导电性粘接剂组合物的制作方法

文档序号:16377398发布日期:2018-12-22 09:12阅读:158来源:国知局

本发明涉及导电性粘接剂组合物。

背景技术

近年来,对于小型化、高功能化的电子部件(例如功率器件或发光二极管(led))的需求正在急速扩大。

功率器件作为能够抑制电力损耗并高效率地转换电力的半导体元件,在电动汽车、混合动力汽车、快速充电器等领域中普及发展,此外在太阳能发电系统、百万瓦级太阳能系统等新能源领域中,其需求的提高也备受期待。

另一方面,相较于白炽灯泡具有长寿命、小型、低消耗电力等优点的led元件在照明、便携电话、液晶面板、汽车、信号机、街灯、影像显示装置等各种领域中正在快速地普及。

在如上所述的电子部件的小型化、高功能化的进展中,半导体元件的发热量具有增大的倾向。然而,若电子部件长时间暴露在高温环境下,则变得无法发挥原本的功能而且寿命降低。

因此,为了使从半导体元件产生的热有效地扩散,在用于芯片接合(diebonding)的接合材料(芯片接合材料)中,通常使用高散热性的接合材料。虽然也因用途而异,但是接合材料通常需要具有将从半导体元件产生的热有效地散往基板、壳体的功能,要求有高散热性。

如此,用于电子部件的接合材料由于要求具有高散热性,因此一直以来广泛使用含有大量铅的高温铅焊料或含有大量金的金锡焊料。然而,高温铅焊料具有含有对人体有害的铅的问题。因此,无铅化的技术开发最近变得活跃,关于替换为无铅焊料的研究正积极开展。另一方面,金锡焊料含有昂贵的金,故具有成本方面的问题。

在这样的情况下,近年来,作为替代高温铅焊料或金锡焊料的有力代替材料,各向同性导电性粘接剂(以下简称为“导电性粘接剂”)备受瞩目。导电性粘接剂为具有导电性等功能的金属粒子(例如银、镍、铜、铝、金等)与具有粘接功能的有机粘接剂(例如环氧树脂、有机硅树脂、丙烯酸类树脂、酯类树脂、氨基甲酸酯类树脂等)的复合体,其使用多种金属粒子及有机粘接剂。由于导电性粘接剂在室温下为液体因而使用便利性良好、无铅且价格低,因此其为高温铅焊料或金锡焊料的有力替代材料,预测其市场将大幅扩大。

专利文献1公开了一种由有机聚合物树脂、银等无机填充材料、以及易于除去的液体构成的、且将上述树脂和填充材料的粒径、上述树脂和液体的溶解度设为一定值以下的粘接剂糊料。

现有技术文献

专利文献

专利文献1:日本特表平9-501197号公报



技术实现要素:

发明所要解决的课题

当在导电性粘接剂中使用酯类树脂等热塑性树脂粉末时,若使用极性溶剂作为溶剂,则粉末树脂溶解、容易形成膜阻隔(filmbarrier)。并且,溶剂从粘接线移除的挥发除去速度可能会变得过慢。因此,在使用含固化剂的粉末酯类树脂的导电性粘接剂中,需要使用非极性溶剂。

然而,当使用非极性溶剂时,根据被粘物的表面状态,在经由导电性粘接剂进行的芯片接合后,发生了非极性溶剂从该粘接剂中渗出的被称为渗出(bleeding-out)的现象。若发生该渗出,则其会成为在作为半导体设计的后续步骤的引线接合时发生引线接合不良或成型材料与基板间剥离的原因。

因此,本发明的目的在于提供一种含有热塑性树脂且具备高散热性的导电性粘接剂组合物,其抑制了非极性溶剂在芯片接合后渗出的渗出现象。

解决课题的方案

本发明人为了实现上述目的而进行了深入的研究,发现:在含有非极性溶剂的导电性粘接剂组合物中,通过进一步含有非水溶性的氟系表面活性剂,从而能够控制该导电性粘接剂组合物与基板的润湿性,结果是,能够抑制渗出现象,以至于完成了本发明。

