混合动力车辆的发动机起动控制装置的制作方法

文档序号:3824313阅读:139来源:国知局
专利名称:混合动力车辆的发动机起动控制装置的制作方法
技术领域
本发明涉及一种用于配备有马达和发动机的混合动力车辆的发动机起动控制装置。
背景技术
具有马达和发动机二者的混合动力车辆在车辆处于小负载的情况下仅由马达提供动力。当负载增加时,混合动力车辆起动发动机以提供额外的驱动力。当混合动力车辆从仅使用马达行驶转换到也使用发动机时,有必要快速地起动发动机。如果起动发动机的时间较长,那么驱动力不能被平稳地控制,这会导致车辆的性能恶化。
因此,起动发动机所需的时间可以通过在发动机起动时控制进气系统的作用定时而被减小。不过,当发动机起动时间如上所述被缩短时,在发动机起动的完全燃烧之后立即施加发动机扭矩,这会导致发动机起动震动。驾驶员往往会感觉到发动机起动震动,尤其在车辆被缓慢加速时。

发明内容
一般,本发明旨在一种用于混合动力车辆的发动机起动控制装置,该装置可防止缓慢加速期间驾驶员感觉到的震动,也可在需要快速加速时提供良好的节气门响应。
在一方面,本发明旨在一种用于配备有电动机和带有进气系统的发动机的混合动力车辆的发动机起动控制装置,其包括混合控制器,该控制器执行发动机起动确定,以确定在所述电动机运行的同时所述发动机是否应该被起动;加速位置传感器,该加速位置传感器在所述发动机起动确定期间检测加速需求;以及起动所述发动机的起动机/发电机,其中,所述起动机/发电机基于加速需求控制所述进气系统中的压力。
在另一方面,本发明旨在一种方法,包括确定在马达运行的同时发动机是否应该被起动,其中所述发动机包括进气系统;在发动机起动确定期间检测驾驶员的加速需求;以及在基于所述加速需求控制所述进气系统内的压力之后起动所述发动机。
在又一方面,本发明旨在一种用于配备有电动机和发动机的混合动力车辆的发动机起动控制装置,该控制装置包括用于在所述电动机运行的同时执行发动机起动确定的装置;用于在所述发动机起动确定期间检测驾驶员加速需求的装置;和用于基于所述加速需求控制进气系统的进气压力从而起动所述发动机的装置。
本发明的一项或多项实施例将在附图和下述说明书中进行阐述。本发明的其他特征、目的和优势通过说明书、附图和权利要求将变得清楚明了。


图1是示出用于混合动力车辆的发动机起动控制装置的实施例的结构的示意性方框图;图1A是示出混合动力车辆的传动系的示意图;图1B是示出行星齿轮机构的各部件之间的关系的图表;图1C是示出行星齿轮机构的各部件之间的关系的图表;图2是表示用于混合动力车辆的发动机起动控制装置的操作的主流程图;图3是目标值设定程序的流程图;图4是表示节气门的目标开度TV01相对于油门踏板上的压力量的曲线图;图5是表示燃料喷射的目标延迟时间Ta相对于油门踏板上的压力量的曲线图;图6是表示燃料喷射的目标延迟时间Tb相对于油门踏板上的压力变化率(rate of the pressure)的曲线图;图7是油门踏板上的压力量较小的情况下(AP0≤AP01)的时序图;图8是油门踏板上的压力量较大的情况下(AP0>AP01)的时序图。
具体实施例方式
本发明的实施例将参照附图在下文进行详细地描述,但是本发明并不局限于该实施例。
图1是示出用于混合动力车辆的发动机起动控制装置的实施例的方框图。在图1中,粗实线表示机械能传递路线,虚线表示电力线路,细实线表示控制线路。
参照图1,混合动力车辆10包括发动机11、行星齿轮机构12、行驶/再生制动马达13、起动机/发电机14、减速器15、差速器16、驱动轮17、第一逆变器21、第二逆变器22、电池23、混合控制器31和发动机控制器32。
行驶/再生制动马达13通过作用为分动器的行星齿轮机构12连接于发动机11。行驶/再生制动马达13用于车辆的驱动(动力行驶)和制动(再生制动)。行驶/再生制动马达13是交流发电机,诸如三相同步电机和三相感应电机。
