用于确定cvt变速器打滑、控制cvt变速器的方法及一种变速器的制作方法

文档序号:3895735阅读:158来源:国知局
专利名称:用于确定cvt变速器打滑、控制cvt变速器的方法及一种变速器的制作方法
技术领域
本发明涉及由多个包含在易受转动振动影响的系统中的、在它们的转 动性上相互耦合的部件单元确定一个部件的转速的方法。本发明还涉及用 于确定CVT变速器打滑的方法及用于控制CVT变速器的方法。此外本发 明还涉及一种锥盘-缠绕接触装置变速器。
背景技术
在机动车中出于舒适性的原因及出于减少燃料损耗的原因愈来愈多地 使用具有连续可变的变速比的变速器,即所谓的CVT变速器(例如锥盘-缠绕接触装置变速器,摩擦轮变速器,等),它们由一个控制装置这样地控 制,以致可视加速踏板的操作或驾驶员可输入的愿望而定, 一方面获得机 动车令人满意的动态特性及另一方面以小的燃料损耗运行。图1表示一个 机动车动力传动系的例子。
该机动车具有一个发动机2,它在图示的例中通过一个离合器4及一个 变速器6与一个万向轴8相连接。该万向轴通过差速器10驱动两个半轴12, 这些半轴与后轮14无相对转动地连接。前轮16在图示的例中不用说明。
设有一个微处理器及所属存储装置的电子控制装置18具有一些输入端 20,它们与一些传感器相连接。作为传感器例如连接有用于检测变速器输 入轴转速的传感器22,节气门传感器24,发动机转速传感器26,车轮转速 传感器28及可能有的其它传感器。控制装置18的输出端与离合器操作装 置32及变速器操作装置34相连接,以及需要时与动力传动系的其它致动 器如节气门调节器等相连接。
5在图示的例子中变速器6是一个CVT变速器,它的操作装置34通过 液压进行控制。借助一个选挡杆36可以启动倒车行驶级及不同的行驶程序。
在这种装有CVT变速器的动力传动系的实际工作中出现了各种问题, 这些问题的解决对于舒适性及在长的工作时间上可靠地使用CVT变速器是 重要的。例如对于CVT变速器的控制或调节重要是精确地识别该变速器 输入轴的转速。直接在输入轴上检测的输入轴转速信号用于譬如CVT变速 器的变速比的控制或调节的可利用性受到限制,因为该输入轴转速可具有 动力传动系中存在的振动。此外出于各种原因需要识别通过摩擦连接工作 的CVT变速器的打滑。以避免留有损伤。并且尤其在锥盘-缠绕接触装置变 速器中变速比的调节带有问题,该变速器的各锥盘对仅具有一个用于压紧 及调节的压力室。

发明内容
本发明的任务在于,提出对上述实践中出现的问题的补救措施。 该任务的一个解决方案在于,由多个包含在易受转动振动影响的系统 中的、在它们的转动性上相互耦合的部件单元确定一个部件的转速,这将
这样来实现测量设置在一个振动节点中或其附近的一个部件单元的转速, 及由所测量的转速及该部件单元与所述部件之间的变速比计算该部件的转 速。
当两个部件单元设置在一个振动节点的两个不同侧上时,有利的是, 对所述部件的转速的计算使用这些部件单元转速的平均值。
有利地,上述方法可用于确定包括在一个机动车的动力传动系中的
CVT变速器的输入端转速,其中测量至少一个通过该CVT变速器驱动的车 轮的转速,及根据CVT变速器的变速比以及需要时在该CVT变速器输出 端与该车轮之间的其它变速比计算所述输入端转速。
有利的是,测量所述至少一个车轮转速,CVT变速器的输入端转速及 其输出端转速,及使用所述由这些测量的量以及需要时在该CVT变速器输 出端与该车轮之间的其它变速比计算的变速器输入端转速来控制和/或调节
动力传动系的组成部分。
有利地,用预定加权使用测量的及计算的变速器输入端转速来控制和/或调节动力传动系的组成部分。
合乎目的地该加权与CVT变速器的变速比相关。
