混合动力装置的制作方法

文档序号:3988991阅读:117来源:国知局
专利名称:混合动力装置的制作方法
技术领域
本发明涉及混合动力装置,其基于通过向旋转输出轴分配由主动力源输出的一部分动力并向发电机分配其他部分动力而产生的电能来使电能存储装置充电,并通过电动机将动力经由变速器传递至旋转输出轴,该电动机由发电机的电能以及电能存储装置的电能其中一者或两者来驱动。
背景技术
作为混合动力装置,例如作为车辆的混合动力装置,已知将内燃机的输出分配至发电机及旋转输出轴,并将动力从电动机经由变速器传递至旋转输出轴的设备(例如,参考日本早期专利公开号2004-203219)。
在这种混合动力装置中,为了防止在停车换档时的换档延迟及换档冲击,需要控制电动机的旋转速度以在停车换档时达到目标旋转速度。
作为另一种混合动力装置,已经提出了一种设备,用于在当换档时电动机的转矩从电动机传递至旋转输出轴的情况下通过减小电动机的转矩而在换档时防止冲击(例如,参考日本早期专利公开号6-319210)。
所期望的是,通过将日本早期专利公开号6-319210中描述的电动机转矩减小所实现的换档冲击防护应用至日本早期专利公开号2004-203219中描述的混合动力装置,可以在较宽范围的操作状态下防止换档时的冲击。
但是,存在这样的情况,即对发电机产生的电能进行临时存储的电能存储装置在充电方面受限。换言之,在电能存储装置处于等于或超过参考值的充满状态的情况下,需要停止充电以防止过度充电并保护电能存储装置。此外,甚至在电能存储装置的充电容量在低温下降低的情况下,也需要停止充电以保护电能存储装置。
在日本早期专利公开号2004-203219描述的混合动力装置中,在将日本早期专利公开号6-319210中的结构应用至该混合动力装置的情况下,因为通过减小电动机的转矩而降低了电动机的电能消耗,故电能存储装置的充电量增加。
此时,如果如上所述充电受限,则需要妥善处理因减小内燃机的输出而引起的电动机的转矩减小以及由发电机发电所引起的充电禁止。在内燃机的输出减小的情况下,需要在换档结束之前及之后在解除电动机转矩减小的同时恢复内燃机的输出。
但是,需要花费较长时间来恢复内燃机的输出,而车辆驱动的响应延迟会妨碍驾驶员。
如果电动机的转矩减小在换档时被禁止以防止上述响应延迟,那么就不能防止换档冲击。

发明内容
本发明的目的在于可靠地防止换档冲击而不会产生上述混合动力装置中输出旋转的响应延迟。
根据本发明的一个方面,提供的混合动力装置包括主动力源和旋转输出轴。由所述主动力源输出的驱动力被传递至该旋转输出轴。所述主动力源的驱动力被传递至发电机。动力被分配至所述旋转输出轴及所述发电机。由所述发电机产生的电能向电池充电。电机由来自所述发电机的电能及来自所述电池的电能中的至少一者驱动。变速器将所述电机的驱动力传递至所述旋转输出轴。第一减小部分在所述变速器换档时减小所述电机的输出。充电判定部分判定是否允许对所述电池充电。如果所述充电判定部分判定为在所述第一减小部分减小所述电机输出期间不允许对所述电池充电,则所述第二减小部分减小所述发电机的发电量。
通过结合附图参考示意性地说明本发明的原理的以下详细描述,本发明的其他方面以及优点将变得清楚。


通过结合以下附图参考对当前优选实施例的以下描述,可以较好地理解本发明及其目的及优点,其中
图1是框图,示出了根据第一实施例用于车辆的混合动力装置的结构;图2是上述用于车辆的混合动力装置的行星齿轮机构以及变速器的共线图;图3是由上述用于车辆的混合动力装置的MG-ECU执行的换档时MG2转矩减小控制程序的流程图;图4是由上述用于车辆的混合动力装置的MG-ECU执行的MG1转矩减小控制程序的流程图;图5是示出第一实施例中的控制的示例的时序图;图6是示出第一实施例中的控制的示例的时序图;及图7是示出第一实施例中的控制的示例的时序图。
