12中任意一项所述的高分子化合物,所述高分子化合物是聚酯 系高分子化合物。
【文档编号】C08G63/90GK104487484SQ201380034210
【公开日】2015年4月1日 申请日期:2013年6月25日 优先权日:2012年6月26日
【发明者】土屋征司, 前田晋一 申请人:三菱丽阳株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1