即,本发明如下所述。

1.一种导电性粘接剂组合物,包含(a)导电性粒子、(b)热塑性树脂、(c)非极性溶剂、以及(d)非水溶性的氟系表面活性剂。

2.上述1所记载的导电性粘接剂组合物,其中,相对于上述导电性粘接剂组合物的总量,含有20质量ppm以上的氟。

3.上述1所记载的导电性粘接剂组合物,其中,相对于上述导电性粘接剂组合物的总量,含有40质量ppm以上的氟。

4.上述1至3中任一项所记载的导电性粘接剂组合物,其中,上述(d)非水溶性的氟系表面活性剂的氟含量为20%至70%。

5.上述1至4中任一项所记载的导电性粘接剂组合物,其中,上述(d)非水溶性的氟系表面活性剂是具有全氟烷基的氟系表面活性剂。

6.上述1至5中任一项所记载的导电性粘接剂组合物,其中,上述(d)非水溶性的氟系表面活性剂是具有全氟烷基的环氧乙烷加合物。

7.上述1至6中任一项所记载的导电性粘接剂组合物,其中,上述(d)非水溶性的氟系表面活性剂是具有全氟烷基的低聚物化合物。

8.上述1至7中任一项所记载的导电性粘接剂组合物,其中,上述(a)导电性粒子是以ag或cu为主成分的粉状金属粒子。

9.上述1至8中任一项所记载的导电性粘接剂组合物,其中,上述(b)热塑性树脂是酯类树脂。

10.上述9所记载的导电性粘接剂组合物,其中,所述酯类树脂是饱和酯类树脂。

11.上述1至10中任一项所记载的导电性粘接剂组合物,其中,上述(c)非极性溶剂是脂肪族烃或芳香族烃。

发明的效果

根据本发明,可提供一种具有高散热性和稳定的导电性、且抑制了芯片接合后的渗出的导电性粘接剂组合物。

具体实施方式

本发明的导电性粘接剂组合物(以下,也简称为“粘接剂组合物”)包含上述的(a)导电性粒子、(b)热塑性树脂、(c)非极性溶剂、以及(d)非水溶性的氟系表面活性剂作为必要成分。本发明的粘接剂组合物是含有(b)热塑性树脂且具备高散热性的粘接剂组合物,并且通过含有(d)非水溶性的氟系表面活性剂,从而能够抑制(c)非极性溶剂渗出的渗出现象。

另外,作为另一实施方式,本发明提供一种包含(a)导电性粒子、(b)热塑性树脂、(c)非极性溶剂、以及(d)非水溶性的氟系表面活性剂的、用于抑制渗出的导电性粘接剂组合物。因此,本发明基于以下的发现:非水溶性的氟系表面活性剂能够抑制非极性溶剂渗出的渗出现象。

以下,对于(a)导电性粒子、(b)热塑性树脂、(c)非极性溶剂、以及(d)非水溶性的氟系表面活性剂的各个成分进行详细说明。

本发明中的(a)导电性粒子只要是有助于导电性粘接剂的导电性的成分,则没有特别的限制。其中,优选为金属或碳纳米管等。

作为金属,只要是用作普通导体的金属的粉末,则可以使用。例如可列举出:银、铜、金、镍、铝、铬、铂、钯、钨、钼等的单体、由上述2种以上的金属构成的合金、上述金属的涂布品、上述金属的氧化物、或上述金属的化合物等具有良好导电性的材料等。

其中,从不易氧化且热传导性高的方面考虑,更优选为以银或铜为主成分的金属。在此,“主成分”指的是在导电性粒子的成分当中含量最多的成分。

导电性粒子的形状没有特别限定,例如可列举出粉状、球状、片状、箔状、树枝状等。一般选择片状或球状。此外,上述导电性粒子可由市售品取得,或可采用公知的方法进行制作。制作上述导电性粒子的方法并没有特别限制,可任意使用机械性粉碎法、还原法、电解法、气相法等。

