用于控制混合动力电动车辆的扭矩降低的装置和方法与流程

文档序号:12482529阅读:402来源:国知局
用于控制混合动力电动车辆的扭矩降低的装置和方法与流程

本公开总体涉及用于控制混合动力电动车辆的扭矩降低的装置和方法。更具体地,本公开涉及用于控制执行扭矩降低的混合动力电动车辆的扭矩降低的装置和方法。



背景技术:

一般来讲,混合动力电动车辆由从燃料燃烧产生扭矩的发动机和从电池组产生扭矩的电动机驱动。混合动力电动车辆包括用于控制混合动力电动车辆的发动机运行的混合动力控制单元(HCU:hybrid control unit)、用于控制发动机的运行的发动机控制单元(ECU:engine control unit)、用于控制驱动电动机的运行的电动机控制单元(MCU:motor control unit)、用于控制变速器的运行的变速器控制单元(TCU:transmission control unit)和用于管理电池的条件的电池管理系统(BMS:battery management system)。在控制单元之中,TCU在换档期间请求扭矩降低用于防止发动机速度的增加或变速器的冲击。

同时,牵引控制系统(TCS:traction control unit)是用于通过在启动时或在加速过程中控制制动和发动机来防止车轮空转(wheel spin)和提高驱动稳定性的安全系统。TCS在典型的混合动力电动车辆中实现,并且当在启动时或在加速过程中发生车轮空转时请求扭矩降低。

当如上所述TUS/TCS请求扭矩降低时,常规方法首先迅速使用电动机扭矩并且根据需要使用发动机扭矩来执行扭矩降低。然而,在这种情况下,当TCS的需求扭矩太低或电池充电状态(SOC)太高时,不能完全执行扭矩降低。如果TCS的需求扭矩太低,那么TCS的需求扭矩不能仅使用电动机来满足;如果电池SOC太高,那么电动机不能输出足够的负扭矩。

在本背景技术部分中所公开的上述信息仅仅是为了增强本公开的 背景的理解,并且因此,其可包含本领域的普通技术人员已经知道的没有形成相关技术的信息。



技术实现要素:

本公开已做出努力以提供用于控制混合动力电动车辆的扭矩降低的装置和方法,所述装置和方法具有通过基于发动机的驱动扭矩贡献和电动机的驱动扭矩贡献将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量的优点。

本公开的实施例提供用于控制包括电动机和发动机作为动力源的混合动力电动车辆的扭矩降低的方法,其包括:当请求扭矩降低时计算扭矩降低的总请求量;当启动发动机时计算发动机的驱动扭矩贡献和电动机的驱动扭矩贡献;基于发动机的驱动扭矩贡献和电动机的驱动扭矩贡献将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量;根据发动机扭矩降低的量和电动机扭矩降低的量确定发动机扭矩命令和电动机扭矩命令;以及根据发动机扭矩命令和电动机扭矩命令执行扭矩降低。

方法还可包括:在将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量后:计算可用电动机扭矩降低的附加量;基于可用电动机扭矩降低的附加量计算发动机扭矩降低的实际量和电动机扭矩降低的实际量;以及根据发动机扭矩降低的实际量和电动机扭矩降低的实际量确定发动机扭矩命令和电动机扭矩命令。

通过考虑基于电池充电状态(SOC)的电动机的充电极限可以计算可用电动机扭矩降低的附加量。

通过从发动机扭矩降低的量减去可用电动机扭矩降低的附加量可以计算发动机扭矩降低的实际量。

通过将电动机扭矩降低的量加到可用电动机扭矩降低的附加量可以计算电动机扭矩降低的实际量。

通过将发动机扭矩除以发动机扭矩与电动机扭矩的总和可以计算发动机的驱动扭矩贡献。

通过从1减去发动机的驱动扭矩贡献可以计算电动机的驱动扭矩贡献。

方法还可包括:当未启动发动机时:计算电动机扭矩降低的可用量;基于电动机扭矩降低的可用量计算电动机扭矩降低的实际量;以及根据电动机扭矩降低的实际量确定电动机扭矩命令。