用于确定CVT变速器的打滑的方法,其特征在于,求得变速比的变化 速度;将求得的变化速度与一个预定的、由CVT变速器的工作参数计算的 变化速度相比较;及当求得的变化速度偏离计算的变化速度超过一个预定 量值时,确定为打滑。
有利地,计算的变化速度的最大值正比于1/变速比 其中n具有1.5 与2之间的值,及当求得的变化速度超过所述最大值一个确定的量值时, 确定为打滑。
用于确定CVT变速器的打滑的另一方法,其特征在于,存储CVT变 速器的在打滑时改变的声参数的至少一个值;测量该声参数;及当所测量 的参数以预定方式接近该存储值时,则确定为打滑或打滑的显露。
在用于确定CVT变速器的打滑的一个有利的方法中,求得变速器输出 端转速随时间的变化;及当该输出端转速随时间的变化超过一个预定极限 值时,被评价为至少预示的打滑。
用于确定CVT变速器的打滑的另一有利的方法,其特征在于,求得作 用在一个设有CVT变速器的机动车的至少一个车轮制动器上的力随时间的 变化;及当该力随时间的变化超过一个预定极限值时,被评价为至少预示 的打滑。
有利地,在确定打滑或预示的打滑时这样地调节CVT变速器的调节量,
以致使打滑被抑制。
用于控制具有一个缠绕两个锥盘对的缠绕接触装置的CVT变速器的方
法,其中每个锥盘对各具有一个用流体压力加载的压力室,用于调节锥盘 对与缠绕接触装置之间的压紧压力及调节CVT变速器的变速比,其特征在 于根据用于变速比的预定变化速度所需的这些压力室中充有的流体压力 之间的差值来预控制包含在这些压力室的流体连接管路中的一个控制阀的 打开横截面。
锥盘-缠绕接触装置变速器,包括两个锥盘对,各锥盘对具有两个其距 离可改变的锥盘; 一个缠绕这些锥盘的缠绕接触装置; 一个导向缠绕接触 装置的一个段的滑轨,该滑轨在其向着另一缠绕接触装置段的一侧上设有至少一个与该缠绕接触装置平行地延伸的、从滑轨端部向其中间增厚的肋; 及一个设在肋中间区域中的、大致垂直于缠绕接触装置在其中环行的平面
延伸的管,用于将液体至少喷射到锥盘对的锥盘之间的空间中;该变速器 可这样有利地构成所述肋在其向着所述另一缠绕接触装置段的表面上在 其中间区域中具有一个槽,以致由构成在横穿该槽的管中的多个孔喷射出 的液体可直接地到达锥盘之间的空间中。
管最好包括至少另一孔,由该孔喷出的液体可直接地到达另一缠绕接 触装置段中。
本发明可用于各种应用中的不同结构的CVT变速器,以下将借助例子 来更详细地描述。
本发明的方法的另一有利构型涉及打滑事件的评价,这些打滑事件被 检测及例如被保持或存储在机动车的控制装置中。在此,有利地计算打滑 事件的功率及根据该功率是否超过一个确定的极限值在控制装置中进行故 障记录。试验表明,不是每个滑动事件会导致无级变速器盘的表面或链的 摆动件的损伤。并且还表明,较高功率的损伤不一定导致持久的损坏,由 此可导入一个或多个极限值,即关于打滑事件的功率及频度的极限值。然 后可在机动车中直接地或在车间中进行相应的评估。
一个打滑事件与时间相关的功率P例如可根据 P = MX △ co
由施加在变速器上的转矩M-它例如可由用于压紧压力的压力传感器来求 得 - 及打滑链带与该无级变速器之间的角速度差A co来给出,该角速度差
可当打滑事件期间由无级变速器变速比的超出来求得。
有利地,这样确定的功率P的最大值可用于比较的情况,但也可有利 地使用其它的量如对时间的功率积分或静态的近似值。作为最大值求值的 精确方法的使用可实现,当它可通过控制装置的处理器性能达到时。
已经表明,打滑事件的功率在功率范围中分类是有利的,例如功率从 直至5.10kW被分类为轻的损伤及超过它的值被分类为重的损伤。在此情况 下,打滑事件的数目可根据该分类被记录在故障存储器中。在此,可以这 种方式集成地使用一个故障计数器,对打滑事件加权及总计。故障的加权 也可通过预损伤来进行,因为在损伤后的打滑事件可比在未损伤的变速器
