可起泡性底层填料密封剂的制作方法

文档序号:3800483阅读:179来源:国知局
专利名称:可起泡性底层填料密封剂的制作方法
技术领域
本发明涉及含有一种或多种可发性填充物(expandable fillers)的底层填料密封剂(underfill encapsulant),和将它应用于电子器件的方法。
背景技术
本发明涉及含有一种或多种可发性填充物的底层填料密封剂化合物。密封剂被用于保护和加强微电子器件中电子元件和衬底之间的相互连接。微电子器件含有多种类型的电路元件,主要是一起组装在集成电路(IC)芯片中的晶体管,也含有电阻器、电容器和其他元件。这些电子元件相互连接起来,形成电路,并最终连接到载体或衬底(substrate)诸如印刷线路板上,且受到它们的支撑。集成电路元件可以包括单裸片(single bare chip)、单密封片(single encapsulated chip)或由许多芯片组成的密封组件(encapsulated package)。单裸片可以连接于引线框架(lead frame),然后引线框被密封并附着到印刷线路板,或者它可以直接附着到印刷线路板上。这些芯片最初形成含有多个芯片的半导体晶片。如果需要,半导体晶片切割成单个的芯片或芯片封装组件(chip package)。
无论元件是连接到引线框架的裸片,还是连接到印刷线路板或其他衬底的组件,都要在电子元件上的电终端(electrical termination)和衬底上相应的电终端之间建立连接。建立这些连接的一种方法是使用聚合材料或金属材料,而聚合材料或金属材料粘到元件或衬底终端(terminal)形成凸块(bump)。将所述终端对齐并相互接触在一起,将所得到的组合件加热,使得金属材料或聚合材料回流(reflow),并由此将连接固化。
在电子组合件正常的服务寿命期间,电子组合件经历反复的升温和降温循环。由于电子元件、连接材料和衬底之间的热膨胀系数的差异,这种热循环会对组合件的元件施加压力,并使组合件失灵。为了防止这种失灵,元件和衬底之间的间隙充满有聚合物密封剂,下文称为底层填料或底层填料密封剂,这样可以加强连接材料,并吸收热循环的一些应力。底层填料技术的两种著名的应用是加强在行业中被称之为芯片尺寸封装(chip scale packages,CSP)和倒装芯片封装(flip-chippackages)的封装,在芯片尺寸封装中,芯片封装附着到衬底上,在倒装芯片封装中,芯片通过互连阵列(array of interconnections)附着到衬底上。底层填料的另一功能是增强元件抵抗机械冲击的能力,诸如抵抗碰撞或振动。这对于便携式电子器件的耐用性尤其重要,所述的便携式电子器件如移动电话和类似物,这些便携式电子器件在使用期间可能会意外坠落或受到其他应力作用。
在常规的毛细管流底层填料应用(capillary flow underfillapplications)中,在金属互连或聚合物互连发生回流之后,底层填料散布开来并固化。在该过程中,助熔剂(flux)首先被涂敷到衬底上的金属垫上。接下来,将芯片置于衬底涂敷有助熔剂的区域上,在焊接位置的顶部上。然后将该组合件加热,使得焊接接头(solder joint)回流。在这个时候,精确数量的底层填料密封剂材料沿着电子组合件的一个或多个周边散布开来,元件与衬底的间隙内的毛细管作用向内吸拽材料。间隙被充满之后,额外的底层填料密封剂可以沿着整个组合件的外围散布开来,以帮助减少应力集中,并延长组装结构的疲劳寿命。随后底层填料密封剂被固化,获得它最优的最终特性。毛细管底层填料的缺点是它的施用需要若干额外的步骤,因此对于大规模制造是不经济的。
