一种芳香胺衍生物及其有机电致发光器件的制作方法

文档序号:15978768发布日期:2018-11-17 00:04阅读:138来源:国知局

本发明涉及有机光电材料技术领域,具体涉及一种芳香胺衍生物及其有机电致发光器件。

背景技术

有机发光二极管(oled)是双注入型发光器件,其结构如三明治的结构,由氧化铟锡阳极、金属阴极和二者之间的有机物层组成,当在两极之间施加适当的电压时,空穴从阳极一侧注入,电子从阴极一侧注入,二者在有机物层中的发光层相互作用形成激子(exciton),当激子从激发态恢复到基态时即发光,将电能直接转化为有机半导体材料分子的光能。在有机物层中包含有发光材料、空穴传输材料、电子传输材料等。其中,空穴传输材料的作用主要是注入和传输空穴,具有高的空穴迁移率(holemobility),有利于空穴的注入和传输。

但是,目前用于oled器件中的空穴传输材料的最高占据分子轨道能级(homo)低,第一三重激发态(t1)值也低,使得在发光层中生成的激子转移到空穴传输层界面或者空穴传输层内侧,最终导致在发光层内界面的发光或者发光层内的电荷不均衡,从而在空穴传输层的界面上发光,使oled器件的色纯度、发光效率变低,使用寿命变短。



技术实现要素:

针对现有技术存在的上述问题,本发明提供一种芳香胺衍生物及其有机电致发光器件。

本发明提供了一种芳香胺衍生物,结构式如式(i)所示:

其中,ar1、ar2独立地选自取代或未取代的c6~c60的芳基、取代或未取代的c3~c60的杂芳基;

ar3选自如下所示基团:

其中,x、y独立地选自ch或n;z选自o或s;z1、z2独立地选自o或s;r1、r2、r3、r4、r5、r6、r7、r8、r9、r10、r11、r12、r13、r14、r15、r16独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基、萘基;

ar4选自如下所示基团:

其中,z’选自o或s;r1’、r2’、r3’、r4’、r5’、r6’、r7’、r8’、r9’、r10’、r11’、r12’、r13’、r14’独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基、萘基。

优选的,所述的芳香胺衍生物具有如通式(ii)所示结构:

其中,所述的ar3、ar4同上所述。

优选的,所述的ar3选自如下所示基团:

其中,r1、r2、r3、r4、r5、r6、r7、r8、r9、r10、r11、r12、r13、r14、r15、r16独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基。

优选的,所述的ar3选自如下所示基团:

优选的,所述的ar4选自如下所示基团:

其中,r1’、r2’、r3’、r4’、r5’、r6’、r7’、r8’、r9’、r10’、r11’、r12’、r13’、r14’独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基。

优选的,所述的ar4选自如下所示基团:

最优选的,所述的芳香胺衍生物选自如下所示化合物中的任意一种:

本发明还提供一种有机电致发光器件,所述有机电致发光器件包括阴极、阳极和置于所述阴极与所述阳极之间的一个或多个有机物层,所述有机物层中含有所述的芳香胺衍生物。

优选的,所述有机物层中含有空穴传输层;所述空穴传输层中含有所述的芳香胺衍生物。

更优选的,所述有机物层中含有发光辅助层;所述发光辅助层中含有所述的芳香胺衍生物。

本发明的有益效果:

本发明提供的芳香胺衍生物,具有高的空穴迁移率,有利于空穴的注入和传输;通过引入芴与苯并呋喃或苯并噻吩并联的基团,一方面增加了分子量,提高了玻璃化转变温度(tg),使成膜性和稳定性好,另一方面具有合适的最高占据分子轨道能级和t1值,能够均衡发光层内界面的发光或者发光层内的电荷,避免激子扩散到空穴传输层一侧,从而在发光层发光。本发明提供的芳香胺衍生物是一类性能优良的oled材料,作为空穴传输材料用于oled器件中,能够有效改善oled器件的性能,如提高器件的发光效率和色纯度,延长器件的使用寿命,降低器件的驱动电压。

具体实施方式

本发明首先提供一种芳香胺衍生物,具有如通式(i)所示结构:

其中,ar1、ar2独立地选自取代或未取代的c6~c60的芳基、取代或未取代的c3~c60的杂芳基;

本发明所述的芳基是指芳烃分子的一个芳核碳上去掉一个氢原子后,剩下的基团的总称,其可以为单环芳基或稠环芳基,例如可选自苯基、联苯基、三联苯基、萘基、蒽基、菲基、芘基、芴基或苯并菲基等,但不限于此。