8上产生更严重的影响。故障计数器可根据在变速器中使用的材料及其状态 如无级变速器表面并根据内燃机功率,所使用的变速器油及类似方面来定 参数。当超过故障计数器中的极限值时可向驾驶员报警,例如由一个简单 显示器进行一级及多级显示,从要求在工厂中检测直到强制停止机动车使 用,以便保护免受继续损坏。


附图中表示
图1: 一个刚才已说明的机动车的动力传动系, 图2:用于说明滑动超前识别的曲线,
图3: —个锥盘-缠绕接触装置变速器的液压控制示意图, 图4:用于一个阀打开的预控制特性曲线,
图5: —个锥盘-缠绕接触装置变速器的侧视图,及
图6: —个导轨的一部分的透视图。
具体实施例方式
已公知一些方法,其中在控制装置18中或在非中心的其它控制装置中 进行的变速器6的调节是基于变速器6的输入端转速的调节。当变速器输 入端转速被直接测量时,在测量信号中可找到冲击及扯拉频率。这些频率 作为干扰作用在变速比调节装置上及妨碍了主导参数的良好调节。在极端 情况下可导致引起变速比调节起振的反馈。基于该原因合乎愿望的这样一 种信号,该信号不具有这种振动或仅具有以减小的方式出现的振动。具有 大的时间常数的、引起平滑的强滤波基于明显降低的动态是不能允许的。
该问题的解决在于,在一个位置上测量不易受振动影响的转速,该位 置从振动技术的观点来看构成一个振动节点或位于一个这样的节点的附 近。
具有一个发动机, 一个变速器及一个通过轮胎与道路耦合的机动车轮 的动力传动系-其中这些部件通过一些轴彼此相连接-是一个具有旋转 振动的系统。在此,发动机及变速器可能相对机动车质量振动,其中固有 频率典型为7.1赫兹及二阶转速为212分钟'1。在另一模式中发动机与机动车质量之间的变速器振动,其中固有频率典型为19.8赫兹及二阶转速为大 约593分钟"。在另一模式中变速器与机动车质量之间的车轮振动。固有频 率典型为47.9赫兹及二阶转速约为1.436分钟"。在另一模式中发动机与动 力传动系的其余部分之间的变速器输入端振动,其固有频率典型为71.4赫 兹,它相应于2.143分钟"的二阶转速。在锥盘-缠绕接触装置变速器的情况 下该无级变速器的变速比(带有缠绕接触装置的锥盘对)通过测量第一锥 盘对及第二锥盘对的转速来计算。因为从振动技术的观点看该无级变速器 是非常刚性的,在计算的变速比中找不到冲击或扯拉频率。车轮转速可有 利地从ABS控制装置中获得,在车轮上直接抽取的转速信号被输入到该 ABS控制装置。重要的是,车轮转速是直接在车轮上而不是在变速器输出 端、例如在一个半轴12 (图1)的始端检测的,因为那里的转速也具有冲 击频率。
由测量的车轮转速及测量的变速器变速比及动力传动系中的其它变速 级-在图示的例中差速器10的变速比,可由下列关系式计算变速器输入 端转速nb:
(1) nb = icvT D nR, 式中icvT是CVT变速器的变速比,b是差速器的变速比及riK是车轮转速。
可以理解,当在CTV变速器的输入锥盘组与其输入轴之间或在其它位 置上具有其它变速级时还可加入其它变速比。
如果振动节点位于两个测量点之间,则可通过在振动节点两侧所测量 转速的平均值的构成产生一个无振动的转速信号。
通过所述方法可改善变速比调节相对动力传动系振动的不敏感性。在 调节器放大系数高的情况下起振的危险得以明显减小。通过允许的相应更 高的调节器放大系数可改善导控特性。
所述方法可使用在所有类型的无级变速器,如齿轮空挡结构或12结构 形式等的摩擦轮变速器、锥盘-缠绕接触装置变速器。这些CTV变速器尤其 可在其变速比调节时成为冲击振动的激励源,使冲击振动增强或阻尼或其 本身功能受到冲击振动的影响。