对于导电性粒子,如上所述,其表面也可以被涂布剂被覆。例如可列举出含有羧酸的涂布剂。通过使用含有羧酸的涂布剂,可进一步提高粘接剂组合物的散热性。

上述涂布剂所包含的羧酸并没有特别限定,例如可列举出:单羧酸、多羧酸、羟基羧酸等。

作为上述单羧酸,可列举出(例如)乙酸、丙酸、丁酸、戊酸、辛酸、己酸、癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生酸、山萮酸、木蜡酸等碳原子数为1至24的脂肪族单羧酸。此外,也可使用油酸、亚油酸、α-亚麻酸、γ-亚麻酸、双高-γ-亚麻酸、反油酸、花生四烯酸、芥酸、神经酸、十八碳四烯酸、二十碳五烯酸、二十二碳六烯酸等碳原子数为4至24的不饱和脂肪族羧酸。再者,也可使用苯甲酸、萘甲酸等碳原子数为7至12的芳香族单羧酸等。

作为上述多羧酸,可列举出(例如)草酸、丙二酸、琥珀酸、戊二酸、己二酸、壬二酸、癸二酸等碳原子数为2至10的脂肪族多羧酸;马来酸、富马酸、衣康酸、山梨酸、四氢邻苯二甲酸等碳原子数为4至14的脂肪族不饱和多羧酸;邻苯二甲酸、偏苯三甲酸等芳香族多羧酸等。

作为上述羟基羧酸,可列举出(例如)乙醇酸、乳酸、羟基丁酸、甘油酸等脂肪族羟基单羧酸;水杨酸、羟基苯甲酸、没食子酸等芳香族羟基单羧酸;酒石酸、柠檬酸、苹果酸等羟基多羧酸等。

为了降低金属等的凝聚,用于处理导电性粒子表面的涂布剂中可包含碳原子数为10以上的高级脂肪酸或其衍生物。这种高级脂肪酸可列举出月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸、木蜡酸。高级脂肪酸的衍生物可列举出高级脂肪酸金属盐、高级脂肪酸酯、高级脂肪酸酰胺。

上述涂布剂所包含的羧酸也可为2种以上的上述羧酸的混合物。此外,上述羧酸当中,优选碳原子数为12至24的饱和脂肪酸或不饱和脂肪酸的高级脂肪酸。

采用涂布剂被覆导电性粒子的表面时,可以利用以下公知的方法:在混合器中搅拌并捏合两者的方法、用羧酸溶液浸渍金属粒子后使溶剂挥发的方法等。

相对于粘接剂组合物的总量,(a)导电性粒子的含量优选在50质量%至99质量%的范围内。若(a)导电性粒子的含量小于50质量%,则由于难以抑制粘接剂在固化后的收缩,因而热传导性或导电性降低,与被粘接材料的密合性变差。相反地,若超过99质量%,则难以成为糊状,与被粘接材料的充分的密合性也变差。(a)导电性粒子的更优选的含量为60质量%至95质量%,进一步优选的含量为70质量%至95质量%。

导电性粒子的平均粒径(d50)优选为1μm至10μm,更优选为2μm至6μm。虽然即使是粒径小于1μm也可以使用,但是成为微粉末需要高的成本,另外若超过10μm,则倾向于难以使导电性粘接剂形成为糊状。平均粒径(d50)由使用激光法或沉降法等普通的粒度分布测定法测得的体积累积粒径50%值计算得出。例如可以使用“日機装株式会社”制的激光衍射/散射式粒度分析仪mt-3000来进行测定。

本发明的粘接剂组合物含有(b)热塑性树脂。热塑性树脂优选使用粉末状的热塑性树脂,由于在本发明的粘接剂组合物中不溶解或难以溶解,因而优选为可维持粉末状形态的热塑性树脂。另外,即使在粘接剂组合物中溶解的情况下,热塑性树脂的90质量%以上也优选是不溶解的。在此,所谓的“粉末状”,指的是平均粒径(d50)为1μm至100μm的粒状,并且平均粒径(d50)优选为1μm至20μm。平均粒径(d50)由使用激光法或沉降法等普通的粒度分布测定法测得的体积累积粒径50%值计算得出。

作为热塑性树脂,例如可使用酯类树脂及聚酰胺树脂等。这些树脂可以仅使用1种,也可以并用2种以上。

关于酯类树脂,只要其为具有酯基的树脂即可,没有特别的限制。这样的酯类树脂可以通过(例如)二羟基化合物和二羧酸的缩合反应来形成,其中该二羟基化合物选自乙二醇、丙二醇、二乙二醇、1,4-丁二醇、新戊二醇及六亚甲基二醇等脂肪族二醇;环己烷二甲醇等脂环族二醇;双酚等芳香族二羟基化合物或它们的2种以上,该二羧酸选自对苯二甲酸、间苯二甲酸及2,6-萘二羧酸等芳香族二羧酸;草酸、琥珀酸、己二酸、癸二酸及十一烷二羧酸等脂肪族二羧酸;六氢二羧酸等脂环族二羧酸或它们的2种以上。