具体实施例方式
现参考图1至图7来描述本发明的实施例。
图1是示出用于车辆的混合动力装置2的结构的框图。车辆的混合动力装置2安装在车辆上,且动力源4的动力被传递至旋转输出轴6,并从旋转输出轴6经由差速齿轮8传递至驱动轮10作为驱动力。另一方面,提供了相应于辅助动力源的电动发电机12(以下称为“MG2”),该辅助动力源能够执行用于输出驱动力来行驶的动力运行控制或执行用于积累电能的再生控制。MG2经由变速器14耦合至旋转输出轴6,而在MG2与旋转输出轴6之间传递的动力相应于在变速器14中设定的变速齿轮速比而增大并减小。
动力源4主要由内燃机16、电动发电机18(以下称为“MG1”)、以及在内燃机16与MG1之间组合或分配转矩的行星齿轮机构20构成。内燃机16是诸如汽油发动机及柴油发动机的动力装置,并被构造为能够电控诸如节气阀开度(进气量)、燃油供应量、以及喷油时机等操作状态。其控制由主要由微计算机构成的电子控制单元(E-ECU)22来执行。
MG1是同步电机,并被构造以作为电动机且具有发电机的功能,并经由第一逆变器24而被连接至电能存储装置(在此情况下为电池26)。主要由微计算机构成的电子控制单元(MG-ECU)28控制第一逆变器24,由此设定MG1的转矩(输出转矩及再生转矩)。
在此情况下,上述MG2经由第二逆变器29连接至电池26。此外,MG-ECU28基于对第二逆变器29的控制,对各种情况下的动力运行、再生及转矩进行控制。
行星齿轮机构20是具有太阳轮20a、与太阳轮20a共轴地布置的齿圈20b、以及齿轮架20c的齿轮机构,该齿轮架20c保持小齿轮与太阳轮20a及齿圈20b啮合以在其轴线上自由旋转并作为三个旋转元件回转,并进行差速操作。内燃机16的旋转输出轴(在此情况下为曲轴)16a经由减振器16b耦合至齿轮架20c,由此齿轮架20c形成为输入元件。在此情况下,内燃机16的旋转输出轴16a的旋转由E-ECU22通过发动机速度传感器16c进行检测。此外,旋转输出轴6的输出轴转速Sout由输出轴转速传感器6a进行检测。
MG1耦合至太阳轮20a,且太阳轮20a形成为反作用元件。相应地,齿圈20b形成为输出元件,并耦合至旋转输出轴6。作为转矩分配机构(以及转矩组合机构)的行星齿轮机构20的共线图在图2的(A)部分中示出。因此,能够将内燃机16的一部分动力分配至旋转输出轴6,并将其他部分动力分配至MG1。
变速器14由成对拉威挪(Ravigneaux)式行星齿轮机构构成。换言之,设置了第一太阳轮14a以及第二太阳轮14b,短小齿轮14c与第一太阳轮14a啮合,而短小齿轮14c以及第二太阳轮14b与具有较长轴向长度的长小齿轮14d啮合。此外,长小齿轮14d与齿圈14e啮合,齿圈14e与各个太阳轮14a及14b共轴布置。各个小齿轮14c及14d由齿轮架14f保持以在其轴线上自由旋转并回转。因此,第一太阳轮14a及齿圈14e与各个小齿轮14c及14d一起构成的机构相当于双小齿轮式行星齿轮机构,而第二太阳轮14b及齿圈14e与长小齿轮14d一起构成的机构相当于单小齿轮式行星齿轮机构。
设置有选择性地固定第一太阳轮14a的第一制动器B1以及选择性地固定齿圈14e的第二制动器B2。该第一制动器B1及第二制动器B2被构造为可通过液压或电磁力等方式使其最大转矩相应于啮合力连续改变。在本实施例中,采用了液压。上述MG2耦合至第二太阳轮14b,而齿轮架14f耦合至旋转输出轴6。