最近,已经做了努力,通过使用无流动底层填料(no flow underfill)和在将元件置于组合件位置之前将无流动底层填料直接涂敷在组合件位置上,来使得工艺流线化,并增加效率。放置元件之后,将它焊接到衬底上的金属连接上,这通过使整个组件穿过回流炉(reflow oven)来进行。在该工艺中,底层填料熔融焊料(solder)和金属垫,以在相互连接、衬底和底层填料之间形成互连接头。无流动底层填料工艺的一个局限是,衬底和元件必须预先干燥,以避免底层填料内过量的空隙形成(voiding),过量的空隙将导致焊料被挤出,这最终可能导致与另一连接产生短路。因此,在组装之前衬底必须进行干燥,然后保存在干燥储存条件下。该工艺对于大规模制造来说是难以实施的。
为了能用作预涂敷的底层填料密封剂,底层填料必需具有若干重要的特性。首先,材料必须容易均匀涂敷,这样整个组合件具有均匀一致的涂层。底层填料密封剂必须是可具有B阶段的(B-stageable),这意味着底层填料必须在它被置于CSP元件上后发生固化,以提供带有最小残留溶剂的光滑、非粘性涂层,或者能够形成膜。进一步,在制造时均匀涂敷常规的底层填料材料常常是非常困难的。
B阶段工艺常常在低于约150℃的温度发生,而不会过早地使底层填料密封剂固化。底层填料密封剂的最终固化必须延迟,直到焊料熔融(在焊料是互连材料的情况下)和形成相互连接之后才进行,在锡/铅共熔焊料的情况下,熔融和相互连接是在183℃的温度发生。在焊料碰撞流动和形成相互连接之后,底层填料的最终固化将迅速发生。在各个芯片最终附着到衬底上的这一期间,底层填料密封剂必须流动,以使得形成圆抹角(fillet),并在芯片或芯片钝化层、衬底或焊料掩蔽剂(solder mask)和焊料接头之间提供良好的粘合。
发明概述本发明涉及可发生B阶的(可半溶的)或预成形的底层填料密封剂组合物,该组合物用于将电子元件——最常见的是芯片尺寸封装(CSP′s)——施加到衬底上。该组合物包括包括苯氧基树脂的热塑性树脂体系;可扩展性(可发性)填充物材料,诸如可扩展性(可发性)聚合物球体;溶剂;可任选地包括环氧树脂诸如更高分子量的环氧树脂;可任选地包括咪唑-酐催化剂(imidazole-anhydride catalyst)或可与之相当的潜在催化剂;并且可任选地包括助熔剂和/或润湿剂。如果需要,也可以加入各种其他添加剂,诸如助粘剂、流动添加剂和流变改进剂。底层填料密封剂可以是可B阶的,以在衬底或元件上提供光滑、非粘性的涂层。在选择性实施方案中,底层填料密封剂是预成形的膜。在两种实施方案中,可扩展性填充材料受到高温作用而膨胀,在组合件的期望部位形成封闭单元泡沫结构(closed-cell foamstructure)。底层填料可以选择性地涂敷到CSP的一部分上,例如涂敷到周围,作为焊料凸块之间的不连续点,或在一排排焊料凸块之间形成栅格图案。
附图简述

图1是具有可发泡性底层填料的组合件的示意图,回流之前和回流之后的图。
图2是在组合件的周围具有可发泡性底层填料的组合件的示意图,回流之前和回流之后的图。
发明详述用于本发明的底层填料密封剂组合物的树脂可以是热塑性的,或是可固化的化合物。后者表示它们能够聚合。如在本申请中所使用的,固化将意味着聚合,伴随有交联作用。如本领域所理解的,交联作用是通过元素、分子基团或化合物之间的连接,两聚合物链连接起来,这通常通过加热而发生。