一个锥盘-缠绕接触装置变速器的变速比通过锥盘对与缠绕接触装置 之间的压紧力的改变来调节。该改变通过液压阀的控制来实现,这些液压
10阀调节相应的压力。调节回路基于锥盘-缠绕接触装置变速器的复杂调节关 系(与转速,转矩,变速比及其压紧力相关)投入使用,其中例如由测量 的转速计算一个实际变速比及由当前的行驶状态(速度,行驶踩板操作等) 计算一个给定变速比。此外公开了一些调节器,其中测量变速器输入端的 实际转速及由当前的行驶状态确定一个给定转速。并且也公开了,这些调 节器不仅能尽可能快地抑制给定值-实际值偏差,而且在此情况下可通过与 当前行驶状态相应的转速给定值的改变来限制转速实际值的改变。由此能 以舒适地上升的方式限制在调节时释放的动态力矩。
当作为输入到调节器的变速器实际输入端转速不是直接使用测量的实 际输入端转速,而是如上所述地在第一步骤中由变速器输入端及变速器输 出端上测量的转速来计算变速器的变速比及然后由该变速比及一个被驱动 车轮的测量转速来计算变速器输入端的转速时,它具有其优点,即不需要 使带通滤波器专门地调整到与变速比相关的冲击振动频率上。通过冲击振
动的隔离及阻尼可改善CVT调节的舒适性及调节品质。
有利的是,对上述的方法这样地进一步构造作为用于调节CTV变速 器变速比的调节器的输入参数使用变速器的输入端转速nE,它根据下式来
确定
(2) nE= aXnb+(l-a) Xng,式中 nb为根据式(1)计算的输入端转速,ng为直接测量的变速器输入端转速及 a为加权系数。当aK)时对于调节仅使用具有冲击振动的、测量的变速器 输入端转速。当a二l时使用计算的、对冲击振动去耦的输入端转速nb。当 d >1时通过调节器形成负反馈;当a <0的值时通过调节器形成正反馈; 在中间值上形成一个"部分去耦合"。视调节器结构而定可通过a的适当选 择这样地调制CVT-变速器的调节部分,即冲击振动被阻尼。
根据本发明,调节器可使用固定的a值来实施。有利的是,cx值作成 与当前变速比相关,因为冲击振动可出现在孤立的变速比范围中。所需a 的量值可根据冲击振动的出现被推导出来。对冲击振动出现的识别可使用 滤波器来实现。
另一个当无级变速器工作时总是出现的问题在于处于摩擦连接的传 动部件之间的压紧力不足以传递现有的转矩,由此引起打滑,这样可造成变速器不可逆转的损坏。打滑检测不能-例如通常在离合器上那样-仅
通过转速差的求值来实现,因为在CVT变速器上由于可变的变速比不存在 任何固定的转速关系。
根据本发明,借助变速比梯度进行打滑检测。CVT变速器具有一个有 限的调节速度,即对于变速比的改变总需要一定的持续时间。如果变速比 的变化以比无打滑运行中大的变化速度发生,则可推断出打滑。
基于根据缠绕接触装置原理的无级变速器的物理特性,最大可能的调 节速度不是恒定的,而是与不同的参数如转速、转矩及瞬时变速比相关。 最大的影响是由瞬时变速比给出的。理论上可推断出,最大可能的变速比 改变速度正比于1/变速比11。最大允许的值为11=2;适合的值在1.5与2之 间,优选的值为1.7。在两个调节方向上允许的变速比梯度大致相等。
在实践中在预定变速比中,例如在最大减速运行时可求得最大可能的 调节速度。然后基于上述关系可计算用于其它变速比的最大调节速度,其 中为了计算当前最大调节速度,使用了在其处理前被滤波及用另一采样频 率再采样的一些转速。同样对于变速器的变速比可使用滤波及再采样的算 法。
在理想快的变速比变化时调节梯度可高于极限标准。因此这不会导致 在控制装置的误差存储器中不希望有的误差存入,在此情况下关闭打滑监 测。用所述方法不能检测具有小调节梯度的打滑事件。但在滑动消除时具 有暂时小梯度的打滑事件典型达到高于极限标准的调节速度。