因此,变速器14被构造为使第二太阳轮14b相当于输入元件,齿轮架14f相当于输出元件,变速齿轮速比大于1的高速档通过啮合第一制动器B1来设定,低速档通过啮合第二制动器B2而不是第一制动器B1来设定,低速档的变速齿轮速比大于高速档。各个变速档之间的转换基于诸如车速以及所需驱动力(或加速踏板下压程度)等行驶状态来执行。具体而言,变速档区域以对照表的形式预先确定(换档图表),并执行控制使得相应于检测到的操作状态来设定任意一个变速档。该控制由主要由微计算机构成的电子控制设备(T-ECU)30来执行。
变速器14的共线图在图2的(B)部分中示出。如果齿圈14e由第二制动器B2固定,则设定为低速档Low,且由MG2输出的转矩以与变速齿轮速比相当的比例被放大以施加至旋转输出轴6。如果第一太阳轮14a由第一制动器B1固定,则设定为具有高速档High,它具有比低速档Low小的变速齿轮速比。因为高速档High中的变速齿轮速比小于1,故由MG2输出的转矩以与变速齿轮速比相当的比例增大以施加至旋转输出轴6。
在各个速度档Low以及速度档High设定为固定模式的状态下,施加至旋转输出轴6的转矩变为通过相应于变速齿轮速比来增加MG2的输出转矩而获得的转矩。但是,在换档瞬态,转矩变为受到各个制动器B1及B2的最大转矩、根据转速改变的惯性转矩等影响的转矩。此外,施加至旋转输出轴6的转矩在MG2的驱动状态下是正转矩,而在被驱动状态下是负转矩。
混合动力装置2通过尽可能高效地操作内燃机16提高了比油耗(specific fuel consumption)并降低了排气量,并通过执行电能再生提高了比油耗。因此,在需要较大的驱动力的情况下,其驱动MG2,以在将动力源4的转矩传递至旋转输出轴6的情况下,向旋转输出轴6施加转矩。在此情况下,变速器14被设定为低速档Low以在低车速状态增大施加的转矩,而在车速随后增大的情况下,变速器14被设定为高速档High以降低MG2的转速。因此,能够维持MG2的驱动效率在良好的状态以防止比油耗性能恶化。
因此,在混合动力装置2中,在MG2操作行驶期间执行变速器14的换档。通过转换各个制动器B1及B2的啮合及松开状态来执行换档。在从低速档Low转换为高速档High的情况下,通过使第二制动器B2从啮合状态松开并同时啮合第一制动器B1来执行从低速档Low到高速档High的换档。相反,在从高速档High转换为低速档Low的情况下,通过使第一制动器B1从啮合状态松开并同时啮合第二制动器B2来执行从高速档High到低速档Low的换档。
通过图3及图4中的时序图示出了在变速器14换档时对MG1及MG2的转矩减小控制程序。该控制的一个示例示于图5至图7的时序图中。这些转矩减小控制程序由MG-ECU28执行。在此情况下,MG-ECU28通过数据通信与E-ECU22及T-ECU30交换信息。此外,各个ECU22、28及30通过各个传感器获取控制用数据。
下面将给出换档时MG2转矩减小控制程序的描述(见图3)。该程序相应于以固定时间周期重复执行的程序。
在该程序开始时,首先基于T-ECU30的控制状态判定变速器14是否正在换档(S100)。如果不是正在换档(S100中为否,图5中在t0之前),则该程序结束。因此没有执行实质的程序。
如果变速器14正在换档(S100中为是,图5中在t0之后),则判定是否从T-ECU30输出了MG2的转矩减小要求(S102)。为了防止在换档控制中间的换档冲击,T-ECU30向MG-ECU28要求MG2的转矩减小,并判定该要求是否已经生成。如果该要求还未生成(S102中为否,图5中在t1之前),则该程序结束。
图5示出了施加在制动器B1及B2上的液压,如果换档程序前进且T-ECU30输出MG2的转矩减小要求(S102中为是),则执行MG2的转矩减小(S104,图5中的t1)来防止换档时的冲击。如图5所示,通过执行减小程序使转矩高度从正常控制情况下降一段固定的转矩幅度ΔTr(图5中的t1),并执行随后逐渐消除转矩减小以返回正常控制的转矩状态的程序(图5中的t1到t2),来执行转矩减小。
