混合动力车辆的驱动装置的制作方法

文档序号:11426870阅读:107来源:国知局
本发明涉及混合动力车辆的驱动装置。
背景技术
::专利文献1中记载有一种混合动力车辆的驱动装置,所述混合动力车辆的驱动装置,在将从发动机输出的动力向驱动轮传递时,通过利用可选择的单向离合器(英文:selectableone-wayclutch)将差动机构的齿圈固定(锁定),能够使所述差动机构作为增速器发挥功能。现有技术文献专利文献专利文献1:日本特开2015-077846号公报技术实现要素:发明要解决的问题上述可选择的单向离合器具有多个支柱(英文:strut)(卡合片)。因此,当可选择的单向离合器锁定齿圈时,在各支柱不均等地啮合的情况下,会在可选择的单向离合器产生径向载荷。在专利文献1所记载的结构中,与齿圈一体旋转的齿圈凸缘支承于齿轮架。因此,由于在可选择的单向离合器产生的径向载荷经由齿圈凸缘作用于齿轮架,齿轮架的旋转中心从所期望的位置偏移,产生所谓的芯偏移。由此,差动机构的噪音和/或振动可能会恶化。本发明是鉴于上述问题而做出的发明,目的在于提供一种能够减少差动机构的噪音以及振动的混合动力车辆的驱动装置。用于解决问题的技术方案本发明是混合动力车辆的驱动装置,具备:发动机;电动机;第一差动机构;第二差动机构;可选择的单向离合器;以及收纳所述电动机的壳体,所述第一差动机构具有:连结于所述电动机的第一旋转要素;连结于所述发动机的第二旋转要素;以及向驱动轮输出动力的第三旋转要素,所述第二差动机构具有:连结于所述电动机的太阳轮;连结于所述发动机的齿轮架;通过所述可选择的单向离合器限制旋转的齿圈;以及与所述齿圈一体旋转的齿圈凸缘,所述可选择的单向离合器构成为对将所述齿圈的旋转方向限制为一方向的锁定状态与允许所述齿圈向两方向旋转的非锁定状态进行切换,所述驱动装置的特征在于,所述齿圈凸缘经由向心轴承而支承于所述电动机的转子轴。在上述发明中,第二差动机构的齿圈凸缘经由向心轴承而支承于电动机的转子轴。因此,在通过可选择的单向离合器限制第二差动机构的齿圈的旋转时,能够通过向心轴承以及转子轴来承受在可选择的单向离合器产生的径向载荷。由此,能够减少第二差动机构的噪音以及振动。本发明优选,在上述发明中还具备:油泵,其配置成与所述发动机不同轴,由所述发动机驱动;和中心支座(英文:centersupport),其固定于所述壳体,将所述转子轴支承为旋转自如,所述油泵具有:泵体,其与所述中心支座形成为一体;泵转子,其收纳于所述泵体的内部,在轴向上位于与所述第二差动机构不同的位置;泵从动齿轮,其在轴向上相对于所述第二差动机构位于与所述发动机相反的一侧,与所述泵转子一体旋转;以及泵驱动齿轮,其与所述泵从动齿轮啮合,与所述齿轮架一体旋转。在上述发明中,泵转子与第二差动机构在轴向上配置于不同的位置。因此,在壳体的内部,能够在第二差动机构以及可选择的单向离合器的径向外侧设法安排出空间。由此,能够使可选择的单向离合器的径向尺寸变大,能够提高可选择的单向离合器的耐久性。本发明优选,在上述发明中,还具备贯通所述中心支座并向所述可选择的单向离合器的内部供给润滑油的油路,所述泵驱动齿轮在轴向上位于与所述可选择的单向离合器不同的位置,所述油路设置于比所述泵驱动齿轮的外周部靠径向内侧的位置。在上述发明中,在可选择的单向离合器的径向内侧没有配置泵驱动齿轮。因此,能够将向可选择的单向离合器供给润滑油的油路设置于比泵驱动齿轮的外周部靠径向内侧的位置。由此,在向旋转中的可选择的单向离合器供给润滑油时,虽然设定为超过因离心力而产生的内压的供给压,但因为油路位于径向内侧,所以能够减少所述润滑油的供给压,能够减少损失。发明的效果根据本发明,在混合动力车辆的驱动装置中,在通过可选择的单向离合器限制齿圈的旋转时,能够减少具有所述齿圈的第二差动机构的噪音以及振动。附图说明图1是示意地示出第一实施方式的混合动力车辆的驱动装置的图。