在所述方法的变型方案中,无级变速器变速比的变化可在一个数学模 型中根据不同的工作参数如发动机转速、变速器输入端转速、变速比、输 入转矩、温度及轴向力来计算。在运行时这些参数是已知的,由此借助该 数学模型可计算调节动态变化率di/dt,其中i为变速器或无级变速器的变速 比。如果理想测量的调节梯度偏离计算的变化速度超过预定的量值,则表 明有打滑。
有利地,对于调节动态变化率可确定一个低于它不进行求值的下限。 因此可避免当仅是小的期望调节梯度时基于可能的数字不精确度可错误 地检测到打滑。
由于计算时间的原因该数学模型可被这样地简化,即仅考虑主要影响参数。在锥盘-缠绕接触装置变速器的情况下调节动态变化率主要与轴向力 及无级变速器的变速比相关。在此,轴向力不是指绝对力,而是指静态工
作点上的力差值,该静态工作点通过静态zeta曲线来描述。
对于该力差值有<formula>formula see original document page 13</formula>
式中6表示在变速比二 Fsl_stat /Fs2,t的静态工作状态中第一锥盘对上的力与 第二锥盘对上的力之间的力比例关系,其中Fs,或Fs2各为第一或第二锥盘 对上的当前力。
变速比关系可通过一个调节系数ki (它与变速比i及调节方向相关)来 描述,由此调节动态变化率可由下式描述;
(3) di/dt = kiX (FS1" XFS2) 值ki可存储在用于升挡或降挡的特性曲线中。
在一个无级变速器中可计算或测量施加怎样的力导致怎样的调节。 在考虑由(3)式已知的调节动态变化率的情况下则可确定是否通过所施 加的力差值进行调节或该调节通过其它事件(打滑)引起。
为了更可靠地识别打滑及减小发散影响,可在式(3)中插入一个例如 在1.5与3之间的系数,以确定一个上限,该上限对于滑动识别必需被超过。
因此可保证在调节动态变化率中的小波动不被转译成打滑。由此也保证 了如果在获得实际梯度时出现一个误差或出现高的噪音部分,它将不导 致滑动的识别。
出人意料地己证实,在CVT变速器中、尤其在锥盘-缠绕接触装置变
速器中识别滑动的另一种可能性在其声分析中。当在输入轴和/或输出轴上 直接在一个锥盘上或在一个与一个锥盘形成固体声传递的连接的点上安装 对固体声的频率范围和/或超声波敏感的传感器时,可接收到一个声特性曲
线(Schallkennlinie)和/或声特性曲线组,它给出在不同的传递转矩及压紧 压力以及需要时不同转速的情况下无级变速器的声特性与滑动的关系。如 果以此方式知道并存储了无级变速器的声特性,则可由瞬时测量的声参数 或其变化曲线推断出预告的滑动及通过升高压紧压力及时地抑制该打滑, 由此可避免损坏。可以理解,在一个锥盘上直接安装声传感器吋可使用其 本身公知的无接触的信号传输技术。
13在上述用于识别打滑的方法中对于采取对付滑动的对抗措施(例如通
过电子控制装置在CVT变速器上提高锥盘对的压紧力)仅能提供很短的时 间或对于打滑的完全避免已过迟,因为对于信号的提供,例如信号滤波需 要一定的时间。因此合乎愿望的是,关于即将发生的打滑事件的信息在真 正的打滑事件以前就已出现,由此可及时地提高压紧力。
用于时间上超前地识别打滑的有利方法在于,测定输出端转速rUb随时 间的变化及当该随时间的变化的值超过一个预定极限值时,则评价为即将 发生打滑事件。在多次机动车测量中已证实,在CVT变速器中的滑动事件 前例如由于强制动或ABS制动总是出现变速器输出端转速的时间导数的大 值。通过抱死的或交替打滑与未打滑车轮将使高的动态转矩导入动力传动 系中,当未采取专门的对抗措施时,这将导致CVT变速器的打滑。对于识 别即将发生的打滑使用drub/dt的优点不仅在于赢得了反应时间,而且在于 极限值是恒定的或也与其计算的方式相关。该计算将有利地这样进行即 输出端转速随时间的变化通过两个或三个在一定时间间隔中确定的值来求 平均值。该平均值的构成是合乎要求的,以便减少所求得的随时间变化的 值的分散性。但在平均时不能包括太多值,因为那样将失去所述方法的时 间优点。