可以配制含有可扩展性填充物的热塑性或热固性树脂体系,并且可以将其作为可B阶的液体材料或者作为层压膜,预涂敷到电子元件例如表面安装元件(surface mount components)和区域阵列器件(areaarray devices)诸如CSPs或BGA′s上。本发明的树脂体系也可以在晶片、面板或元件水平上被利用。在这些情况下,在最初将密封剂涂敷到元件后,可扩展性填充物保持为不膨胀。然后使用焊料膏和/或助熔剂,将含有密封剂的元件置于印刷线路板上,并让其穿过回流炉,在回流炉中,元件电连接到电路。在回流过程中,未膨胀的聚合物球体膨胀,并以闭孔泡沫结构(closed-cell foam structure)充满期望的区域,常常是焊料接头之间的区域。
本发明的底层填料密封剂组合物的组分包括一种或多种下述物质的混合物苯氧基树脂;温度提高时能够膨胀的热塑性或热固性聚合物,在热固性聚合物的情况下包括催化剂诸如咪唑-酐加合物;和一种或多种溶剂。可任选地,可以包括助熔剂(fluxing agents)、脱泡剂(airrelease agents)、流动添加剂(flow additives)、助粘剂(adhensionpromoters)、流变改进剂(rtheology modifiers)、表面活性剂、无机填充物和其他组分。组分被特异性地选择以便为特定树脂的应用获得性质上理想的平衡。选择溶剂来溶解树脂,并因此使得组合物成为糊状形式,该糊状形式具有合适的粘性,以便可以作为液体通过旋转涂布、网版印刷或模版印刷涂敷于CSP板上。底层填料体系也可以作为固体预成形的层压膜被施用。
在优选的实施方案中,组合物含有热塑性聚合物、溶剂,而且组合物是可B阶的,即组合物能进行初始的固化(initial solidification),在将要附着到衬底的电子元件上产生光滑、非粘性的涂层。B阶段固化作用优选在约60℃至约150℃的温度范围内发生。在该温度,可扩展性填充物不膨胀。在B阶段工艺之后,在CSP板上获得光滑的、非粘性的固体涂层,以确保将CSP板整齐地切割成单个的CSPs。在暴露于焊料回流温度曲线图(solder reflow temperature profile)的温度期间,最终的固化发生。可扩展性填充物将在典型的焊料回流条件中发生膨胀。在锡/铅共晶焊料的例子中,在高于焊料熔点的温度,形成相互连接(interconnections),而焊料熔点是183℃。在可供选择的优选实施方案中,组合物是预成形的层压膜。该膜是苯氧基树脂,但是,与可扩展性球体相混合的热塑性聚酯、聚酰胺、聚氨酯、聚烯烃或类似物也可望发挥作用。
适合用于本发明的底层填料组合物的苯氧基树脂的例子包括高分子量的固体。例子是来自Inchem的,商标名为PKHC、PKHH、HC和HH的树脂或与这些树脂与液体环氧树脂的混合物。
用于底层填料的可扩展性填充物必须足以产生可以充满期望区域的闭孔式泡沫。经常地,期望的区域或者是焊料接头周围的整个表面区域,或者是组合件周界周围的线。优选的可扩展性填充物材料是可发性热塑性微气囊物,诸如商购自Akzo Nobel(Sweden)的可发性热塑性微气囊物,如098 DUX 120、091 DU、092 DU和095 DU。这些微球体充满了异辛烷,并且在较低温度中是稳定的。在低于160℃的温度,微球不膨胀,而160℃是底层填料进行B阶段工艺的温度。在高于160℃的温度,微球体膨胀,并在约220℃时达到它们的最大膨胀水平,而220℃通常是共晶焊接工艺中固化时的最高峰温度。一旦发生膨胀,微球体在底层填料基质内产生闭孔结构(封闭气室的结构)。可以预期用来提供该泡沫结构的其它材料包括化学发泡剂(blowing agents)。