图2示意地示出壳体内部的第二差动机构周边的剖视图。图3是示意地示出第二实施方式的混合动力车辆的驱动装置的图。图4是示意地示出壳体内部的第二差动机构周边的剖视图。附图标记说明1:发动机;2:第一马达;5:输入轴;6:第一转子轴;10:第一差动机构(动力分配机构);11:第一太阳轮(第一旋转要素);12:第一齿圈(第三旋转要素);13:第一齿轮架(第二旋转要素);20:第二差动机构(变速部);21:第二太阳轮;22:第二齿圈;23:第二齿轮架;30:可选择的单向离合器(sowc);60:壳体;61:后罩;62:中心支座(支承部件);70:油泵;71:泵驱动齿轮;72:泵从动齿轮;73:泵轴;74:泵转子;81:滚针轴承(向心轴承);92:油路;100:驱动装置;221:齿圈凸缘;ve:混合动力车辆。具体实施方式以下,参照附图对本发明的实施方式的混合动力车辆的驱动装置进行具体的说明。[1.第一实施方式]图1是示意地示出第一实施方式的混合动力车辆的驱动装置的图。如图1所示,混合动力车辆ve具备发动机(eng)1、第一马达(mg1)2以及第二马达(mg2)3作为行驶用的动力源。发动机1由众所周知的内燃机构成。各马达2、3是具有马达功能和发电功能的众所周知的电动发电机。此外,各马达2、3经由变换器而电连接于电池(均未图示)。另外,混合动力车辆ve的驱动装置100除了具备行驶用的动力源(发动机1以及各马达2、3)以外,还具备作为动力分配机构的第一差动机构10、作为变速部的第二差动机构20、可选择的单向离合器(以下称为“sowc”)30、副轴齿轮机构40以及差动齿轮机构50。发动机1所输出的动力由第一差动机构10向第一马达2侧和驱动轮4侧进行分配。在将发动机转矩向驱动轮4传递时,sowc30承受发动机反作用力,由此,第二差动机构20作为增速器发挥功能。进而,利用向第一马达2侧分配的动力,使第一马达2作为发电机发挥功能,将由所述第一马达2发出的电力向电池充电,或者向第二马达3供给。并且,利用所述电力使第二马达3作为马达发挥功能。详细而言,在驱动装置100中,与发动机1(曲轴)同轴地配置有第一马达2、第一差动机构10、第二差动机构20以及sowc30。另外,在发动机1的曲轴连结有输入轴5。如图1所示,驱动装置100收纳于壳体60的内部,在轴向上从发动机1侧起依次排列有第一差动机构10、第一马达2以及第二差动机构20。另外,第二马达3配置成与发动机1不同轴。此外,轴向是指曲轴的轴向(输入轴5的轴向)。第一差动机构10,在图1所示的例子中由单小齿轮型的行星齿轮机构构成。第一差动机构10具有第一太阳轮11、相对于第一太阳轮11配置于同心圆上的第一齿圈12、以及将与第一太阳轮11和第一齿圈12啮合的小齿轮14保持为能够自转并且能够公转的第一齿轮架13作为三个旋转要素。在作为第一旋转要素的第一太阳轮11连结有第一马达2,第一太阳轮11与第一马达2的第一转子轴6一体旋转。第一转子轴6是中空轴,内部插入有输入轴5。另外,在作为第二旋转要素的第一齿轮架13连结有发动机1,第一齿轮架13与输入轴5一体旋转。并且,作为第三旋转要素的第一齿圈12是从第一差动机构10向驱动轮4侧输出转矩的输出要素。在所述第一齿圈12以一体旋转的方式连结有输出齿轮7。输出齿轮7经由副轴齿轮机构40而连结于差动齿轮机构50。因此,从输出齿轮7输出的动力经由副轴齿轮机构40以及差动齿轮机构50向左右的驱动轮4传递。另外,在驱动装置100中,能够对从发动机1向驱动轮4传递的转矩附加第二马达3所输出的转矩。第二马达3具有与输入轴5平行地配置的第二转子轴8。在第二转子轴8以一体旋转的方式安装有与副轴齿轮机构40的从动齿轮啮合的减速齿轮9。第二差动机构20在图1所示的例子中由双小齿轮型的行星齿轮机构构成。第二差动机构20具有第二太阳轮21、相对于第二太阳轮21配置于同心圆上的第二齿圈22、以及将第一小齿轮24和第二小齿轮25保持为能够自转并且能够公转的第二齿轮架23作为三个旋转要素。