借助该方法,可在例如可完全电子地调节压紧力的CVT变速器中,这 些变速器除了转矩传感器外可设有用于电子调节适配的附加可能性(电动 机,附加阀等),作到可及时采取避免打滑事件的对抗措施。该方法也可在 滑动控制适配/滑动调节适配时用于预控制。
此外有利的是,可将求得输出端转速的时间变化的方法与前面所述的 求得变化速度或CVT变速器的变速比的时间变化的方法相结合。该方法也 可如其它方法那样应用于非分支的或功率分支的变速器。
以下将借助图2来说明所述方法的优点在图2中在水平轴上标以通 常测量过程中的时间,即测量结果对应于从94.6秒至96.4秒的时间。曲线 di/dt给出CVT变速器的变速比i的时间变化。曲线dnAb/dt给出输出端转速 的时间变化。用"制动启动"标明的箭头给出制动的开始。由"ABS启动" 表示的箭头给出ABS系统动作的开始。由"打滑"表示的水平双箭头给出 一个时间范围,当未采取任何对抗措施时CVT变速器在该时间范围期间打
14滑。直线G,说明一个极限值为了将输出端转速的大减速评价为预告的变
速器打滑,该极限值必需由driAb/dt超过(绝对值)。曲线G2说明一个极限 值,为了评价为CVT变速器打滑,该极限值必需由CVT变速器的变速比i 的时间变化超过。
如所看到的,明显地在打滑出现以前dnAb/dt己经超过允许的极限值 G,(在打滑开始时再次超过),而相反地,当变速器已打滑时,di/dt才超过 允许的极限值G2。在预告打滑的识别与真正打滑出现之间约150ms的时间 间隔,对于通过适当的对抗措施避免打滑是足够的。Gl的典型值例如在 1500至2000U/min/s (转/分钟/秒)之间。
在用于超前识别CVT变速器打滑的另一方法中将测量输送到一个车轮 上的制动压力的变化速度,或在另一制动操作时用制动力操作制动的制动 力的变化速度。如果这些参数之一的时间变化超过确定的极限值,则可采 取与上述测定输出端转速时间变化的方法中类似的措施来避免CVT变速器 的打滑。
图3概要地表示一个CVT变速器的液压控制装置。
输入轴38驱动第一锥盘对40,该第一锥盘对通过一个缠绕接触装置 42摩擦连接地与一个第二锥盘对44连接,后者驱动一个输出轴46。为了 在每个锥盘对的锥盘与缠绕接触装置42之间的压紧及调节每个锥盘对的锥 盘之间的距离或调节锥盘对-缠绕接触装置变速器的变速比,对每个锥盘对 配置了一个压力室48或50,它们通过压力管路及阀与泵52相连接。
在根据图3的实施形式中,阀A控制作用在锥盘对44上的压力。阀B 控制作用在输入侧锥盘对40上的压力。因此用阀A可控制压紧力,而与阀 B—起可进行变速比的调节。这些阀由控制装置18 (图l)进行控制。
在压力室48及50中建立的压力必需在任何时间具有这样的量值,即
保证在缠绕接触装置42与各锥盘对之间的滑动自由度。同时必需调节锥盘
对之间的压力差,以便调节到相应所需的变速比。
在变速比调节时通过相应锥盘的轴向运动改变相应压力室的容积。由 此产生了一个问题当基于待传送的转矩的改变需要改变压力时,无变速
比调节几乎无液压介质或油容积的移动,相反地,当变速比调节时视所需 调节速度而定将流过高的容积流。以此方式,压力变化与极其不同的容积流或无级变速器的极其不同的伸展行为相联系。
与转矩相关的压紧压力通过与当前的无级变速器相应的压紧规则来给 出。对于保持或调节所需变速比所需的调节压力将由变速比调节器提供。 根据作用在每个压力室中的调节压力及通过压力室的几何条件可求得调节 力。调节力的差值是用于被调节的调节速度及由此用于所需容积流的良好 的量度。