参照图1A,行星齿轮机构12包括作为连接于起动机/发电机14的第一旋转元件的太阳轮12a;作为连接于驱动轮17的第三旋转元件的齿圈12b;以及多个与太阳轮12a的外周和齿圈12b的内周相啮合的行星轮12c,其中太阳轮12a和齿圈12b是同心设置的。行星齿轮机构12可旋转地支撑多个行星轮12c并且具有作为连接于发动机11的第二旋转元件的行星架16d。
行驶/再生制动马达13设置在位于齿圈12b、减速器15和差速器16之间的驱动力传送路径中。根据本发明,行驶/再生制动马达13串联地连接于减速器15和差速器16的输入轴。也就是,作为连接于行驶/再生制动马达13的齿轮元件的齿圈12b连接于与驱动轮17相连的驱动力传送路径。当行驶/再生制动马达13和起动机/发电机14被驱动以增加旋转,也就是,当在正向旋转期间正向扭矩被输出时,或者在逆向旋转期间逆向扭矩被输出时,它们作用为马达并且通过逆变器消耗来自电池的电能。还有,当行驶/再生制动马达13和起动机/发电机14被驱动以减小旋转时,也就是,当在正向旋转期间逆向扭矩被输出时,或者在逆向旋转期间正向扭矩被输出时,它们作用为发电机并且通过逆变器对电池充电。
使车辆行驶所需的驱动力主要通过发动机11和马达12输出。一般,在不具有良好的发动机效率的怠速区域,低速区域以及中到高速且低负载区域中,在只有马达12是驱动车辆的驱动源的情况下,车辆被马达驱动。当车辆所需的驱动力不能仅通过发动机11的输出获得时,电力从电池24供给至驱动马达12,所产生的马达扭矩被加入(参与)发动机扭矩。当车辆减速时,马达12通过执行再生驱动收集减速能量,并且当车辆通过发动机行驶时,马达12可通过逆变器对电池充电或者可作为发电机被驱动。
接下来,将描述行星齿轮机构12的操作。当齿圈12b的齿数是Zr时,太阳轮12a的齿数是Zs,齿圈12b与太阳轮12a的传动比是λ,λ=Zs/Zr。当齿圈12b的转数是Nr时,太阳轮12a的转数是Ns,行星架16d的转数是Nc,这些数值与传动比λ的关系如下述公式(1)Nr+λNs=(1+λ)Nc....(1)图1B和1C是表示行星齿轮机构12的每个元件的转数之间的关系的列线图。根据该列线图,作为两侧的元件的太阳轮12a和齿圈12b被分别连接于起动机/发电机14和行驶/再生制动马达13,作为内侧元件的行星架16d连接于发动机11。与差速器16的输入的转数相对应的齿圈的转数Nr根据车速、减速器15和差速器16的传动比(shift transmission ratio)进行改变。在减速器15和差速器16的传动比被保持在最小值的情况下,诸如在车辆以高速行驶的情况下,齿圈的转数Nr根据车速进行变化。因此,如图1B的列线图中所示,通过调整和控制太阳轮12a的转数(起动机/发电机14的转数),可高精度地改变和控制行星架16d的转数,也就是,发动机的转数。当行星齿轮机构12的两个齿轮被固定时,Nr=Ns=Nc,并且它们以传动比1被驱动。因此,当齿圈12b和行星架16d由闭锁离合器28连接时,构成行星齿轮机构12的三个旋转元件16a、16b和16d一体旋转。
起动机/发电机14通过向行星齿轮机构12供能而连接于发动机11。当发动机被起动时,起动机/发电机14转动曲轴从而起动发动机11。而且,在发动机被起动之后,起动机/发电机14通过使用由行星齿轮机构12分配的发动机11的动力的一部分而产生电能。起动机/发电机14例如也可以是交流发电机,诸如三相同步马达和三相感应马达。
当车辆低速行驶时,车辆由行驶/再生制动马达13供能。当油门踏板上的压力被驾驶员增加并且驱动力需求增加时,发动机11由起动机/发电机14起动并且车辆由发动机11和行驶/再生制动马达13供能。然后,通过使用发动机输出的一部分,起动机/发电机14产生电能。发动机11和行驶/再生制动马达13的驱动力通过减速器15和差速器16被传送到驱动轮17。