所述第一小齿轮24与第二太阳轮21啮合,第二小齿轮25与第一小齿轮24以及第二齿圈22啮合。此外,第一小齿轮24以及第二小齿轮25分别设有多个。在第二太阳轮21连结有第一马达2,第二太阳轮21与第一转子轴6一体旋转。在第二齿轮架23连结有发动机1,第二齿轮架23与输入轴5一体旋转。在驱动装置100中,第一太阳轮11与第二太阳轮21一体旋转,并且第一齿轮架13与第二齿轮架23一体旋转。第二齿圈22构成为与sowc30的作为旋转侧部件的凹口板(英文:notchplate)32一体旋转,由sowc30选择性地固定。sowc30具有固定于壳体60的作为固定侧部件的槽板(英文:pocketplate)31,通过将第二齿圈22锁定来作为承受发动机反作用力的机构发挥功能。所述sowc30对将第二齿圈22的旋转方向限制为仅一方向的锁定状态与第二齿圈22能够向两方向旋转的非锁定状态进行切换。在驱动装置100中,在sowc30为锁定状态的情况下,第二齿圈22向正方向的旋转受到限制。正方向是指与发动机1旋转的方向相同的方向。第二齿轮架23构成为与油泵(mop)70的泵驱动齿轮71一体旋转。油泵70配置成与发动机1不同轴,通过从发动机1输出的动力驱动。另外,泵驱动齿轮71与安装于泵轴73的泵从动齿轮72啮合。通过泵轴73的旋转,油泵70驱动,从所述油泵70排出的油被向壳体60内部的第一差动机构10、第二差动机构20、sowc30等需要润滑的部件供给。另外,壳体60的与发动机1相反的一侧的部分由后罩(英文:rearcover)61构成。后罩61与壳体60的本体(例如具有筒状的形状)相互独立,通过在对合面的螺栓紧固等而与壳体60的本体一体化。接下来,参照图2对驱动装置100的构造进行更详细的说明。图2是示意地示出第一实施方式的第二差动机构20的周边构造的剖视图。如图2所示,第一实施方式的驱动装置100具有如下的构造:第二差动机构20的第二齿圈22经由支承部件(后述的齿圈凸缘221以及滚针轴承81)而支承于第一转子轴6。此外,虽然在图2中没有示出发动机1,但在对构成驱动装置100的部件的轴向位置(配置)进行说明时,使用“发动机1侧”和“后罩61侧”的表达来相对地确定轴向位置。后罩61具有在轴向上延伸的部分,但在壳体60的内部形成与发动机1相反的一侧的隔壁。因此,“发动机1侧”是指轴向位置相对地处于发动机1侧(图2的右侧)。另一方面,“后罩61侧”是指轴向位置相对地处于与发动机1相反的一侧(图2的左侧)。如图2所示,在第一转子轴6的内周部与输入轴5的外周部之间设有作为承受径向载荷的轴承(向心轴承)的滚针轴承82。输入轴5经由滚针轴承82而支承于第一转子轴6,并且,一方的端部侧从第一转子轴6向后罩61侧突出。在所述输入轴5中的比第一转子轴6向后罩61侧延伸的部分花键嵌合有第二差动机构20的第二齿轮架23。第二齿轮架23具有与输入轴5的外周部花键嵌合的齿轮架本体231、将第一以及第二小齿轮24、25支承为旋转自如的小齿轮轴232、以及形成为圆环状的齿轮架板(英文:carrierplate)233。齿轮架本体231形成为圆环状,在其内周部形成的凸台部231a与输入轴5花键嵌合。另外,在齿轮架本体231设有从凸台部231a的后罩61侧在径向上向外侧延伸的齿轮架凸缘部231b。齿轮架凸缘部231b在轴向上配置于第二太阳轮21与后罩61之间。所述齿轮架凸缘部231b的外周部与油泵70的泵驱动齿轮71一体化。小齿轮轴232与输入轴5平行地配置,其一端部安装于齿轮架凸缘部231b,并且另一端部安装于齿轮架板233。即,齿轮架板233相对于小齿轮轴232和第一以及第二小齿轮24、25配置于与齿轮架凸缘部231b相反的一侧。从发动机1输出的动力经由第二齿轮架23(仅齿轮架本体231)向油泵70传递。所述油泵70具有泵驱动齿轮71、泵从动齿轮72、泵轴73、泵转子74以及泵体75。