如果与本身的压力调节器并列地使用预控制,该预控制根据所述调节 力差值或调节压力差值使所述一个或多个阀或大或小地打开,由此补偿可 变的伸展行为。
预控制用调节软件实现,它是在干扰量接入意义上压力调节回路的预 控制。
这种预控制可有利地用于其中每个锥盘组或锥盘对仅用一个压力室 工作的所有锥盘结构类型。在根据图2实施形式的变型中也可以是每个锥 盘组使用各一个阀的独立调节。
图4以归一化形式表示预控制值与调节力差值之间的关系。负的调节 力差值相应于在减速运行方向上的变速比调节,而正的调节力差值相应于 在提速运行方向上的变速比调节。调节力差值由变速比调节器提供;由特 性曲线可求得所述预控制值,根据该预控制值使预控制阀打开。特性曲线I
对应于锥盘对40,及特性曲线II对应于锥盘对44。
锥盘对的锥面的良好涂油润滑对于一个锥盘对-缠绕接触装置变速器
的长期无误的工作是重要的。图5及6表示该问题的一个解决方案。
图5表示各取下了一个锥盘的锥盘-缠绕接触装置变速器的侧视图,根 据该图,缠绕两个锥盘对的缠绕接触装置42沿一个导轨或滑轨64运行, 该滑轨以公知的方式被这样地支承,即与相应变速比无关地、浮动段 (Lostrum)可靠支承在滑轨54上地运行。
根据表示一个透视图的图6,滑轨54具有通过一个接片55连接的两个 滑板,在这些滑板之间构成一个导向通道56, 一个缠绕接触装置、例如一 个金属链在该导向通道中运行。为了机械增强,滑轨54在其向着缠绕接触 装置的另一段的一侧上设有肋58,肋的厚度从滑轨端部向着中间增加。肋 58至少在所述中间区域中具有与其纵向延伸方向平行的槽60,槽的深度在肋58的所述中间区域中最大。在槽60的区域中肋具有Y形的横截面,如 由图6可看到的。 一个通道64横向于槽60延伸地贯穿过肋58及一个附加 的加强凸起62,该通道64接收一个喷射管66 (在该透视图中未示出),该 管在槽60的区域中构造有喷孔68 (见小横截面图)。槽60或它的底部这样 地造型,即由喷孔喷射出的油-该油用于锥盘-缠绕接触装置变速器的冷却 及润滑-与当时的变速比无关地直接到达锥盘之间的空间中及到达锥盘 对的轴上。有利地还设有附加的孔,油从这些孔可喷射到对面的缠绕接触 装置段上。
可以理解,所述结构可用多种方式作出改变,只要能保证油可持续 地到达锥盘对之间的中间空间中。例如通道64可为闭合的,由此使它直接 构成喷管及构造有喷孔。在此情况下用一个液压管路与该通道相连接。
与本申请一起提交的权利要求书是一种撰写建议而没有预见到获得尽 可能宽的专利保护范围。本申请人仍保留将至今仅公开在说明书和/或附 图中的特征组合继续提出保护。
在从属权利要求中使用的回引指示通过相应从属权利要求的特征对
独立权利要求的主题进一步地构型;它们不应被理解为对回引的从属权利 要求的特征组合放弃实现一个独立的具体保护。
因为相对优先权日的现有技术这些从属权利要求的主题是特有的且可 构成独立的发明,本申请人仍保留将它们作为独立权利要求的主题或分
案说明。它们还可以包含其它的独立发明,这些独立发明具有与上述从属 权利要求的主题无关的构型。
这些实施例不应被看作对本发明的限制。而在本发明公开的范围内可 具有多种变更及修改,尤其是一些变型、单元及组合和/或材料,它们例如 通过个别特征与一般说明及实施形式和权利要求中所描述的及附图中包含 的特征或单元或方法步骤的组合或变换对于专业人员鉴于解决其任务来说 是可推知的,或通过可组合的特征导致一个新的主题或新的方法步骤或方 法步骤顺序,并且是就它们涉及制造、检验及工作方法而言。
权利要求