第一逆变器21将行驶/再生制动马达13与电池23电连接。当车辆行驶时,第一逆变器21将由电池23产生的直流电流转换为交流电流,并且将该交流电流供给至行驶/再生制动马达13。此外,在制动期间,第一逆变器21将行驶/再生制动马达13的再生交流电流转换为直流电流,该直流电流随后被用于对电池23充电。这里,当直流电动机被用作行驶/再生制动马达13时,DC/DC转换器可以被用作逆变器的替代。合适的电池23的实例包括各种类型的可充电电池,例如镍氢电池、锂离子电池和铅酸电池,以及诸如双电荷层电容器的电力电容器。
第二逆变器22将起动机/发电机14连接于电池23。当车辆被起动时,第二逆变器22将由电池23产生的直流电流转换为交流电流,并且将该交流电流供给至起动机/发电机14。此外,当车辆行驶时,第二逆变器22将由起动机/发电机14产生的交流电流转换至随后用于对电池23充电的直流电流。再次,如果直流电动机被用作起动机/发电机14,那么DC/DC转换器可以用作逆变器的替代。
混合控制器31基于加速需求计算目标驱动力,该加速需求取决于例如油门踏板上的压力量。加速需求由油门位置传感器41检测。混合控制器31通过第一逆变器21和第二逆变器22控制行驶/再生制动马达13和起动机/发电机14。此外,混合控制器31通过CAN通信连接于发动机控制器32并且通过发动机控制器32控制发动机11。而且,混合控制器31通过控制线连接于电池23。还有,混合控制器31包括SOC检测装置,该SOC检测装置检测电池23的充电状态(SOC)。当SOC低时,混合控制器31激发起动机/发电机14,从而起动发动机11,并且对电池23充电,该电力是由发动机11的驱动力在起动机/发电机14处产生的。
发动机控制器32接收来自混合控制器31的信号并且控制供给到发动机11的燃料的喷射时间和喷射量以及节气门11的开度。位于发动机11的进气系统中的节气门11a可以由混合控制器31按需要开启和关闭,从而控制进气系统中的空气流量和压力以及空气/燃料混合物流入发动机11。
当从只使用马达行驶转换至使用发动机行驶时,如果起动发动机需要时间,那么驱动力可能无法被平稳地控制,这会不利地影响驱动性能。因此,优选地缩短起动发电机的时间。不过,当发动机被起动时,可能产生震动,驾驶员容易将该震动认为是车辆动力系的振动或颠簸移动,尤其在车辆被缓慢加速时。
当加速需求较小时,即,当由驾驶员施加于油门踏板上的压力较小时,由发动机起动引起的震动可以通过在进气系统中检测到压降时喷射燃料而被减小。另外,节气门11a可以被选择性地关闭。可选择地,代替喷射燃料或者除了喷射燃料之外,可以延长曲轴转动时间。通过实现这一点,可以减小发动机起动时的震动并且平缓地进行加速。
这里使用的术语“压降”表示在车辆发动机的进气系统中流动的气体在给定时间间隔上的压力下降。
另一方面,当加速需求较大时,即,由驾驶员施加到油门踏板上的压力较大时,如果采用相同的程序,那么加速响应可能会恶化。在这些情况下,节气门11a被打开,并且通过提早开始燃料喷射而在检测到进气系统中的压降前就喷射燃料。该过程可以防止加速响应的恶化。
参照图2的流程图在下文更加实际地描述发动机控制器32的控制逻辑。
图2是描述用于混合动力车辆的发动机起动装置的示例性操作的流程图。在步骤S1,在从混合控制器31接收发动机起动信号之后,发动机控制器32进行至步骤S2和后续步骤。
在步骤S2,发动机控制器32确定车辆是否先前被发动机起动(也就是,车辆是否第一次是被发动机起动的)。如果车辆先前没有被发动机起动,那么发动机控制器32进行至步骤S3,如果车辆先前被发动机起动,控制器进行至步骤S8。