另外,酯类树脂也可以通过作为环状二酯的交酯类或作为环状酯的内酯类的开环聚合来形成。

这些酯类树脂也可以通过环氧树脂等其它成分来进行改性。

在本发明中,上述酯类树脂优选为饱和酯类树脂。特别地,优选使用饱和聚酯。作为饱和聚酯的例子,可列举出市售品的“日本ユピカ社”制的gv-110、gv-150、gv-158、gv-500、gv-550、gv-560、gv-570、gv-580、gv-990、gv-740、gv-741、gv-743、gv-746、gv-230、gv-235、gv-260、gv-350、gv-351、或者“dic社”制的m-8010、m-8020、m-8021、m-8023、m-8051、m-8076、m-8100、m-8230、m-8240、m-8250、m-8842、m-8843、m-8860、m-8630、m-8961、m-8962、m-8964、或者“神東塗料社”制的イノバックスp、イノバックスpd、イノバックスsp、イノバックスg、イノバックスpcm等。

另外,饱和酯类树脂可以通过(例如)多元醇和多元饱和脂肪族羧酸的缩合反应等来形成。

酯类树脂的玻璃化转变点为50℃至100℃,优选为60℃至90℃,最佳为70℃至80℃。

另外,酯类树脂的软化点为100℃至150℃,优选为110℃至140℃,最佳为120℃至130℃。

玻璃化转变点及软化点可通过一般的dsc测定来进行测量。

聚酰胺树脂只要是具有酰胺键的聚合物,则没有特别的限定。例如,可列举出尼龙6、尼龙66、尼龙11、尼龙12、尼龙610、尼龙612、尼龙6/66、尼龙mxd6、尼龙6t、使用二聚酸所形成的聚酰胺(例如通过六亚甲基二胺等脂肪族二胺与二聚酸的反应所得到的聚酰胺)、这些聚酰胺树脂与聚酯树脂、聚醚/聚酯树脂的共聚物。

相对于粘接剂组合物的总量,(b)热塑性树脂的含量优选在5质量%至20质量%的范围内。若(b)热塑性树脂的含量小于5质量%,则粘接力变弱,连接可靠性降低。相反地,若超过20质量%,则导电性粒子彼此难以接触,无法得到导电性或热传导性。(b)热塑性树脂的更优选的含量为5质量%至12质量%,进一步优选的含量为5质量%至10质量%。

(b)热塑性树脂可以含有微量的固化剂。这些固化剂根据热塑性树脂的种类而进行不同的选择,可列举出(例如)叔胺、烷基脲及咪唑等。

另外,本发明的粘接剂组合物含有(c)非极性溶剂。由于本发明的粘接剂组合物含有非极性溶剂,因而即使在(b)热塑性树脂中含有固化剂,也可抑制该固化剂溶解而被活化,可抑制树脂发生固化。

作为这样的非极性溶剂,可根据目的从(例如)脂肪族烃、芳香族烃、萜等用作工业清洁剂的基材的有机溶剂中适当地进行选择。作为脂肪族烃,例示有(例如)石蜡类,作为芳香族烃,例示有引入了脂肪族烃等脂溶性取代基的苯或萘类等。其中,优选地,从溶剂的挥发性以及粉末成分的分散性的观点考虑,优选为石蜡类及芳香族类等。

作为非极性溶剂的市售品,可列举出(例如)“formosanunionchemicalcorp.”制的bab(烷基苯)、或“jx日鉱日石エネルギー株式会社”制的正链烷烃h。这些可以单独地使用,也可以组合2种以上使用。

作为非极性溶剂,其相对介电常数优选为4以下,更优选为3以下。

相对于粘接剂组合物的总量,(c)非极性溶剂的含量优选在5质量%至15质量%的范围内。若非极性溶剂的含量小于5质量%,则难以成为糊状,银粉或树脂成分难以分散,从而变得不均匀,与被粘接材料的密合性降低。相反地,若超过15质量%,则在固化后,与被粘物之间容易含有空隙,密合性降低,热导电性或导电性可能会降低。非极性溶剂的更优选的含量为8质量%至10质量%。