本发明所述杂芳基是指芳基中的一个或多个芳核碳被杂原子替换得到的基团的总称,所述杂原子包括但不限于氧、硫或氮原子,所述杂芳基可以为单环杂芳基或稠环杂芳基,例如可以选自吡啶基、喹啉基、咔唑基、噻吩基、苯并噻吩基、呋喃基、苯并呋喃基、嘧啶基、苯并嘧啶基、咪唑基或苯并咪唑基等,但不限于此。

ar3选自如下所示基团:

其中,x、y独立地选自ch或n;z选自o或s;z1、z2独立地选自o或s;r1、r2、r3、r4、r5、r6、r7、r8、r9、r10、r11、r12、r13、r14、r15、r16独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基、萘基;

ar4选自如下所示基团:

其中,z’选自o或s;r1’、r2’、r3’、r4’、r5’、r6’、r7’、r8’、r9’、r10’、r11’、r12’、r13’、r14’独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基、萘基。

优选的,所述的芳香胺衍生物具有如通式(ii)所示结构:

其中,所述的ar3、ar4同上所述。

优选的,所述的ar3选自如下所示基团:

其中,r1、r2、r3、r4、r5、r6、r7、r8、r9、r10、r11、r12、r13、r14、r15、r16独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基。

优选的,所述的ar3选自如下所示基团:

优选的,所述的ar4选自如下所示基团:

其中,r1’、r2’、r3’、r4’、r5’、r6’、r7’、r8’、r9’、r10’、r11’、r12’、r13’、r14’独立地选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、氰基、甲氧基、氟原子、二氟甲基、三氟甲基、苯基。

优选的,所述的ar4选自如下所示基团:

最优选的,所述的芳香胺衍生物选自如下所示化合物中的任意一种:

以上列举了本发明所述芳香胺衍生物的一些具体结构形式,但本发明并不局限于所列这些化学结构,凡是以式(i)、(ii)所示结构为基础,取代基为如上所限定的基团都应包含在内。

本发明所述的芳香胺衍生物的制备方法,可通过如下合成路线制备得到:

其中,ar1、ar2、ar3、ar4如上所述。

(1)以4-碘-4'-溴联苯(化合物a)为原料,与同时含有ar1和ar2的芳胺发生buchwald-hartwig偶联反应,得到中间体(b);

(2)中间体(b)与含有ar3的芳胺化合物同样通过buchwald-hartwig偶联反应,得到中间体(c);

(3)最后,中间体(c)与含有ar4的溴化物发生buchwald-hartwig偶联反应,得到目标化合物(i)。

本发明对上述各反应的反应条件没有特殊的限制,采用本领域技术人员所熟知的反应条件即可,该制备方法简单,原料易得。

本发明进一步提供一种有机电致发光器件,所述有机电致发光器件包括阴极、阳极和置于所述阴极与所述阳极之间的一个或多个有机物层,所述有机物层中含有本发明所述的芳香胺衍生物,所述有机物层中优选包含空穴注入层、空穴传输层、发光辅助层、发光层、空穴阻挡层、电子传输层、电子注入层中的至少一层;更优选所述有机物层中含有空穴传输层,所述空穴传输层位于所述阳极和所述发光层之间,并且所述空穴传输层中含有所述的芳香胺衍生物;最优选的,所述有机物层中同时含有发光辅助层,所述发光辅助层位于所述空穴传输层和所述发光层之间,并且所述发光辅助层中含有所述的芳香胺衍生物。

按照本发明,采用的器件结构优选的,可以为:ito透明玻璃作为阳极;4,4',4”-三[2-萘基苯基氨基]三苯基胺(2-tnata)作为空穴注入层;n,n'-二苯基-n,n'-(1-萘基)-1,1'-联苯-4,4'-二胺(npb)或本发明化合物(ht1~ht249)作为空穴传输层;本发明化合物(ht1~ht249)作为发光辅助层;4,4'-二(9-咔唑)联苯(cbp)与三(2-苯基吡啶)合铱(ir(ppy)3)以90:10的重量比的混合物作为发光层;双(2-甲基-8-羟基喹啉-n1,o8)-(1,1'-联苯-4-羟基)铝(balq)作为空穴阻挡层;8-羟基喹啉铝(alq3)作为电子传输层;lif作为电子注入层;al作为阴极。

所述有机电致发光器件可用于平板显示器、照明光源、指示牌、信号灯等应用领域。

通过以下实施例,更详尽地解释本发明,但不希望因此限制本发明。在该描述的基础上,本领域普通技术人员将能够在不付出创造性劳动的情况下,在所公开的整个范围内实施本发明和制备根据本发明的其他化合物。

本发明对以下实施例中所采用的原料的来源没有特别的限制,可以为市售产品或采用本领域技术人员所熟知的制备方法制备得到。

实施例1:中间体b的制备

中间体b-1的制备:

氩气氛下,将17.95g(50mmol)的化合物(a)、16.07g(50mmol)的二(4-联苯基)胺、9.60g(100mmol)叔丁醇钠溶于500ml的脱水甲苯中,搅拌下加入0.23g(1mmol)的醋酸钯、0.20g(1mmol)的三苯基膦,升温至80℃,反应8小时。反应结束后,冷却,用硅藻土/硅胶漏斗过滤,滤液通过减压蒸馏去除溶剂,所得残渣在甲苯中进行重结晶,干燥,即可得到22.93g(41.5mmol)的中间体(b-1),产率为83%。

实施例2:化合物ht47的制备

(1)氩气氛下,将22.10g(40mmol)中间体b-1、5.73g(40mmol)1-萘胺(化合物m-1)、7.69g(80mmol)叔丁醇钠溶于400ml脱水甲苯中,搅拌下加入0.18g(0.8mmol)醋酸钯、0.16g(0.8mmol)三苯基膦,在80℃下反应8小时。冷却后,通过硅藻土/硅胶漏斗过滤,滤液通过减压蒸馏去除有机溶剂,所得残渣在甲苯中重结晶,干燥,即可得到21.64g(35.2mmol)中间体c-1,产率为88%。

(2)氩气氛下,将18.47g(30mmol)的中间体c-1、10.90g(30mmol)的溴化物n-1、5.77g(60mmol)的叔丁醇钠溶于300ml的脱水甲苯中,搅拌下加入0.14g(0.6mmol)的醋酸钯、0.12g(0.6mmol)的三苯基膦,升温至80℃,反应8小时。反应结束后,通过硅藻土/硅胶漏斗过滤,滤液通过减压蒸馏去除溶剂,所得残渣在甲苯中重结晶,干燥,即可得到22.07g(24.6mmol)的化合物ht47,产率为82%。质谱m/z:899.01(计算值:897.13)。理论元素含量(%)c67h48n2o:c,89.70;h,5.39;n,3.12;o,1.78。实测元素含量(%):c,89.73;h,5.36;n,3.15;o,1.79。上述结果证实获得产物为目标产品。

实施例3:化合物ht55的制备

将化合物m-1替换成为等摩尔量的化合物m-2,将溴化物n-1替换成为等摩尔量的溴化物n-2,其他步骤均与实施例2相同,即可得到目标化合物ht55。质谱m/z:937.98(计算值:937.16)。理论元素含量(%)c69h48n2o2:c,88.43;h,5.16;n,2.99;o,3.41。实测元素含量(%):c,88.41;h,5.13;n,3.02;o,3.45。上述结果证实获得产物为目标产品。

实施例4:化合物ht66的制备

将化合物m-1替换成为等摩尔量的化合物m-3,将溴化物n-1替换成为等摩尔量的溴化物n-3,其他步骤均与实施例2相同,即可得到目标化合物ht66。质谱m/z:980.59(计算值:979.30)。理论元素含量(%)c72h54n2s:c,88.31;h,5.56;n,2.86;s,3.27。实测元素含量(%):c,88.33;h,5.52;n,2.89;s,3.29。上述结果证实获得产物为目标产品。

实施例5:化合物ht114的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-4,其他步骤均与实施例2相同,即可得到目标化合物ht114。质谱m/z:856.11(计算值:857.07)。理论元素含量(%)c64h44n2o:c,89.69;h,5.17;n,3.27;o,1.87。实测元素含量(%):c,89.67;h,5.14;n,3.30;o,1.91。上述结果证实获得产物为目标产品。

实施例6:化合物ht142的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-5,其他步骤均与实施例2相同,即可得到目标化合物ht142。质谱m/z:968.18(计算值:969.20)。理论元素含量(%)c73h48n2o:c,90.47;h,4.99;n,2.89;o,1.65。实测元素含量(%):c,90.49;h,4.97;n,2.86;o,1.68。上述结果证实获得产物为目标产品。

实施例7:化合物ht223的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-6,其他步骤均与实施例2相同,即可得到目标化合物ht223。质谱m/z:822.13(计算值:820.99)。理论元素含量(%)c60h40n2o2:c,87.78;h,4.91;n,3.41;o,3.90。实测元素含量(%):c,87.74;h,4.94;n,3.45;o,3.93。上述结果证实获得产物为目标产品。

实施例8:化合物ht11的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-7,其他步骤均与实施例2相同,即可得到目标化合物ht11。质谱m/z:847.98(计算值:847.07)。理论元素含量(%)c63h46n2o:c,89.33;h,5.47;n,3.31;o,1.89。实测元素含量(%):c,89.31;h,5.45;n,3.35;o,1.93。上述结果证实获得产物为目标产品。

实施例9:化合物ht24的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-8,其他步骤均与实施例2相同,即可得到目标化合物ht24。质谱m/z:864.34(计算值:863.14)。理论元素含量(%)c63h46n2s:c,87.67;h,5.37;n,3.25;s,3.71。实测元素含量(%):c,87.62;h,5.35;n,3.28;s,3.74。上述结果证实获得产物为目标产品。