然后,开始执行MG1转矩减小控制程序(图4)。
在此情况下,即使在步骤S102判定为是的状态随后在相同换档时重复,MG2转矩减小(S104)及MG1转矩减小控制程序已经开始(S106),因此它们不会被多余地执行。
下面,将给出MG1转矩减小控制程序(图4)的描述,其执行从上述步骤S106开始。该程序相应于由MG-ECU28以固定时间周期重复执行的程序。
在该程序开始时,首先判定充电是否受限(S150)。换言之,在电池26处于等于或超过限制充电所用的参考值的充满情况下,在由MG-ECU28自身执行的施加至电池26的充电控制下,MG-ECU 28为了保护电池26而限制充电。此外,在电池26的温度等于或低于参考温度且难以对电池26充电的情况下,也限制充电以保护电池26。如上所述在考虑了电池26的温度的情况下,MG-ECU 28还通过温度传感器26a等来检测电池26的温度。
如果不执行如上所述的充电限制(S150中为否),则判定换档是否结束(S158)。如果换档没有结束(S158中为否),则该程序临时结束。
如上所述在没有执行充电限制的情况下,仅基于换档时MG2转矩减小控制程序(图3)来执行MG2的转矩减小,且如图5所示,在MG1中根据基于正常控制的转矩来执行发电控制。换言之,MG1的发电量不会相应于MG2的转矩减小而降低。因此,与MG2的转矩减小相当的发电量被利用来对电池26充电。因此,因为维持了MG1的发电负荷水平,故在MG2的转矩减小之后发动机速度Ne不会产生大的改变。在此情况下,在图5的示例中,以这种方式执行控制以建立电能平衡状态,其中除了时刻t1与t2之间的时间段外,由MG1产生的全部电能都在MG2中被消耗,而没有使用来自电池26的电能,也没有对电池充电。下述图6及7中的电能平衡状态大体相同。
此外,如果换档最终结束(S158中为是,图5中的t3),则MG1转矩减小控制程序(图4)本身停止(S160)。如上所述,直至换档时MG2转矩减小控制程序的步骤S106再次执行时,MG1转矩减小控制程序(图4)才停止。
如果MG1转矩减小控制程序(图4)中充电受限(S150中为是),则判定发动机速度Ne是否小于通过给目标速度NET增加上升幅度a而获得的值(相当于参考速度)(S152)。在此情况下,如果如图6中的时序图所示关系Ne<NET+a成立(S152中为是)(t11),则执行MG1转矩减小以保持电能平衡(S156,图6中的t11至t13)。换言之,因为充电限制,故由MG2的电能消耗完全抵消MG1的发电量的状态一直维持至时间t11,并且该状态在换档时也维持,因为MG1的转矩相应于MG2的转矩减小而以相同方式减小。
然后,因为换档还未结束(S158中为否),故该程序临时结束。
随后,由于通过MG1使发电负荷减小,发动机速度Ne临时增大(t12至t14)。但是,只要关系Ne<NET+a(S152中为是)成立,就在步骤S158至步骤S156判断为否,并重复临时结束该程序的过程。在此情况下,因为已经执行了用于保持电能平衡的MG1转矩减小(S156),故不再多余地执行。
如果在保持Ne<NET+a(S152中为是)的状态的同时换档结束(S158中为是,图6中t15),则MG1转矩减小控制程序(图4)自身停止(S160),且该程序完全结束。
在换档结束之前关系Ne≥NET+a成立(S152中为否)的情况下,相应于MG2的转矩减小执行内燃机输出减小(S154)。换言之,如图7中的时序图所示,如果MG1的发电负荷的减小(t21)使关系Ne≥NET+a成立(t23至t25),则内燃机16的输出降低。因此,旋转输出轴6的输出转矩减小(t23及之后)。因此,MG1的发电量降低且MG2的转矩临时减小(t23及之后)。