在步骤S3,发动机控制器32重新设置计时器T。在步骤S4,发动机控制器设定目标值。目标值设定程序的内容将在下文进行更具体的描述。在步骤S5,发动机控制器32通过混合控制器31由起动机/发电机14开始转动曲轴。
在步骤S6,发动机控制器32确定计时器T是否超过由目标值设定程序S4设定的目标时间T1。在计时器T超过目标时间T1之前,发动机控制器32进行至步骤S7,在计时器T超过目标时间T1之后,发动机控制器32进行至步骤S9。
在步骤S7,发动机控制器32将节气门11a的开度设定为这里所称的开度TV01的位置,该开度由目标值设定程序S4设定。在步骤S8,发动机控制器32计算计时器T。在步骤S9,发动机控制器32将节气门11a的阀门开度从TV01重新设定为其正常位置。
图3是示出示例性目标值设定程序的流程图。图3的目标值设定程序参照图4-6进行描述。在步骤S41,发动机控制器32设定节气门11a的目标开度TV01,这将在下文根据图4所示的曲线图进行更详细的说明。
图4表示节气门的目标开度TV01相对于加速需求-油门踏板上的压力量、和/或加速传感器的输出等。当油门踏板上的压力量APO是预定值APO1或者更小时,节气门11a的目标开度TV01是完全打开。采用这种方式,当由驾驶员施加到油门踏板上的压力较小并且加速需求较小时,节气门11a被完全打开。当加速需求较大时,即,由驾驶员施加到油门踏板上的压力较大,并且油门踏板上的压力量超过预定值APO1时,节气门11a的目标开度TV01被设定。图4中的各值事先通过试验的方式确定。
在步骤S42,发动机控制器32基于油门踏板上的压力量设定燃料喷射的目标延迟时间Ta。更实际地,目标延迟时间Ta根据图5所示的曲线确定。图5表示事先通过实验的方式确定的燃料喷射的目标延迟时间Ta相对于油门踏板上的压力量。从图5可见,随着驾驶员施加于油门踏板上的压力增加,目标延迟时间Ta减小,随着由驾驶员施加于油门踏板上的压力减小,目标延迟时间Ta增加。尤其当由驾驶员施加于油门踏板上的压力量较小时,所需的驱动力可以较小。在这种情况下,例如,假定由于电池23的SOC较小所以有必要起动发动机11。因此,目标延迟时间Ta被延长以缓解在发动机起动时的震动。
在步骤S43,发动机控制器32可以基于油门踏板上的压力变化率(rate ofthe pressure)设定燃料喷射的目标延迟时间Tb。更实际地,目标延迟时间Tb可以基于图6所示的曲线图确定。图6表示事先通过实验的方式确定的燃料喷射的目标延迟时间Tb相对于油门踏板上的压力变化率。从图6可见,随着由驾驶员施加于油门踏板上的压力变化率增加,目标延迟时间Tb减小,随着由驾驶员施加于油门踏板上的压力变化率减小,目标延迟时间Tb增加。
在步骤S44,发动机控制器32比较目标延迟时间Ta与Tb的大小。当Ta≤Tb时,发动机控制器32继续进行至步骤S45并且将Ta设定为目标延迟时间T1。当Ta>Tb时,发动机控制器32进行至步骤S46并且将Tb设定目标延迟时间T1。
图7是在驾驶员施加于油门踏板上的压力量较小(AP0≤AP01)的情况下的时序图。直到时间t11,由驾驶员施加于油门踏板上的压力量较小(图7(F)),车辆只通过行驶/再生制动马达13行驶(图7(E)和(G))。
在时间t11由驾驶员施加于油门踏板上的压力量增加时(图7(F)),行驶/再生制动马达13的扭矩增加(图7(G))。
在时间t12油门踏板上的压力量超过标准值AP02时(图7(F)),图2的流程图所示的控制被起动(图2的步骤S1→S2)。
在计时器T被重设(图2的步骤S3)之后,目标值被设定(图2的步骤S4)。这里,油门踏板上的压力量AP0是预定值AP01或者更小,节气门11的目标开度TV01是完全关闭。还有,目标延迟时间T1是基于油门踏板上的压力量设定的燃料喷射的目标延迟时间Ta,或者基于油门踏板上的压力变化率设定的燃料喷射的目标延迟时间Tb中的较小值。