溶剂被用来改变组合物的粘性。优选地,溶剂将在B阶段工艺期间蒸发,B阶段工艺在低于约150℃的温度发生,或者溶剂将在膜形成期间蒸发。可以使用容易溶解环氧树脂和酚醛树脂(含酚树脂、苯氧基树脂)的常见溶剂。可以利用的溶剂的例子包括酯、醇、醚以及在组合物中稳定的并且溶解环氧树脂和/或酚醛树脂的其他常见溶剂。优选的溶剂包括丙二醇甲醚醋酸酯(propylene glycol methyl ether acetate)(PGMEA)。应该避免使用溶解可发性微球体的任何部分的溶剂。
本发明的底层填料密封剂的优选实施方案包括至少一种苯氧基树脂、至少一种可发性填充物;溶剂和其它想要的组分。底层填料的树脂组分构成该可B阶组合物的约10wt%至约60wt%,优选约20wt%至约40wt%。底层填料的可发性填充物组分构成该可B阶组合物的约0.02wt%至约10wt%,优选约0.1wt%至约5wt%。最后,可任选的组分诸如表面活性剂、脱泡剂、流动添加剂、流变改进剂、化学发泡剂和助粘剂,也可以加入到组合物中,其范围在该可B阶组合物的约0.01wt%至约5wt%的范围内。
为了将含有可发性填充物的组合物作为可B阶的液体来利用,通过网版印刷、旋转涂布、模版印刷或通过一排排焊料凸块之间的针(needle)进行散布,将该组合物直接涂敷到一板芯片阵列或单个的芯片上。将芯片(许多芯片)或具有涂层的芯片(许多芯片)加热到最初的B阶段温度,对组合物进行B阶段固化。优选地,该加热产生光滑且非粘性的涂层,并且不会引起微球体膨胀。涂层的厚度优选焊料凸块(solder bumps)的直径的约15-30%。B阶段加热之后,焊料凸块可以进行等离子体蚀刻,或用溶剂擦拭,以便于在布置机器(placementmachine)中进行元件识别(component recognition)。具有B阶段组合物的芯片被置于衬底上,该衬底在金属垫连接上具有焊料凸块。使用焊膏或标准的助熔剂是维持元件准确地对齐以及帮助形成熔融(fluxing)或焊料接头(solder joint)所必需的。将整个组合件加热到近似183℃的温度(在使用锡/铅焊料的情况下)。该第二次加热使得在衬底和芯片之间形成相互连接,并使得微球体膨胀,并填满元件和衬底之间的间隙。
为了将本发明的底层填料密封剂作为层压膜来利用,将膜预先浇制(pre-cast)在载体膜上,然后在低于可发性填充物的膨胀启动温度的温度干燥。接下来,在该膜的软化温度,将该膜真空层压到元件的全部区域上。最后,通过等离子体蚀刻,或通过用溶剂擦拭来清洗焊料,元件准备进行安置。可选择性地,通过不同的方法诸如激光消融(laser ablation)或冲切(die-cutting)成不同的构造诸如栅格、网孔、薄条、或方框图案,将膜预先形成图案,并置于或层压于元件上。通过用这种方法,可以避免焊料凸块和底层填料之间的接触,因此不需要等离子体蚀刻。安置之后,将元件进行回流(reflow),这使得可发性填充物膨胀成闭孔结构。在安置元件之前,可B阶的膜和层压的膜的施用都需要焊料膏的模版印刷。
图1图示了回流之后可发性填充物的膨胀。电子元件1首先被提供以可B阶的或膜状的底层填料层2以及焊料凸块3。回流之后,电子元件和衬底4的组合件具有膨胀的底层填料2A,膨胀的底层填料2A含有闭孔结构5。在图1中,底层填料基本上充满元件和衬底之间的焊料凸块中和凸块周围的所有区域。图2图示了可供选择的底层填料施用,其中,底层填料2被施于元件1的周围。回流之后,显示出,膨胀的底层填料2A在元件周界的周围具有闭孔结构。