此外,如果关系返回至Ne<NET+a的关系(S152中为是),则不执行内燃机的输出减小。因此,在换档期间消除临时产生的内燃机16输出减小以实现复原(t26)。
在上述结构中,内燃机16、电池26、MG1、MG2以及发动机速度传感器16c分别对应于权利要求中的主动力源、电能存储装置、发电机、电动机、以及速度检测部分。由MG-ECU 28执行的换档时MG2转矩减小控制程序(图3)的步骤S100、S102、及S104对应于作为电动机输出减小部分的程序。由MG-ECU 28执行的MG1转矩减小控制程序(图4)的步骤S150对应于作为充电判定部分的程序,步骤S156对应于作为发电量减小部分的程序,而步骤S152及S154对应于作为主动力源输出减小部分的程序。
根据上述第一实施例,可以获得以下优点。
(1)因为执行换档时MG2转矩减小控制程序(图3)的步骤S104以基于在变速器14换档时来自T-ECU 30的转矩减小要求而减小MG2的输出,故可以防止换档时的冲击。
此外,在判定不能在MG1转矩减小控制程序(图4)中对电池26充电时(S150中为是),发电量基于作为发电机的MG1的转矩减小(S156)而减小。因此,因为相应于MG2的输出减小量的那部分电能实际上没有用于对电池26充电,故抑制了充电量的增加,即维持了充电量。在本实施例中,因为发电相应于MG2的输出减小量而在MG1中减小了发电量,故可以可靠地防止电池26被充电。因此,可以防止电池26被过度充电。
(2)如果发动机速度Ne小于用于判定转速过快的参考速度(NET+a)(S152中为是),则不执行内燃机16的输出减小。因此,因为不需要将内燃机16从输出减小复原,故在换档之后在车辆行驶中不会产生响应延迟。
在关系Ne≥NET+a成立(在S152中为否)的情况下首先执行内燃机16的输出减小。因此,因为可以防止内燃机16及MG1转速过快,且仅在存在转速过快的可能性的情况下执行内燃机16的输出减小,故限制了内燃机16的输出减小的频率。此外,即使在执行了内燃机16的输出减小的情况下,如果转速过快的可能性(在S152中为是)丧失,内燃机16的输出也可以复原。因此,可以在较早阶段就启动返回程序,并可以抑制行驶时的响应延迟。
具体而言,因为内燃机16的输出减小相应于MG2的转矩减小,故可以更合适地抑制内燃机16与MG1之间的转速过快。
(3)因为消除MG2的转矩减小以及消除MG1的转矩减小都是逐渐执行的,故不产生控制程序的快速改变。因此,可以执行稳定的控制程序并可以防止对控制的冲击。
(4)内燃机16作为混合动力装置2的主动力源。通过调整节气阀开度来执行发动机16的输出的减小及复原。发动机16的响应度没有MG1及MG2的高。但是,如上所述因为本实施例防止行驶期间的响应延迟,故可以可靠地防止变速器14的换档冲击。
本领域的技术人员可以理解,不脱离本发明的精神或范围,本发明可以很多其他具体形式来实施。具体而言,需要理解的是本发明可以下列方式实施。
(a)在MG1转矩减小控制程序的步骤S152中(图4),基于发动机速度Ne来判断转速过快,但是,着眼于防止MG1的转速过快,可以通过直接检测MG1的旋转进行判定。
(b)在MG1转矩减小控制程序的步骤S154中(图4),相应于MG2的转矩减小来执行内燃机输出减小。但是,内燃机输出减小可以相应于MG1的转矩减小(即发电量的减小)来执行。
此外,可以相应于MG2的转矩减小及MG1的转矩减小两者的减小量来执行内燃机输出减小。
权利要求