基于根据电池SOC的电动机的充电极限可以计算电动机扭矩降低的可用量。

此外,根据本公开的实施例,用于控制混合动力电动车辆的扭矩降低的装置包括:驱动信息检测器,其检测车辆的运行状态和车辆的驱动器的需求信息;以及控制器,其被配置成:i)当基于来自驱动信息检测器的信号请求扭矩降低时,通过控制发动机输出扭矩和电动机输出扭矩执行扭矩降低,ii)计算扭矩降低的总请求量,iii)当启动发动机时,通过计算发动机的驱动扭矩贡献和电动机的驱动扭矩贡献将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量,以及iv)根据发动机扭矩降低的量和电动机扭矩降低的量确定发动机扭矩命令和电动机扭矩命令。

控制器可基于可用电动机扭矩降低的附加量计算发动机扭矩降低的实际量和电动机扭矩降低的实际量,并根据发动机扭矩降低的实际量和电动机扭矩降低的实际量确定发动机扭矩命令和电动机扭矩命令。

控制器可基于根据电池SOC的电动机的充电极限计算可用电动机扭矩降低的附加量。

控制器可通过从发动机扭矩降低的量减去可用电动机扭矩降低的附加量计算发动机扭矩降低的实际量。

控制器可通过将电动机扭矩降低的量加到可用电动机扭矩降低的附加量计算电动机扭矩降低的实际量。

控制器可通过将发动机扭矩除以发动机扭矩与电动机扭矩的总和计算发动机的驱动扭矩贡献。

控制器可通过从1减去发动机的驱动扭矩贡献计算电动机的驱动扭矩贡献。

当未启动发动机时控制器可计算电动机扭矩降低的可用量,并且通过基于电动机扭矩降低的可用量计算电动机扭矩降低的实际量来确定电动机扭矩命令。

控制器可基于根据电池SOC的电动机的充电极限计算电动机扭矩 降低的可用量。

此外,根据本公开的实施例,包含用于控制混合动力电动车辆的扭矩降低的程序指令的非临时性计算机可读介质,其中驱动信息检测器检测车辆的运行状态和车辆的驱动器的需求信息,所述计算机可读介质包括:当基于来自驱动信息检测器的信号请求扭矩降低时,通过控制发动机输出扭矩和电动机输出扭矩执行扭矩降低的程序指令;计算扭矩降低的总请求量的程序指令;当启动发动机时,通过计算发动机的驱动扭矩贡献和电动机的驱动扭矩贡献将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量的程序指令;以及根据发动机扭矩降低的量和电动机扭矩降低的量确定发动机扭矩命令和电动机扭矩命令的程序指令。

如上所述,根据本公开的实施例,基于发动机和电动机的驱动计算扭矩贡献扭矩降低的量,所以在扭矩降低后可以迅速满足需求扭矩。因此,可以提高混合动力电动车辆的燃料效率和扭矩响应能力。此外,基于可用电动机扭矩降低的附加量调节发动机扭矩降低的量和电动机扭矩降低的量,所以可以另外确保电动机的充电能量并且可以有效地管理电池SOC。

附图说明

图1为根据本公开的实施例的应用用于控制混合动力电动车辆的扭矩降低的方法的混合动力系统的示意图。

图2为根据本公开的实施例的用于控制混合动力电动车辆的扭矩降低的装置的框图。

图3为根据本公开的实施例示出用于控制混合动力电动车辆的扭矩降低的方法的流程图。

图4为根据本公开的实施例示出应用到用于控制混合动力电动车辆的扭矩降低的方法的扭矩降低的量的图表。

具体实施方式

在下面的详细描述中,已经简单地以例证的方式示出并描述了本公 开的某些实施例。正如本领域技术人员将认识到的,所描述的实施例可以以各种不同的方式进行修改,所有这些都不脱离本公开的精神或范围。在本说明书中相同的参考标号指示相同的元件。

在本说明书中,除非明确说明与此相反,否则词语“包括”和其变体诸如“具有”或“包含”将被理解为暗示包括所陈述的元件但并不排除任何其它元件。此外,单数形式“一个”、“一”和“该”也意在包括复数形式,除非上下文另外明确指出不同。

可以理解,术语“车辆”或“车辆的”或如这里所用的其它类似的术语机动车辆,其一般包括混合动力车辆、充电式混合动力电动车辆和其它替代燃料车辆(例如,来自非石油资源的衍生燃料)。如这里提到的,混合动力电动车辆是具有两种或更多种动力源的车辆,例如同时有汽油为动力和电力为动力的车辆。