接下来,发动机11的曲轴转动通过起动机/发电机14起动(图7(A)和图2的步骤S5),节气门11a的开度变为TV01(图7(B)和图2的步骤S7)。
然后,在时间t13计时器T超过目标延迟时间T1时(图2的步骤S6中为是),燃料喷射被起动(图7(D)和图2的步骤S9),同时节气门11a的开度从TV01变回至正常开度(图7(B)和图2的步骤S10)。通过这样做,发动机11产生扭矩(图7(E))。采用这种方式,节气门11a被完全关闭,在发动机11的进气系统中产生压降(图7(C))。因此,可减小发动机起动时的震动。
图8是表示油门踏板上的压力量较大的情况下的时序图(AP0>AP01)直到时间t21,由驾驶员施加于油门踏板上的压力量较小(图8(F)),车辆仅通过行驶/再生制动马达13行驶(图8(E)和(G))。
在时间t21由驾驶员施加于油门踏板上的压力量被增加时(图8(F)),行驶/再生制动马达13的扭矩增加(图8(G))。在时间t22油门踏板上的压力量超过标准值AP02时(图8(F)),图2的流程图中所示的控制逻辑被起动(图2的步骤S1→S2)。
在计时器T被重设(图2的步骤S3)之后,目标值被设定(图2的步骤S4)。这里,油门踏板上的压力量AP0大于预定值AP01,且目标开度TV01根据图2确定。还有,目标延迟时间T1是基于油门踏板上的压力量设定的燃料喷射的目标延迟时间Ta,或者基于油门踏板上的压力变化率设定的燃料喷射的目标延迟时间Tb中的较小值。
接下来,发动机11的曲轴转动通过起动机/发电机14起动(图8(A)和图2的步骤S5),节气门11a的开度被设定为TV01(图8(B)和图2的步骤S7)。
然后,在时间t23计时器T超过目标延迟时间T1时(图2的步骤S6中的是),燃料喷射被起动(图8(D)和图2的步骤S9),同时节气门11a的开度从TV01变至正常开度(图8(B)和图2的步骤S10)。通过这样做,发动机11产生扭矩(图8(E))。采用这种方式,节气门11a的开度为TV01,在发动机11的进气系统中没有产生压降(图8(C))。因此,发动机11产生明显的扭矩并且可充分地增加速度。
如上所述的用于混合动力车辆的发动机起动控制装置可防止在加速需求较小并且车辆加速较慢时驾驶员感觉到震动。另外,该发动机起动控制装置可在加速需求较大并且车辆被快速加速时以优良的油门响应使车辆加速。
本发明并不局限于上述实施例,并且可在其技术思想的范围内被改变为各种形式。已经描述了本发明的各种实施例。这些和其他实施例都处于随后的权利要求的范围内。
权利要求
1.一种用于混合动力车辆的发动机起动控制装置,该混合动力车辆配备有电动机和带有进气系统的发动机,所述发动机起动控制装置包括混合控制器,该混合控制器执行发动机起动确定,以确定在所述电动机运行的同时所述发动机是否应该被起动;加速位置传感器,该加速位置传感器在所述发动机起动确定期间检测加速需求;以及起动机/发电机,该起动机/发电机起动所述发动机,其中,所述起动机/发电机基于加速需求控制所述进气系统中的压力。
2.根据权利要求1所述的用于混合动力车辆的发动机起动控制装置,其中,所述混合控制器基于驾驶员的加速需求确定所述发动机是否应该被起动。
3.根据权利要求1所述的用于混合动力车辆的发动机起动控制装置,其中,所述加速位置传感器基于油门踏板上的压力量来检测驾驶员的加速需求。
4.根据权利要求1所述的用于混合动力车辆的发动机起动控制装置,其中,所述混合控制器配备有电池充电状态检测器,以检测电池充电状态,基于电池充电状态确定所述发动机是否应该被起动。