实施例10:化合物ht86的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-9,其他步骤均与实施例2相同,即可得到目标化合物ht86。质谱m/z:781.55(计算值:780.97)。理论元素含量(%)c58h40n2o:c,89.20;h,5.16;n,3.59;o,2.05。实测元素含量(%):c,89.22;h,5.14;n,3.63;o,2.08。上述结果证实获得产物为目标产品。

实施例11:化合物ht96的制备

将化合物m-1替换成为等摩尔量的化合物m-4,将溴化物n-1替换成为等摩尔量的溴化物n-10,其他步骤均与实施例2相同,即可得到目标化合物ht96。质谱m/z:806.13(计算值:807.01)。理论元素含量(%)c60h42n2o:c,89.30;h,5.25;n,3.47;o,1.98。实测元素含量(%):c,89.33;h,5.22;n,3.49;o,1.96。上述结果证实获得产物为目标产品。

对比器件实施例:

首先,在形成于有机基板的ito层(阳极)上,以60nm的厚度真空沉积2-tnata来形成空穴注入层;在上述空穴注入层上,以60nm的厚度真空蒸镀npb来形成空穴传输层;接着,在上述空穴传输层上,以重量比为90:10的cbp和ir(ppy)3真空沉积作为发光层,厚度是30nm;接着,在上述发光层上以10nm的厚度真空沉积balq来形成空穴阻挡层;再在上述空穴阻挡层上以40nm的厚度真空沉积alq3来形成电子传输层;然后,以0.2nm的厚度沉积lif作为电子注入层;最后,以150nm的厚度沉积al来形成阴极。

器件实施例1:发光器件1的制备

首先,在形成于有机基板的ito层(阳极)上以60nm的厚度真空沉积2-tnata来形成空穴注入层;在上述空穴注入层上以60nm的厚度真空蒸镀npb来形成空穴传输层;之后,在空穴传输层上以20nm的厚度真空蒸镀化合物ht47作为发光辅助层;接着,在上述发光辅助层上以重量比为90:10的cbp和ir(ppy)3真空沉积作为发光层,厚度为30nm;接着,在上述发光层上以10nm的厚度真空沉积balq来形成空穴阻挡层;在上述空穴阻挡层上以40nm的厚度真空沉积alq3来形成电子传输层;然后,以0.2nm的厚度沉积lif作为电子注入层;最后,以150nm的厚度沉积al来形成阴极。

器件实施例2:发光器件2的制备

将化合物ht47替换成为化合物ht55,其他步骤均与器件实施例1相同。

器件实施例3:发光器件3的制备

将化合物ht47替换成为化合物ht66,其他步骤均与器件实施例1相同。

器件实施例4:发光器件4的制备

将化合物ht47替换成为化合物ht114,其他步骤均与器件实施例1相同。

器件实施例5:发光器件5的制备

将化合物ht47替换成为化合物ht142,其他步骤均与器件实施例1相同。

器件实施例6:发光器件6的制备

将化合物ht47替换成为化合物ht223,其他步骤均与器件实施例1相同。

器件实施例7:发光器件7的制备

将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例8:发光器件8的制备

将化合物ht47替换成为化合物ht24,其他步骤均与器件实施例1相同。

器件实施例9:发光器件9的制备

将化合物ht47替换成为化合物ht86,其他步骤均与器件实施例1相同。

器件实施例10:发光器件10的制备

将化合物ht47替换成为化合物ht96,其他步骤均与器件实施例1相同。

器件实施例11:发光器件11的制备

将npb替换成为化合物ht47,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例12:发光器件12的制备

将npb替换成为化合物ht55,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例13:发光器件13的制备

将npb替换成为化合物ht66,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例14:发光器件14的制备

将npb替换成为化合物ht114,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例15:发光器件15的制备

将npb替换成为化合物ht142,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例16:发光器件16的制备

将npb替换成为化合物ht223,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例17:发光器件17的制备

将npb替换成为化合物ht11,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例18:发光器件18的制备

将npb替换成为化合物ht24,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例19:发光器件19的制备

将npb替换成为化合物ht86,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

器件实施例20:发光器件20的制备

将npb替换成为化合物ht96,将化合物ht47替换成为化合物ht11,其他步骤均与器件实施例1相同。

本发明实施例及对比实施例中涉及的化合物如下所示:

本发明实施例制备得到的有机电致发光器件的发光性能如下表所示:

以上结果表明,本发明的芳香胺衍生物作为空穴传输层和发光辅助层,应用于有机电致发光器件中,可以有效提高器件的发光效率和色纯度,延长器件的使用寿命,并且能降低器件的驱动电压,是一类性能优良的有机发光材料。

显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1