另外,可以理解,下面的方法或其方面中的一种或多种可以由至少一个控制单元来执行。术语“控制单元”可以指的是包括存储器和处理器的硬件设备。存储器被配置成能够为存储程序指令,并且处理器被专门编程以执行程序指令从而执行下面进一步描述的一个或多个过程。此外,可以理解,下面的方法可以如由本领域的普通技术人员应该理解的通过包括与一个或多个其它组件结合的控制单元的装置来执行。

此外,在包含由处理器、控制器等执行的可执行程序指令的计算机可读介质上,本公开的控制器可以被实施为非临时性计算机可读介质。计算机可读介质的示例包括但不限于ROM、RAM、光盘(CD)-ROM、磁带、软盘、闪存、智能卡和光学数据存储装置。计算机可读记录介质也可分布到网络联结的计算机系统中,以使计算机可读介质以分布方式被例如远程信息服务器或控制器局域网(CAN)存储和执行。

在下文中,将参考附图详细描述本公开的实施例。

图1为根据本公开的实施例的应用用于控制混合动力电动车辆的扭矩降低的方法的混合动力系统的示意图。

为了更好地理解和易于所公开的实施例的描述,示出了如图1所示的混合动力系统。因此,在本公开的实施例的混合动力电动车辆的换档 时用于控制发动机启动的方法不仅可以应用到如图1所示的混合动力系统,而且可以应用到所有其它的混合动力系统。

如图1所示,根据本公开的实施例,应用用于控制混合动力电动车辆的扭矩降低的方法的混合动力系统包括混合动力控制单元(HCU)10、发动机控制单元(ECU)12、电动机控制单元(MCU)14、变速器控制单元(TCU)16、发动机20、发动机离合器22、电动机24、变速器26和电池28。

HCU 10控制在混合动力电动车辆的全部操作中相互交换信息的其它控制器的操作,使得HCU 10通过与其它控制器合作控制发动机20的输出扭矩和电动机24的输出扭矩。

ECU 12根据发动机20的条件(诸如驱动器的需求扭矩、冷却剂温度和发动机扭矩)控制发动机20的全部操作。

MCU 14根据驱动器的需求扭矩、混合动力电动车辆的确定模式和电池28的SOC条件控制电动机24的全部操作。

TCU 16控制变速器26的全部操作,诸如变速器26根据发动机20的输出扭矩和电动机24的输出扭矩以及再生制动的量的速度比。

如在本领域众所周知的,发动机20在其被启动时输出功率作为动力源。

发动机离合器22设置在发动机20与电动机24之间以接收HCU 10的控制信号,并根据混合动力电动车辆的驱动模式选择性地连接发动机20和电动机24。

电动机24由从电池28通过逆变器施加的3相AC电压来操作以产生扭矩,并且操作为电力发电机,并在滑行模式(coast-down mode)中为电池28供给再生能量。

变速器26供给通过发动机离合器22的接合和释放确定的发动机20的输出扭矩和电动机24的输出扭矩的总和,作为输入扭矩,并且根据车速和驱动条件选择任何换档齿轮(shift gear)以将驱动力输出到驱动轮并维持驱动。

电池28由多个单元电池组成,并且存储高电压用于为电动机24供给电压,例如400V或450V DC。

将省略如上所述的混合动力系统的详细说明。

图2为根据本公开的实施例的用于控制混合动力电动车辆的扭矩降低的装置的框图。

如图2所示,根据本公开的实施例的用于控制混合动力电动车辆的扭矩降低的装置包括驱动信息检测器30、控制器11、发动机20和电动机24。

下面要描述的在根据本公开的实施例的用于控制混合动力电动车辆的扭矩降低的方法中过程可以通过由每个控制器集成或细分来执行。因此,为了便于描述,在本说明书和权利要求中,在混合动力电动车辆中设置的许多控制器称为控制器11。

应用本公开的实施例的混合动力电动车辆包括至少一个发动机20和至少一个电动机24。此外,混合动力电动车辆提供发动机20和电动机24单独或同时操作为动力源的驱动模式。为此,发动机离合器设置在发动机20与电动机24之间,以选择性地连接发动机20和电动机24。

驱动信息检测器30检测混合动力电动车辆的运行状态和驱动器的需求信息,并且包括车速传感器31、电动机速度传感器32、发动机速度传感器33和加速器踏板位置传感器(APS:accelerator pedal position sensor)34。

