在镍及其合金表面上的具有高催化活性的薄纳米结构层以及用于获得它们的方法

文档序号:5037118阅读:202来源:国知局
专利名称:在镍及其合金表面上的具有高催化活性的薄纳米结构层以及用于获得它们的方法
在镍及其合金表面上的具有高催化活性的薄纳米结构层以及用于获得它们的方法前言本发明涉及在镍表面上生产的具有高催化能力的薄层和用于获得它们的方法,所述薄层的特征在于非常高的比表面积和它们包括基本上热稳定的纳米结构的事实。所述纳米结构层特征在于对于基底表面的高度粘附和对于温度和热冲击的高抗性。它们的催化性能由通过镍及其合金吸附氢及其同位素的容量和速度 的提高来解释。尤其是,通过由直接附/112接触的吸附技术,本发明使得能够快速和经济地获得在Ni中非常高的氢吸附值(H/Ni原子比 0. 7)。这些储存值开启了在燃料电池中利用镍作为氢源的可能性。本发明还可以尤其用于对于以冷聚变或凝聚态物质核科学(Cold Fusion orCondensed Matter Nuclear Science)名义的、具有产生可能的核来源热目的的本领域技术人员已知的实验活动领域中。
背景技术
已知对于某些时候(例如M. L. Wyman et al. Bulletin of Alloy PhaseDiagrams, Vol. 10, No. 5,1989),氢在镍中的吸附(原子浓度x = H/Ni)很大程度上取决于原子氢(H)在与分子氢(H2)的平衡中的活度(活性)。已知,该活度(活性)随温度和压力增加很慢。已发现在环境温度以及甚至在IOOMPa量级的H2压下,该X = H/Ni比大约是0. 03。为了获得H/Ni值和/或对于在可用于在前言中所描述目的的金属/气体体系中由镍吸附氢的比率的值,可能必须在远高于IOOMPa的压力下操作,这是要求复杂和高成本的技术。如果吸附是通过电化学装置在Ni阴极进行,则情形完全改变。这是由于原子氢活度(活性)H的高值可以通过与适合的电化学操作联合进行而获得的事实,如,例如向电解质溶液加入H+H — H2再化合反应的抑制剂、在各种电流密度下实施重复加载(阴极Ni) /释放(放电,discharge)(阳极Ni)循环。利用这些方法使用兰尼镍(Raney nickel)阴极已经达到 0. 7 量级的 H/Ni 值(A. Visintin et al. ,Electrochim. Acta (2006) 51 3658) (Univ.degli Studi di Bergamo, Design and Technology Department, Report on Activities2007)o电化学加载(充电,charge)的有效性与0. 2-0. 5V的阴极过电压对应于每个原子0. 2-0. 5eV的能量的事实相关,其反过来对应于远高于IOOMPa的极高的等效H2压,可以由电化学装置获得。最近显示,沉积在其他金属如例如镁、稀土元素、错上的镍纳米颗粒(Cooper D. etal.,Kona, vol. 23,page 139-151 (2005))极大地提高了氢吸附率。另一方面,其还显示钮纳米颗粒不仅极快地加载(充电,charge),而且还达到了 2_3的x = H/Pd的加载(充电)水平,就是说是那些可以通过大块Pd的阴极加载(充电)所能达到的水平的2-3倍(Y. Arata and Y. Zhang The special report on research project for creation ofnew energy. Journal of High Temperature Society,2008,No. I)(Y. Arata and Y. Zhang Condensed Matter Nuclear Science,Proceedings of the 12th Int. Conference on ColdFusion ;ed.A. Takahashi, Y. Iwamura, and K. Ota. World Scientific 2006, pp.44-54.ISBN :981-256-901-4)根据本发明的作者,对于这些现象的一种可能解释,应记住因为纳米颗粒非常高的比表面积(乂 50m2/g),因此纳米颗粒的表面能比大块金属的表面能高3-4倍(Nanda etal. -DOI 10. 1103/Phys. Rev. Lett. 91. 106102),而且在表面中的每个原子,该能量能够达到接近于通过电化学装置所能达到的能量(0.2-0.5eV)。因为原子氢的吸附实质上降低表面能(TR0MANS D. , Acta metallurgica et materialia ISSN 0956-7151,1994, vol. 42,no. 6, pp. 2043-2049 (38ref.)),在能量方面的这种变化原则上足以证明在金属纳米颗粒中的高吸附值。