本发明的粘接剂组合物含有(d)非水溶性的氟系表面活性剂。由于本发明的粘接剂组合物含有非水溶性的氟系表面活性剂,因而能够控制本发明的粘接剂组合物与基板之间的润湿性,结果是,能够抑制接合后的渗出。据认为这是由于非水溶性的氟系表面活性剂中的氟基团露出在粘接剂组合物的表面,从而可降低粘接剂组合物的表面能。非水溶性指的是(例如)以下的性质:在1大气压、20℃的环境中,与相同容量的纯水的混合液不具有均匀的外观,并分离成两层。

另外,由于上述氟系表面活性剂是非水溶性的,因而能够使上述(c)非极性溶剂与氟系表面活性剂相容。

对于本发明的粘接剂组合物而言,通过调整(d)非水溶性的氟系表面活性剂的种类或量,从而优选使粘接剂组合物中的氟的含量为20质量ppm以上,更优选为40质量ppm以上,进一步优选为100质量ppm以上。另外,粘接剂组合物中的氟的含量优选为1000质量ppm以下,更优选为500质量ppm以下。

(d)非水溶性的氟系表面活性剂可列举出(例如)具有全氟烷基的环氧乙烷加合物(全氟烷基环氧乙烷化合物)、具有全氟烷基的低聚物化合物等。

作为全氟烷基环氧乙烷化合物的结构,由cxf2x+1-(ch2)y-(och2ch2)z-oh来表示。x表示全氟烷基的链长,通常为1以上20以下。y表示亚烷基的链长,通常为1以上20以下。z表示环氧乙烷基的数量,通常为1以上50以下。作为非水溶性的、且具有上述结构的全氟烷基环氧乙烷化合物,可使用(例如)“サーフロン社”制的s-420等。

作为具有全氟烷基的低聚物化合物,如其名称所表示的那样,只要是具有全氟烷基的低聚物化合物,则没有特别的限制。作为非水溶性的、且具有全氟烷基的低聚物化合物,可使用(例如)s-651等。

本发明中的(d)非水溶性的氟系表面活性剂中,氟的含量优选为20%至70%,更优选为30%至60%,进一步优选为40%至50%。通过氟的含量为上述范围,能够减少所添加的氟系表面活性剂,不会使作为导电性粘接剂的特性发生较大的变化,因而能够更有效地抑制渗出现象。

(d)非水溶性的氟系表面活性剂的0.5%浓度的表面张力(mn/m)优选为20.0以上,更优选为21.0以上,进一步优选为22.0以上。所谓的“0.5%浓度的表面张力”,是指向溶剂中添加0.5%(d)非水溶性的氟系表面活性剂时的表面张力。通过为上述范围,从而能够在少量添加的情况下减少表面能。作为上述溶剂,可列举出(例如)乙酸乙酯、甲苯、pgmea(丙二醇单甲醚乙酸酯)及mek(甲乙酮)等。

相对于粘接剂组合物的总量,(d)非水溶性的氟系表面活性剂的含量优选在0.001质量%至1.0质量%的范围内。若非水溶性的氟系表面活性剂的含量小于0.001质量%,则无法得到充分的表面张力,容易发生渗出。相反地,若超过1.0质量%,则粘接强度变小。非水溶性的氟系表面活性剂的更优选的含量为0.01质量%至0.1质量%。

另外,除了上述成分以外,本发明的粘接剂组合物也可以含有(例如)固化剂。作为固化剂,可列举出(例如)叔胺、烷基脲及咪唑等。

相对于粘接剂组合物的总量,固化剂的含量优选在1.0质量%至10.0质量%的范围内。若固化剂的含量小于1.0质量%,则固化不充分,耐热性变差。相反地,若超过10.0质量%,则会残留未反应的固化剂,与被粘接材料的密合性降低,因而电特性可能会降低。