1.一种混合动力装置包括主动力源(16);旋转输出轴(6),由所述主动力源(16)输出的驱动力传递至该旋转输出轴(6);发电机(MG1),所述主动力源(16)的驱动力传递至该发电机(MG1),动力被分配至所述旋转输出轴(6)及所述发电机(MG1);电池(26),由所述发电机(MG1)产生的电能向该电池(26)充电;电机(MG2),其由来自所述发电机(MG1)的电能及来自所述电池(26)的电能中的至少一者驱动;及变速器(14),其将所述电机(MG2)的驱动力传递至所述旋转输出轴(6),所述混合动力装置的特征在于第一减小部分(S100、S102、S104、t1),其在所述变速器(14)换档时减小所述电机(MG2)的输出;充电判定部分(S150),其判定是否允许对所述电池(26)充电;及第二减小部分(S156、t11),其中如果所述充电判定部分(S150)判定为在所述第一减小部分(S100、S102、S104、t1)减小所述电机(MG2)输出期间不允许对所述电池(26)充电,则所述第二减小部分(S156、t11)减小所述发电机(MG1)的发电量。
2.根据权利要求1所述的混合动力装置,其特征在于所述第二减小部分(S156、t11)使所述发电机(MG1)的发电量减小的量对应于所述第一减小部分(S100、S102、S104、t1)使所述电机(MG2)的输出减小的输出减小量(ΔTr)。
3.根据权利要求1所述的混合动力装置,其特征在于在减小了所述电机(MG2)的输出之后,所述第一减小部分(S100、S102、S104、t1)逐步地消除所述电机(MG2)的输出减小(t1-t2),并目其中相应于对所述电机(MG2)输出减小的消除,所述第二减小部分(S156、t11)逐步地消除对所述发电机(MG1)发电量的减小(t1-t2)。
4.根据权利要求1至3中任一项所述的混合动力装置,其特征在于速度检测部分(16c),其检测所述主动力源(16)或所述发电机(MG1)的转速(Ne);及第三减小部分(S152、S154),其中如果在所述第一减小部分(S100、S102、S104、t1)减小所述电机(MG2)输出期间(t21-t26)由所述速度检测部分(16c)检测到的所述转速(Ne)超过参考转速(NET+a)(t23-t25),则所述第三减小部分(S152、S154)减小所述主动力源(16)的输出。
5.根据权利要求4所述的混合动力装置,其特征在于所述第三减小部分(S152、S154)使所述主动力源(16)的输出减小(t23)的量对应于下列至少一者由所述第一减小部分(S100、S102、S104、t1)减小的所述电机(MG2)的输出、以及由所述第二减小部分(S156、t11)减小的所述发电机(MG1)的发电量。
6.根据权利要求1至3中任一项所述的混合动力装置,其特征在于所述主动力源(16)是内燃机(16)。
7.根据权利要求1至3中任一项所述的混合动力装置,其特征在于如果所述电池(26)的充电量等于或大于参考量,或者如果所述电池(26)的温度等于或低于参考温度,则所述充电判定部分(S150)判定不允许对所述电池(26)充电。
全文摘要
一种混合动力装置的第一减小部分(S100、S102、S104、t1)在变速器(14)换档时减小电机(MG2)的输出。充电判定部分(S150)判定是否允许对电池(26)充电。如果所述充电判定部分(S150)判定为在所述第一减小部分(S100、S102、S104、t1)减小所述电机(MG2)输出期间不允许对所述电池(26)充电,则第二减小部分(S156、t11)减小发电机(MG1)的发电量。因此,可以可靠地防止换档冲击而不会在混合动力装置的输出旋转中产生响应延迟。
文档编号B60W10/115GK1951742SQ20061014997
公开日2007年4月25日 申请日期2006年10月19日 优先权日2005年10月21日
发明者松原亨, 远藤弘淳 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1