5.根据权利要求1所述的用于混合动力车辆的发动机起动控制装置,其中,所述起动机/发电机在基于加速需求确定的节气门开度下转动曲轴以起动所述发动机,所述混合控制器通过在所述曲轴转动开始之后经过预定时间开始燃料喷射,来起动所述发动机。
6.根据权利要求1所述的用于混合动力车辆的发动机起动控制装置,其中,所述起动机/发电机控制所述进气系统的压降,使得随着所述加速需求减小,所述进气系统的压降增加。
7.根据权利要求5所述的用于混合动力车辆的发动机起动控制装置,其中,所述起动机/发电机在所述加速需求下降至低于预定需求时关闭所述节气门开度。
8.根据权利要求5所述的用于混合动力车辆的发动机起动控制装置,其中,使所述加速需求变大时所述节气门开度也变大。
9.根据权利要求5所述的用于混合动力车辆的发动机起动控制装置,其中,随着所述加速需求的减小,所述起动机/发电机延长从所述曲轴转动开始到所述燃料喷射开始的时间。
10.根据权利要求5所述的用于混合动力车辆的发动机起动控制装置,其中,由所述起动机/发电机经历的从所述曲轴转动的开始到所述燃料喷射的开始的时间是基于所述油门踏板上的压力量计算的第一延迟时间和基于所述油门踏板上的压力变化率计算的第二延迟时间中的较小值。
11.一种方法,包括确定在马达运行的同时发动机是否应该被起动,其中所述发动机包括进气系统;在发动机起动确定期间检测驾驶员的加速需求;以及在基于所述加速需求控制所述进气系统的压力之后起动所述发动机。
12.根据权利要求11所述的方法,还包括基于驾驶员的加速需求确定所述发动机是否应该被起动。
13.根据权利要求11所述的方法,其中,检测驾驶员的加速需求包括基于油门踏板上的压力量检测驾驶员的加速需求。
14.根据权利要求11所述的方法,还包括检测电池充电的状态;以及基于电池充电的状态确定所述发动机是否应该被起动。
15.根据权利要求11所述的方法,还包括在基于所述加速需求确定的节气门开度下转动曲轴以起动所述发动机;以及在所述曲轴转动开始之后经过预定时间开始燃料喷射,来起动所述发动机。
16.根据权利要求11所述的方法,还包括控制所述进气系统的压降,使得随着所述加速需求的减小,所述进气系统的压降增加。
17.根据权利要求15所述的方法,还包括在所述加速需求下降至预定需求之下时关闭所述节气门开度。
18.根据权利要求15所述的方法,还包括使所述加速需求变大时所述节气门开度也变大。
19.根据权利要求15所述的方法,还包括随着所述加速需求减小,延长从所述曲轴转动开始到所述燃料喷射开始的时间。
20.根据权利要求15所述的方法,其中,从所述曲轴转动的开始到所述燃料喷射的开始的时间是基于所述油门踏板上的压力量计算的第一延迟时间和基于所述油门踏板上的压力变化率计算的第二延迟时间中的较小值。
21.一种用于混合动力车辆的发动机起动控制装置,所述混合动力车辆配备有电动机和发动机,该发动机起动控制装置包括用于在所述电动机运行的同时执行发动机起动确定的装置;用于在所述发动机起动确定期间检测驾驶员的加速需求的装置;和用于基于所述加速需求控制进气系统的进气压力从而起动所述发动机的装置。
全文摘要
本发明公开了一种用于配备有电动机和带有进气系统的发动机的混合动力车辆的发动机起动控制装置,其包括混合控制器,该混合控制器执行发动机起动确定,从而确定在电动机运行的同时发动机是否应该被起动;加速位置传感器,该加速位置传感器在发动机起动确定期间检测加速需求;以及起动机/发电机,该起动机/发电机起动所述发动机,其中,所述起动机/发电机基于加速需求控制进气系统中的压力。
文档编号B60W20/00GK1950229SQ200580014735
公开日2007年4月18日 申请日期2005年11月1日 优先权日2004年11月2日
发明者大埜健 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1