本发明的粘接剂组合物中也可以混合固化促进剂。作为固化促进剂,例示有(例如)2-苯基-4,5-二羟基甲基咪唑、2-苯基-4-甲基-5-羟基甲基咪唑、2-甲基-4-甲基咪唑、1-氰基-2-乙基-4-甲基咪唑等咪唑类,叔胺类,三苯基膦类,脲化合物,酚类,醇类,羧酸类等。固化促进剂可以仅使用1种,也可以并用2种以上。

固化促进剂的混合量并没有限定,适当地进行确定即可,但是在使用的情况下,相对于本发明的粘接剂组合物的总量,通常为0.1质量%至2.0质量%。

在不损害本发明的效果的范围内,本发明的粘接剂组合物中也可以适当地混合作为其他添加剂的抗氧化剂、紫外线吸收剂、增粘剂、粘性调节剂、分散剂、偶联剂、增韧剂、弹性体等。

另外,优选的是,本发明的粘接剂组合物尽可能不含极性溶剂作为溶剂。这是因为:若含有极性溶剂,则组合物中的树脂会溶解,容易形成膜阻隔。本发明的粘接剂组合物中的极性溶剂的含量优选为1质量%以下,更优选为0.1质量%以下,进一步优选为实质上不含极性溶剂。所谓的“实质上不含”,指的是相对于本发明的粘接剂组合物的重量,小于0.05质量%。

本发明的粘接剂组合物可通过以任意顺序混合和搅拌上述的(a)成分、(b)成分、(c)成分、(d)成分以及其他成分而得到。作为分散方法,可采用(例如)双辊、三辊、砂磨机、辊磨机、球磨机、胶磨机、喷射磨机、珠磨机、捏合机、均化器及无螺旋搅拌机等的方式。

如上制得的粘接剂组合物中的除去了(a)导电性粒子的情况下的粘度通过旋转式粘度计来进行测定。需要说明的是,在本发明中,上述粘度是使用锭子型粘度计作为旋转式粘度计,在温度25℃下使用sc4-14锭子,并且在特定的旋转速度(rpm)下测得的值。

另外,对于如上所制得的粘接剂组合物,在除去了其中的(a)导电性粒子的情况下,由采用旋转式粘度计在旋转速度10rpm及50rpm的测定值计算而得的ti值(触变性指数)优选为2至4。通过具有这样的ti值,从而不仅提高了糊剂制作时的操作性,还提高了涂布步骤中的操作性。需要说明的是,在本发明中,上述ti值是将上述旋转式粘度计在旋转速度10rpm下的测定值除以在50rpm下的测定值而计算得到的值。

本发明的粘接剂组合物的渗出性可通过(例如)以下方法来进行评价。首先,将本发明的粘接剂组合物5.0g装入到5毫升的注射器中,使用分配器,以0.15mg、每10个点的方式将其涂布至铜框或镀银的铜框。接下来,使用显微镜等,测定从涂布为圆形的粘接剂的末端直到渗出的末端之间的宽度(μm)。该测定在(例如)(1)涂布后立刻(0小时后)进行,或者该测定在(2)涂布后2小时后进行。

在镀银的铜框的情况下,由上述方法测得的渗出优选为小于200μm,更优选为小于170μm,进一步优选为小于100μm,最优选为小于70μm。在铜框的情况下,由上述方法测得的渗出优选为小于300μm,更优选为小于200μm,进一步优选为小于100μm。

实施例

以下,通过实施例来对本发明进行具体说明,但是本发明不受这些实施例的任何限制。

[实施例1至8、比较例1至6]

a.粘接剂组合物的制备

通过三辊磨或均化器对表1中所记载的各材料进行混炼,制备了具有表1所示组成的粘接剂组合物(各材料的数值表示相对于粘接剂组合物的总质量的质量%)。所使用的材料如下所述。需要说明的是,混炼的次序为(c)非极性溶剂、(b)酯类树脂、(a)导电性粒子、(d)氟系表面活性剂的顺序。在200℃下加热1小时后放冷至室温,得到了粘接剂组合物的固化物。

(a)导电性粒子

作为导电性粒子,使用了以1:1的比例将田中贵金属工业社制的平均粒径(d50)为3μm的片状银粉与田中贵金属工业社制的平均粒径(d50)为6μm的片状银粉混合而得的银粉。