通过参考下述实施例,本发明可以更好地被理解实施例1.热塑性底层填料组合物制备如下(所有组分的量均以重量百分比表示)。将溶剂和树脂的混合物加入到配备有螺旋桨搅拌器(propeller stirrer)的混合容器中。然后加入可发性填充物,混合5-10分钟直到达到均匀。然后加入表面活性剂,以帮助真空除去气泡。在真空室中,在>28Hg的压力下,混合物被除气5分钟。获得的热塑性底层填料的制剂显示于表1中。
表1.含有可发性填充物的热塑性底层填料


1苯氧基树脂、丙二醇甲基醚醋酸酯混合物,来自Inchem。
2脱泡添加剂,来自BYK Chemie。
B阶段之后,测试制剂A的各种特性,包括增强的BGA组合件的抗跌落性(drop resistance),那些测试的结果在表2中示出。
表2.含有可发性填充物的底层填料的性能

*暴露于30℃/60%相对湿度中7天**2米高(60mil的FR-4板,pBGA-169元件I/O 169,焊料直径=24mil)如表2中所示,相对于无底层填料的元件的性能,该元件的性能显著提高。
可以对本发明进行许多修改或变化,而不脱离它的精神和范围,这对本领域技术人员来说将是显而易见的。本文中描述的具体的实施方案仅提供作为实施实例,并且本发明仅受权利要求以及这些权利要求有权获得的全部等同范围的限定。
权利要求
1.可发性的热塑性或热固性底层填料密封剂,包含a)树脂体系,所述树脂体系含有热塑性聚合物树脂或热固性树脂和至少一种催化剂,以及可任选的至少一种含苯氧基的化合物;b)一种或多种可发性填充物;和c)至少一种溶剂。
2.如权利要求1所述的密封剂,其中,所述一种或多种可发性填充物选自微球体、可发性气囊物和其混合物。
3.如权利要求2所述的密封剂,其中,所述一种或多种可发性填充物构成所述密封剂的约0.02wt%至约10wt%。
4.如权利要求3所述的密封剂,其中,所述一种或多种可发性填充物构成所述密封剂的约0.1wt%至约5wt%。
5.如权利要求2所述的密封剂,其中,所述一种或多种可发性填充物当暴露于大于约150℃的温度时膨胀。
6.如权利要求2所述的密封剂,其中,所述密封剂是可具有B阶段的。
7.如权利要求4所述的密封剂,其中,所述密封剂是膜形式的,所述膜能够预先施加到电子元件或衬底上。
8.如权利要求7所述的密封剂,其中,所述膜能够通过网版印刷、旋转涂布、模版印刷或通过针散布而被施加到电子元件上。
9.如权利要求2所述的密封剂,其中,所述树脂体系选自3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、乙烯基环己烯二氧化物、3,4-环氧-6-甲基环己基甲基-3,4-环氧环己烷羧酸酯、二环戊二烯二氧化物、双酚A型环氧树脂、双酚F型环氧树脂、环氧酚醛树脂、聚(苯基缩水甘油醚)-甲醛共聚物、联苯型环氧树脂、二环戊二烯-苯酚环氧树脂、萘环氧树脂、环氧功能性丁二烯-丙烯腈共聚物、环氧功能性聚二甲基硅氧烷和其混合物。
10.如权利要求1所述的密封剂,其中,所述含苯氧基的化合物是链状延展型环氧树脂。
11.如权利要求1所述的密封剂,其中,所述树脂体系构成所述密封剂的约20wt%至约40wt%。
12.如权利要求4所述的密封剂,其中,所述至少一种溶剂选自稳定的且溶解所述组合物中的环氧树脂和/或苯氧基树脂的溶剂。
13.如权利要求12所述的密封剂,其中,所述至少一种溶剂选自酯、醇、醚和丙二醇甲基醚醋酸酯(PGMEA)和其混合物。
14.如权利要求13所述的密封剂,其中,所述至少一种溶剂包括丙二醇甲基醚醋酸酯(PGMEA)和其混合物。
15.如权利要求13所述的密封剂,其中,所述溶剂构成所述密封剂的最高达约70wt%。
16.如权利要求2所述的密封剂,其中,所述密封剂还包括一种或多种下述物质表面活性剂、偶联剂、活性稀释剂、脱泡剂、流动添加剂、助粘剂、无机填充物和其混合物。