啮合于泵驱动齿轮71的泵从动齿轮72与泵轴73以及泵转子74一体旋转。泵轴73与输入轴5平行地配置,在后罩61侧安装有泵从动齿轮72,并且在发动机1侧安装有泵转子74。泵转子74设置于泵体75的内部,配置于在轴向上比第二差动机构20靠发动机1侧的位置。总而言之,在驱动装置100中,泵转子74与第二差动机构20在轴向上配置于不同的位置。泵体75与固定于壳体60的中心支座62一体化。即,泵体75与中心支座62由一体成形的部件构成。所述中心支座62是对壳体60的内部空间进行划分的隔壁,同时也是在壳体60的内部支承旋转部件的支承部件。如图2所示,中心支座62是与后罩61相互独立的部件,通过螺栓91而紧固于后罩61侧的端部(凸缘部等),与后罩61(壳体60)一体化。另外,在中心支座62与第一转子轴6之间设有作为向心轴承的滚动轴承83。也就是说,第一转子轴6经由滚动轴承83而旋转自如地支承于中心支座62。滚动轴承83的外圈(英文:outerrace)嵌合于中心支座62的贯通孔,并且滚动轴承83的内圈(英文:innerrace)嵌合于第一转子轴6的外周部。另外,滚动轴承83与滚针轴承82在轴向上配置于相同的位置(重叠的位置)。如图2所示,在第一转子轴6,在滚动轴承83所嵌合的部分的内周侧嵌合有滚针轴承82。进而,第一转子轴6比滚动轴承83以及滚针轴承82所嵌合的部分向后罩61侧延伸,其端部(一端部)位于第二太阳轮21的齿轮部211的附近。在第一转子轴6中比滚针轴承82所嵌合的部分靠后罩61侧(一端部侧)的位置花键嵌合有第二太阳轮21。第二太阳轮21具有配置于比第一转子轴6的一端部靠后罩61侧的位置的齿轮部211和从齿轮部211的内周部在轴向上向发动机1侧突出的凸台部212。在所述凸台部212的外周部花键嵌合有第一转子轴6的内周部。进而,在第一转子轴6中的比滚动轴承83所嵌合的部分靠后罩61侧,经由滚针轴承81而安装有第二差动机构20的齿圈凸缘221。齿圈凸缘221是与第二齿圈22一体旋转并支承第二齿圈22的部件。如图2所示,齿圈凸缘221配置于第二齿圈22的径向内侧,经由滚针轴承81而支承于第一转子轴6。所述齿圈凸缘221具有外周部与第二齿圈22的内周部花键嵌合的凸缘部221a和内周部与滚针轴承81的外圈嵌合的凸台部221b。具体而言,凸缘部221a从凸台部221b向径向外侧延伸,在轴向上配置于第二齿轮架23的齿轮架板233与中心支座62之间。即,齿圈凸缘221配置于比齿轮架板233靠发动机1侧的位置。进而,第二齿圈22经由齿圈凸缘221以及滚针轴承81而支承于第一转子轴6。在驱动装置100中构成为:从后述的sowc30作用于第二齿圈22的径向载荷经由齿圈凸缘221而由滚针轴承81(第一转子轴6)承受。另外,在轴向位置上,第二齿圈22与齿圈凸缘221花键嵌合的部分(花键嵌合部)位于比第二齿圈22与第二小齿轮25啮合的部分(啮合部)靠发动机1侧的位置。进而,如图2所示,在第二差动机构20的径向外侧配置有sowc30。sowc30的轴向长度比第二差动机构20的轴向长度短。并且,sowc30在轴向上配置于与第二差动机构20重叠的位置,凹口板32与第二齿圈22的外周部花键嵌合。所述sowc30具备作为固定侧部件的槽板31、作为旋转侧部件的凹口板32、作为对sowc30的锁定状态与非锁定状态进行切换的部件的选择板(英文:selectorplate)33以及作为卡合片的支柱34。关于槽板31,圆环状的板部311和圆筒部312以及凸缘部313形成为一体构造,通过螺栓91紧固于后罩61。凸缘部313从圆筒部312向径向外侧突出,与中心支座62一起通过螺栓91紧固于后罩61的凸缘部(对合面)。另外,板部311形成为从圆筒部312向径向内侧延伸的圆环状,在轴向上与凹口板32以及选择板33对向。在所述圆筒部312的内部配置凹口板32和选择板33。