车速传感器31检测车辆的速度,并将对应信号传输到控制器11。

电动机速度传感器32检测电动机24的转速,并将对应信号传输到控制器11。

发动机速度传感器33检测发动机20的转速,并将对应信号传输到控制器11。

加速器踏板位置传感器34连续不断地检测加速器踏板的位置值,并将监测信号传输到控制器11。当加速器踏板完全压下时,加速器踏板的位置值可以为100%,并且当一点也不压下加速器踏板时,加速器踏板的位置值可以为0%。

可以使用安装在吸入管路(intake pipe)上的节气门位置传感器(TPS:throttle valve position sensor)代替加速器踏板位置传感器34。因此,为了本公开的目的,加速器踏板位置传感器34应包括节气门位置传感器,并且加速器踏板的位置值应当理解为节气门的开度值。

当基于来自驱动信息检测器30的信号请求扭矩降低时,控制器11 通过控制发动机输出扭矩和电动机输出扭矩来执行扭矩降低。控制器11可以计算扭矩降低的总请求量,并且当启动发动机20时,通过算发动机的驱动扭矩贡献和电动机的驱动扭矩贡献将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量。此外,通过根据发动机扭矩降低的量和电动机扭矩降低的量确定发动机扭矩命令和电动机扭矩命令,控制器11可以控制发动机输出扭矩和电动机输出扭矩。为此,控制器11可以被实现为由预定程序操作的至少一个处理器,如上所述,并且预定程序可以被编程以执行用于控制根据本公开实施例的混合动力电动车辆的扭矩降低的方法中的每个步骤。

例如,本文所描述的各种实施例可以在记录介质内实现,所述记录介质可以由计算机或通过使用软件、硬件或其组合的类似设备读取。

根据硬件实现,本文所描述的实施例可以通过使用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑设备(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、以及设计成执行任何其它功能的电气单元中的至少一种来实现。根据软件实现,实施例(诸如在本实施例中所描述的程序和功能)可以通过单独的软件模块来实现。软件模块中的每个可以执行在本公开中所述的一个或多个功能和操作。软件代码可以通过以适当的程序语言编写的软件应用程序来实现。

在下文中,根据本公开的实施例用于控制混合动力电动车辆的扭矩降低的方法将参考图3和图4详细地进行描述。

图3为根据本公开的实施例示出用于控制混合动力电动车辆的扭矩降低的方法的流程图。

如图3所示,在步骤S100中,根据本公开的实施例示出用于控制混合动力电动车辆的扭矩降低的方法以控制器11确定是否请求扭矩降低开始。

当在步骤S100中请求扭矩降低时,在步骤S110中,控制器11计算扭矩降低的总请求量。

扭矩降低的总请求量可以根据来自驱动信息检测器30的信号来计算。即,扭矩降低的总请求量可以通过当前发动机扭矩、当前电动机扭矩和扭矩极限的量来计算。

当在步骤S110中计算扭矩降低的总请求量时,在步骤S120中,控制器11确定是否启动发动机20。

当在步骤S120中启动发动机20时,在步骤S130中,控制器11计算发动机20的驱动扭矩贡献和电动机24的驱动扭矩贡献。

发动机20的驱动扭矩贡献可以通过将发动机扭矩除以发动机扭矩与电动机扭矩的总和来计算。在本文中,当电动机24充电时,电动机扭矩可以设定为0。同时,电动机24的驱动扭矩贡献可以通过从1减去发动机的驱动扭矩贡献计算。

当在步骤S130中计算发动机20的驱动扭矩贡献和电动机24的驱动扭矩贡献时,在步骤S140中,控制器11基于发动机20的驱动扭矩贡献和电动机24的驱动扭矩贡献将在步骤S110中计算的扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量。即,控制器11可通过用扭矩降低的总请求量乘以发动机20的驱动扭矩贡献来计算发动机扭矩降低的量。同样,控制器11可通过用扭矩降低的总请求量乘以电动机24的驱动扭矩贡献来计算电动机扭矩降低的量。

在此之后,在步骤S150中,控制器11计算可用的电动机扭矩降低的附加量以确保附加充电能量并管理电池SOC。基于根据电池SOC的电动机的充电极限可以计算可用的电动机扭矩降低的附加量。