(b)热塑性树脂

作为热塑性树脂,使用了田中贵金属工业社制的粉末状的饱和酯类树脂(玻璃化转变点:70℃至80℃、软化点120℃至130℃)。关于树脂的尺寸,平均粒径(d50)为10μm。已经确认,所使用的热塑性树脂即使在粘接剂组合物中也不溶解,而是以粉末状存在。

(c)非极性溶剂

作为非极性溶剂,使用了以1:1的比例将“formosanunionchemicalcorp.”制的bab(烷基苯)与“jx日鉱日石エネルギー株式会社”制的正链烷烃h混合而得的溶剂。

(d)非水溶性的氟系表面活性剂

·全氟烷基环氧乙烷化合物[サーフロンs420、agcセイケミカル株式会社]氟含量:47%、乙酸乙酯0.5%浓度的表面张力(mn/m):23.1

·具有全氟烷基的低聚物化合物[サーフロンs651、agcセイケミカル株式会社]氟含量:23%、乙酸乙酯0.5%浓度的表面张力(mn/m):23.0

·具有全氟烷基的低聚物化合物[サーフロンs611、agcセイケミカル株式会社]氟含量:10%、乙酸乙酯0.5%浓度的表面张力(mn/m):18.4

需要说明的是,上述氟系表面活性剂的氟含量通过使用离子色谱法来进行测定。

(非氟系表面活性剂)

在比较例中,用于代替非水溶性的氟系表面活性剂的非氟系表面活性剂如下所述。

·“日本乳化剤”制的アントックスedh-400(比较例2)

·“日本乳化剤”制的ニューコール2609(比较例3)

·“日本乳化剤”制的ニューコール565-ps(比较例4)

·“花王株式会社”制的amiet320(比较例5)

·“花王株式会社”制的homogenoll-95(比较例6)

b.粘接剂组合物的物性评价

1.渗出性

首先,将各样品5.0g装入到5毫升武藏注射器中。使用分配器,以0.15mg、每10个点的方式将其涂布至铜框或镀银的铜框。

使用“オリンパス社”制的显微镜stm7,在下述(1)和(2)的条件下观察渗出的状态。

(1)涂布后立刻(0小时后)

(2)涂布2小时后

在测定中,对从涂布为圆形的粘接剂的末端直到渗出的末端之间的宽度(μm)进行测定。另外,将测定点设定为每个点的上下左右四个位置。

[评价]

对于每个样品,求出每个条件下的渗出的平均值,并根据下述基准进行评价。○表示渗出抑制效果优异,δ表示良好,×表示差。

镀银的铜框

○:渗出小于100μm

δ:渗出为100μm以上且小于200μm

×:渗出为200μm以上

铜框

○:渗出小于100μm

δ:渗出为100μm以上且小于300μm

×:渗出为300μm以上

实施上述(1)、(2)的各个评价(总共4种),将评价的优先级别设为×>δ>○,对于各个实施例和比较例进行4种评价,将优先级别高的作为综合评价示出于表1中。

2.导电性评价

在玻璃基板上用“日栄化工社”制的透明pet片胶带遮掩,以宽0.5mm、长60mm的图案将上述制备的粘接剂组合物分别进行模版印刷,将其放入烘箱中,在200℃、60分钟的条件下进行固化。随后,冷却至室温,将端子放在固化膜的之间长度为5cm的两端以测定电阻值。此外,还测定了固化膜的厚度。由所测定的电阻值和厚度计算出体积电阻值以评价导电性(μω·cm)。需要说明的是,固化膜的电阻值通过使用“日置電機株式会社”制的3540m-ohmhitester来进行测定。另外,固化膜的厚度通过使用“株式会社小坂研究所社”制的表面粗糙度计サーフコーダse-30h来进行测定。结果示出于表1中。

从上述结果可以看出,本发明的导电性粘接剂组合物通过含有非水溶性的氟系表面活性剂,从而在良好地维持导电性的同时,还抑制了渗出。特别地,可知在氟的含量为40质量ppm以上的实施例1至6中,渗出显著地得到了抑制。

虽然参照特定的实施方式详细地说明了本发明,但对于本领域技术人员显而易见的是,可以在不脱离本发明的精神和范围内进行各种变更及修正。

本申请基于2017年3月31日申请的日本专利申请特愿2017-072959,将其内容引用至本文。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1