另外,在槽板31(板部311)设有多个收纳与凹口板32卡合的支柱34的槽(英文:pocket)。此外,在支柱34与槽的底部之间设有对支柱34向凹口板32侧施力的弹性部件(未图示)。另外,在凹口板32设有多个供支柱34卡合的卡合凹部(凹口,英文:notch)。在所述凹口板32与槽板31(板部311)之间配置有选择板33。在所述选择板33设有供槽板31侧的支柱34能够向凹口板32侧突出的窗孔(未图示)。选择板33是设有多个沿轴向贯通的窗孔的圆环状的板部件,经由臂35而连结于致动器(未图示)。从所述致动器输出的力经由臂35向选择板33传递,由此,选择板33相对于槽板31以及凹口板32相对旋转。sowc30对支柱34收纳于槽板31的槽的状态(非锁定状态)与支柱34穿过选择板33的窗孔而上到凹口板32侧的状态(锁定状态)进行切换。例如,在非锁定状态下,因为是利用选择板33的非窗孔部分将支柱34压入槽板31侧的槽内部的收纳状态,所以凹口板32不与支柱34卡合,能够向两方向旋转。另一方面,在锁定状态下,因为是支柱34穿过选择板33的窗孔而上到凹口板32侧的起立状态,所以支柱34与凹口板32卡合,凹口板32的旋转方向被限制为一方向。另外,支柱34在槽板31(板部311)的周向上在隔有预定间隔的位置设有多个。即,在凹口板32,在与所述支柱34相对应的周向位置设有多个卡合凹部。因此,在sowc30为锁定状态的情况下,所有的支柱34不一定均等地卡合于凹口板32(啮合),所以在各支柱34不均等地啮合的情况下会产生径向载荷。或者是,即使sowc30为锁定状态,也可能会发生某个支柱34不卡合于凹口板32的情况。在那样的情况下会产生使凹口板32的中心偏心的力矩,在sowc30产生径向载荷。并且,在sowc30产生的径向载荷从凹口板32作用于第二齿圈22。在驱动装置100中,齿圈凸缘221经由滚针轴承81而支承于第一转子轴6,所以所述径向载荷作用于滚针轴承81以及第一转子轴6。即,能够通过滚针轴承81以及第一转子轴6来承受在sowc30产生的径向载荷。也就是说,根据驱动装置100,在sowc30产生的径向载荷(偏心载荷)不会从齿圈凸缘221作用于第二齿轮架23,所以能够抑制第二齿轮架23的芯偏移。由此,能够减少第二差动机构20的噪音和/或振动。另外,如图2所示,在油泵70与sowc30在轴向上的配置关系中,泵驱动齿轮71以及泵从动齿轮72配置于比sowc30以及第二齿圈22靠后罩61侧的位置。即,在sowc30的径向内侧没有配置泵驱动齿轮71。因此,在驱动装置100中,向sowc30的内部供给润滑油的油路92设置于比泵驱动齿轮71的外周部靠径向内侧的位置。所述油路92贯通槽板31的板部311以及中心支座62,连通于由所述中心支座62的一方的壁面(发动机1侧)和分隔部件93划分出的储油部94。并且,油路92的供给口形成于板部311的内表面,向sowc30的内部开口,并且位于比泵驱动齿轮71的外周部靠径向内侧的位置。由此,能够减少向sowc30的润滑油的供给压,能够减少损失。也就是说,因为设定为比在sowc30(凹口板32)高速旋转期间因离心力而产生的内压大的润滑油的供给压,所以通过在离心力小的径向内侧设置油路92,能够使所述供给压变小。此外,在板部311与中心支座62接触的部分形成有油路92。如上所述,在第一实施方式的驱动装置100中,齿圈凸缘221经由滚针轴承81而支承于第一转子轴6,所以能够通过滚针轴承81以及第一转子轴6来承受在sowc30产生的径向载荷。由此,能够抑制因所述径向载荷而产生的第二齿轮架23的芯偏移,能够减少第二差动机构20的噪音以及振动。例如,在专利文献1所记载的以往构造中,第二差动机构的齿圈凸缘支承于第二齿轮架的凸台部。所述第二齿轮架的凸台部花键嵌合于输入轴,所以当径向载荷从齿圈凸缘作用于第二齿轮架时,会在第二齿轮架产生与所述花键的松动量相当的芯偏移。另一方面,根据第一实施方式,能够抑制以往构造那样的第二齿轮架的芯偏移。