17.如权利要求16所述的密封剂,其中,所述表面活性剂选自有机丙烯酸聚合物、聚硅氧烷、环氧聚硅氧烷、聚氧乙烯/聚氧丙烯嵌段共聚物、乙二胺基聚氧乙烯/聚氧丙烯嵌段共聚物、基于多元醇的聚氧化烯、基于脂肪醇的聚氧化烯、脂肪醇聚氧化烯基烷基醚和其混合物。
18.具有权利要求1所述的可发性底层填料组合物的电子元件。
19.可发性的热塑性或热固性底层填料密封剂,包含a)树脂体系,所述树脂体系含有热塑性聚合物树脂或热固性树脂和至少一种催化剂,以及可任选的至少一种含苯氧基的化合物;和b)一种或多种可发性填充物。
20.如权利要求19所述的密封剂,其中,所述一种或多种可发性填充物选自微球体、可发性气囊物和其混合物。
21.如权利要求20所述的密封剂,其中,所述一种或多种可发性填充物构成所述密封剂的约0.1wt%至约10wt%。
22.如权利要求21所述的密封剂,其中,所述一种或多种可发性填充物当暴露于大于约150℃的温度时膨胀。
23.如权利要求22所述的密封剂,其中,所述密封剂是膜形式的,所述膜能够预先施加至电子元件或衬底上。
24.如权利要求23所述的密封剂,其中,所述膜能够通过网版印刷、旋转涂布、模版印刷或通过针散布而被施加于电子元件上。
25.如权利要求22所述的密封剂,其中,所述树脂体系选自苯氧基树脂、3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、乙烯基环己烯二氧化物、3,4-环氧-6-甲基环己基甲基-3,4-环氧环己烷羧酸酯、二环戊二烯二氧化物、双酚A型环氧树脂、双酚F型环氧树脂、环氧酚醛树脂、聚(苯基缩水甘油醚)-甲醛共聚物、联苯型环氧树脂、二环戊二烯-苯酚环氧树脂、萘环氧树脂、环氧功能性丁二烯-丙烯腈共聚物、环氧功能性聚二甲基硅氧烷和其混合物。
26.如权利要求19所述的密封剂,其中,所述含苯氧基的化合物是链延展型环氧树脂。
27.如权利要求19所述的密封剂,其中,所述树脂体系构成所述密封剂的约80wt%至约99.9wt%。
28.如权利要求19所述的密封剂,其中,所述密封剂还包括一种或多种下述物质表面活性剂、偶联剂、活性稀释剂、脱泡剂、流动添加剂、助粘剂和其混合物。
29.如权利要求28所述的密封剂,其中,所述表面活性剂选自有机丙烯酸聚合物、聚硅氧烷、环氧聚硅氧烷、聚氧乙烯/聚氧丙烯嵌段共聚物、乙二胺基聚氧乙烯/聚氧丙烯嵌段共聚物、基于多元醇的聚氧化烯、基于脂肪醇的聚氧化烯、脂肪醇聚氧化烯基烷基醚和其混合物。
30.具有权利要求19所述的可发性底层填料组合物的电子元件。
全文摘要
热塑性或热固性可B阶的或预成形膜底层填料密封剂组合物,该组合物用于将电子元件应用到衬底上。该组合物包括树脂体系、可发性微球体、溶剂,和可任选的催化剂,所述树脂体系包括热塑性或热固化树脂。如果需要,也可以加入各种其他添加剂,诸如助粘剂、流动添加剂和流变改进剂。底层填料密封剂可以被干燥或进行B阶段工艺,以在衬底或元件上提供光滑、非粘性的涂层。在选择性的实施方案中,该底层填料密封剂是预成形的膜。在两种实施方案中,可发性填充物材料受到较高温度作用时膨胀,从而在组合件的期望位置形成闭孔泡沫结构。
文档编号C09J171/00GK1791653SQ200480013977
公开日2006年6月21日 申请日期2004年5月18日 优先权日2003年5月23日
发明者J·沙, P·摩根埃利, D·皮尔德 申请人:国家淀粉及化学投资控股公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1