当在步骤S150中计算可用的电动机扭矩降低的附加量时,在步骤S160中,控制器11计算发动机扭矩降低的实际量和电动机扭矩降低的实际量。通过从发动机扭矩降低的量减去可用的电动机扭矩降低的附加量可以计算发动机扭矩降低的实际量,并且通过将电动机扭矩降低的量加到可用的电动机扭矩降低的附加量可以计算电动机扭矩降低的实际量。

当在步骤S160中计算发动机扭矩降低的实际量和电动机扭矩降低的实际量时,在步骤S170中,控制器11根据发动机扭矩降低的实际量和电动机扭矩降低的实际量确定发动机扭矩命令和电动机扭矩命令。

另一方面,当在步骤S120中未启动发动机20时,控制器11将通过仅使用电动机24执行扭矩降低。因此,在步骤S180中,控制器11计算电动机扭矩降低的可用量。基于根据电池SOC的电动机的充电极限可以计算电动机扭矩降低的可用量。

当在步骤S180中计算电动机扭矩降低的可用量时,在步骤S190中,控制器11基于电动机扭矩降低的可用量计算电动机扭矩降低的实际量。

当在步骤S190中计算电动机扭矩降低的实际量时,在步骤S200中,控制器11根据电动机扭矩降低的实际量确定电动机扭矩命令。

因此,当在步骤S170或步骤S200中确定发动机扭矩命令和电动机扭矩命令时,在步骤S210中,控制器11根据发动机扭矩命令和电动机扭矩命令执行扭矩降低。

图4为根据本公开的实施例示出应用用于控制混合动力电动车辆的扭矩降低的方法的扭矩降低的量的图。

参考图4,控制器11计算扭矩降低的总请求量,并将扭矩降低的总请求量分成发动机扭矩降低的量和电动机扭矩降低的量。在此之后,控制器11控制发动机输出扭矩和电动机输出扭矩以满足扭矩降低的总请求量。

例如,将描述如果发动机扭矩为100Nm,那么电动机扭矩为20Nm,并且电动机的充电极限扭矩为-30Nm。如果用于驱动的最小扭矩为50Nm,那么扭矩降低的总请求量将为50Nm-(100Nm+20Nm)=-70Nm。

然后,发动机20的驱动扭矩贡献可以被计算为100Nm/(100Nm+20Nm)=0.83,电动机24的驱动扭矩贡献可以被计算为1-0.83=0.17。因此,基于发动机20的驱动扭矩贡献的发动机扭矩降低的量为-70Nm*0.83=-58.33Nm(扭矩降低的总请求量*发动机20的驱动扭矩贡献)。同样,基于电动机24的驱动扭矩贡献的电动机扭矩降低的量为-70Nm*0.17=-11.67Nm(扭矩降低的总请求量*电动机24的驱动扭矩贡献)。

同时,可用的电动机扭矩降低的附加量可以通过从电动机的充电极限扭矩减去基于电动机24的驱动扭矩贡献的电动机扭矩降低的量并乘以根据电池的SOC的因子A来计算。因而,根据以上描述,可用的电动机扭矩降低的附加量为[-30Nm-(20Nm-11.67Nm)]*A=-38.33ANm。因此,发动机扭矩降低的实际量为(-58.33+38.33A)Nm,并且电动机扭矩降低的实际量为(-11.67-38.33A)Nm。最终,发 动机扭矩降低的实际量与电动机扭矩降低的实际量的总和为(-58.33+38.33A)Nm+(-11.67-38.33A)Nm=-70Nm,所以可以满足扭矩降低的总请求量。

如上所述,根据本公开的实施例,基于发动机的驱动扭矩贡献和电动机的驱动扭矩贡献基于扭矩降低的量,所以在扭矩降低后可以迅速满足需求扭矩。因此,可以提高混合动力电动车辆的燃料效率和扭矩响应能力。此外,基于可用的电动机扭矩降低的附加量调节发动机扭矩降低的量和电动机扭矩降低的量,所以可以另外确保电动机的充电能量并且可以有效地管理电池SOC。

虽然本公开以结合目前被认为是实践实施例的实施例进行了描述,但应当理解本公开并不限于所公开的实施例。相反,本公开旨在涵盖包括在所附权利要求的精神和范围内的各自修改和等同布置。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1