另外,泵体75与中心支座62形成为一体构造,泵转子74在轴向上配置于与sowc30不同的位置。因此,如图2中的虚线所示,在壳体60的内部,能够在第二差动机构20以及sowc30的径向外侧设法安排出空间a。有效地使用所述空间a,从而能够使sowc30的径向尺寸变大,能够提高sowc30的耐久性。在sowc30的径向尺寸小的情况下,由各支柱34承受的周向的力(负荷)变大,但在sowc30的径向尺寸大的情况下,能够减少所述负荷,所以sowc30的耐久性提高。进而,在第一实施方式中,因为是不通过后罩61支承齿圈凸缘221的构造,所以能够抑制由第二差动机构20的啮合传递误差激起后罩61的膜振动(英文:membraneoscillation)这一情况。因此,能够抑制由后罩61因第二差动机构20的啮合传递误差而振动所导致的噪音的产生。[2.第二实施方式]参照图3、4对第二实施方式的驱动装置100进行说明。在第二实施方式中,与第一实施方式不同,齿圈凸缘221支承于后罩61。此外,在第二实施方式的说明中,对与上述的第一实施方式同样的构成省略说明,引用其参照标号。图3是示意地示出搭载第二实施方式的驱动装置100的车辆的骨架图。如图3所示,在第二实施方式中,在轴向上,在第一马达2(发动机1侧)与第二差动机构20(后罩61侧)之间配置有泵驱动齿轮71以及泵从动齿轮72。图4是示意地示出驱动装置100的第二差动机构20的周边构造的剖视图。如图4所示,齿轮架板233的外周部与泵驱动齿轮71一体化。关于泵轴73,在后罩61侧安装有泵转子74、在发动机1侧安装有泵从动齿轮72,并且泵轴73旋转自如地支承于中心支座62。也就是说,泵体75与中心支座62相互独立地构成。另外,在轴向上,泵转子74、sowc30以及第二差动机构20配置于重叠的位置。另外,在第二实施方式中,代替第一实施方式的滚针轴承81而设有安装于后罩61的滚针轴承84。如图4所示,齿圈凸缘221经由作为向心轴承的滚针轴承84而支承于后罩61的凸台部61a。总而言之,第二齿圈22经由齿圈凸缘221以及滚针轴承84而支承于后罩61。在第二实施方式中构成为:从sowc30作用于第二齿圈22的径向载荷经由齿圈凸缘221而由滚针轴承84(后罩61)承受。因此,齿圈凸缘221在轴向上配置于后罩61与第二太阳轮21(第二齿轮架23)之间。另外,第二齿圈22与齿圈凸缘221花键嵌合的部分(花键嵌合部)位于在轴向上比第二齿圈22与第二小齿轮25啮合的部分(啮合部)靠后罩61侧的位置。详细而言,凸缘部221a在轴向上配置于后罩61与第二齿轮架23的齿轮架本体231之间。凸缘部221a的一方的面(发动机1侧的面)与齿轮架本体231的侧面在轴向上对向,并且凸缘部221a的另一方的面(与发动机1相反的一侧的面)与后罩61的壁面在轴向上对向。在凸台部221b嵌合有滚针轴承84的外圈。后罩61的凸台部61a在轴向上向输入轴5侧突出,其顶端部分插入(嵌合)到输入轴5的内部。如上所述,在第二实施方式的驱动装置100中,齿圈凸缘221经由滚针轴承84而支承于后罩61,所以能够通过滚针轴承84以及后罩61来承受在sowc30产生的径向载荷。由此,能够抑制由所述径向载荷引起的第二齿轮架23的芯偏移,能够抑制在第二差动机构20产生的噪音、振动。此外,在上述的各实施方式中,对具备滚针轴承81、84来作为承受在sowc30产生的径向载荷的向心轴承的构成进行了说明,但作为其变形例,也可以是向心轴承由滑动轴承(轴衬)构成的驱动装置100。另外,在上述的实施方式中,对齿圈凸缘221与第二齿圈22构成为相互独立的部件、并且花键嵌合的构成进行了说明,但作为其变形例,也可以是具有由与第二齿圈22一体成形的部件形成的齿圈凸缘的驱动装置100。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1