1.用于确定CVT变速器的打滑的方法,在该方法中求得变速比的变化速度,将求得的变化速度与一个预定的、由CVT变速器的工作参数计算出的变化速度相比较,及当求得的变化速度偏离所述计算出的变化速度超过一个预定量值时,确定为打滑。
2. 根据权利要求1的方法,其特征在于,所述计算出的变化速度 的最大值正比于1/变速比 其中n具有1.5与2之间的值,及当求 得的变化速度超过所述最大值一个预定的量值时,确定为打滑。
3. 根据权利要求1或2的方法,在该方法中存储CVT变速器的在打滑时改变的声参数的至少一个值, 测量该声参数,及当所测量的参数以预定方式逼近该存储值时,则确定为打滑或打 滑的显露。
4. 根据权利要求1至3中一项的方法,在该方法中 求得变速器输出端转速随时间的变化,及当该输出端转速随时间的变化超过一个预定极限值时,被评价为 至少预示的打滑。
5.根据权利要求1至4中一项的方法,在该方法中 求得作用在一个设有CVT变速器的机动车的至少一个车轮制动器上的力随时间的变化,及当该力随时间的变化超过一个预定极限值时,被评价为至少预示的打滑。
6. 根据权利要求1至5中一项的方法,其特征在于,在确定打滑 或预示的打滑时这样地调节CVT变速器的调节量,以致使打滑被抑 制。
7. 用于控制根据权利要求1至6中一项的、具有一个缠绕两个锥 盘对的缠绕接触装置的CVT变速器的方法,其中每个锥盘对各具有 一个唯一的用流体压力加载的压力室,用于调节锥盘对与缠绕接触装 置之间的压紧压力及用于调节CVT变速器的变速比,在该方法中根 据用于变速比的预定变化速度所需的、在这些压力室中充有的流体压 力之间的差值来预控制包含在这些压力室的流体连接管路中的控制 阀的打开横截面。
8. 根据权利要求1至7中一项的锥盘-缠绕接触装置变速器,包括: 两个锥盘对,各锥盘对具有两个其距离可改变的锥盘; 一个缠绕这些锥盘的缠绕接触装置; 一个导向缠绕接触装置的一个段的滑轨, 该滑轨在其向着另一缠绕接触装置段的一侧上具有至少一个与该缠 绕接触装置平行地延伸的、从滑轨端部向其中间增厚的肋;及一个设在肋中间区域中的、大致垂直于缠绕接触装置在其中环行 的平面延伸的管,用于将液体至少喷射到锥盘对的锥盘之间的空间中;其中所述肋在其向着所述另一段的表面上在其中间区域中具有一个 槽,以致由构成在横穿该槽的管中的多个孔喷射出的液体直接地到达 锥盘之间的空间中。
9. 根据权利要求8的锥盘-缠绕接触装置变速器,其特征在于,由 构成在所述管中的至少另一孔喷出的液体直接地到达所述另一段上。
10. 根据权利要求1至9中一项的方法,其特征在于当识别出打滑事件时进行关于锥盘-缠绕接触装置损伤的评价。
11. 根据权利要求10的方法,其特征在于根据该评价导出继续 工作的措施。
12. 根据权利要求10或11的方法,其特征在于该损伤的评价作 为打滑事件的功率的测量进行。
全文摘要
锥盘-缠绕接触装置变速器的输入端转速被这样确定,即测量车轮转速及变速器的变速比并由它们计算出输入端转速。为了确定CVT变速器的打滑使用变速比的变化速度或使用变速器的声参数。在流体控制系统中使用一个阀,它的打开横截面根据一个压力差来控制。为了锥盘的涂油使用了一个喷管的多个喷孔,该喷管穿过构成在贴靠在锥盘-缠绕接触装置的缠绕接触装置的一个段上的滑轨中的槽。
文档编号B60K6/54GK101660603SQ20081013600
公开日2010年3月3日 申请日期2003年4月10日 优先权日2002年4月10日
发明者克里斯托夫·安格勒, 克里斯蒂安·劳因格, 克里斯蒂安·施佩特, 安德烈·林嫩布吕格, 弗朗茨·比策, 托马斯·普丰德, 米夏埃多·罗伊舍尔, 马丁·福内赫姆 申请人:卢克摩擦片和离合器两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1