关于氢吸附率,应记住利用兰尼镍阴极由电解方法(或装置)所获得的0.7量级的H/Ni加载(充电)水平需要数小时量级的电解时间。因此,本发明的主要目的在于提供一种用于改性镍或其合金的基底表面的方法,使得以这种方式改性的表面能够在中等压力和温度下产生具有非常高的氢吸附值的氢及其同位素的直接吸附。本发明另外的目的在于提供一种用于生产可用作用于储存氢的可用作氢源(例如在燃料电池中)的装置(“储存介质”)的镍的基底或镍制造品(镍制品)的方法。由这些目的来看,本发明的一个目的包括在所附的权利要求中所限定的方法。本发明另外的目的包括可通过根据本发明的方法获得的且同样也在所附的权利要求中所限定的镍或其合金的基底或镍或其合金的制造品。尤其是,根据本发明的方法基本上包含以下步骤。a)氧化镍或镍合金基底的表面以获得作为锚定层的NiO薄层。所使用的基底可以是以块状或粉末形式的镍或其合金;在合金的情况下,优选使用具有以重量计镍含量大于70%的合金。基底同样可以包含镍或其合金的制造品,如,例如薄片(薄板)、条(棒)或丝。还可以使用不同材料的基底,这样的材料包括惰性材料,如,例如紧密和/或多孔陶瓷、玻璃、各种金属,包括贵金属如金或钼,例如提供有镍或其合金的表面沉积物或通过本领域技术人员已知的技术所施加的镍或其合金的涂层。氧化步骤a)是通过在一种用于氧化镍的气氛下加热而进行;优选步骤a)通过在空气中加热镍基底(适当除油的)到300至1300°C之间,优选800至1100°C之间的温度而进行。优选氧化步骤在如以产生结合至镍的氧不少于0. 05g/m2的氧化镍锚定层的条件下进行。在氧化气氛中的处理时间根据所使用的温度而变化,且可以是10,000-300秒的量级。例如,对于800°C的处理温度,使用近似1500秒量级的处理(均热)时间,而在1100°C的温度下,处理时间近似300秒的量级。b)将胶体二氧化硅施加至氧化镍锚定层。在该步骤中,优选使用二氧化硅的含水溶胶以在整个表面上形成连续液膜。优选的是二氧化娃颗粒的尺寸应小于30nm,甚至更优选小于15nm。还优选的是,存在于金属的氧化表面上的液膜中的二氧化硅的量应不小于0. Ig/m2,且优选不大于0.8g/m2。在步骤b)中,可以将适于提高表面的润湿性和获得连续液膜的表面活性剂加入至硅溶胶。可以将金属如镍、钯、钼、铑、和铱的盐类(其通过加热和空气可以分解为它们相应的氧化物)、以及适于促进氧化镍和ニ氧化硅之间的化学反应的酸性化合物(如,例如硼酸酐、磷酸酐和铬酸酐)加入至硅溶胶。硅溶胶还可以包含碱性(金属)和碱土(金属)氧化物或这样的氧化物的盐前体以使化学稳定玻璃状膜。应记住,对于每ー种加入的碱性物质的氧化物(例如Ni0、Pd0、Na20、Ca0、Mg0)的摩尔,优选的是将至少ー摩尔的上述酸性化合物加入至若干摩尔的碱性Si02。如上面指明的,该溶胶还可以施加于适当冷却至环境温度的根据步骤a)处理的材料的整个表面,通过各种技术如,例如通过将滚子或刷子浸入溶液中并在直至完全排液(变干,drain)移除而复合铺展成为薄膜、通过喷射装置的复合喷射或其他类似的已知技木。该目的在于获得在整个表面上的均一厚度的连续液膜。优选存在于液膜中的固体材料的总量不小于0. lg/m2。
c)在空气中加热由步骤b)所获得的基底的表面,以促进ニ氧化硅与氧化镍之间的化学反应。该步骤可以以类似于前面所描述的步骤a)的方式,在300至1300°C之间的温度下持续1000至300秒之间的时间而进行。在胶体ニ氧化硅溶液包含上面提到的化合物或金属如镍、钯、钼、铑和/或铱的盐类,ー种或多种上面提到的酸性化合物,或上面提到的具有对ニ氧化硅的玻璃化作用的碱金属或碱土金属化合物的情况下,加热步骤c)在足以引起ニ氧化硅玻璃化的温度下而进行。步骤b)和c)可以重复两次或多次以增加所获得的层的厚度。可选地,该方法可以包含以下步骤e)在步骤c)之后,用(水)溶液处理基底的表面,该(水)溶液包含选自磷酸、铬酸和硼酸或其相应酸酐或其混合物的酸性化合物,至少ー种碱性或碱土化合物如具有对ニ氧化硅的玻璃化作用的氧化物或这样的氧化物的前体盐,以及至少ー种选自镍、钯、钼、铑、铱的金属的可溶性盐或所述盐的混合物,其中所述溶液可选地包含胶体ニ氧化硅,以及f)将由e)所获得的基底加热至足以引起ニ氧化硅玻璃化的温度,d)在氢气和/或其同位素的气氛下,活化由操作步骤a)、b)和C)、以及如果应用,步骤e)和f)所获得的制品。由于步骤d),氧化的镍被还原成金属镍(产物的活化),并以该方式产生具有高催化活性的热稳定的纳米结构。为了以用于实践目的的合理时间进行处理,优选的是在120°C以上的温度下并持续不少于50秒的时间而操作。期望的是不超过900°C以防止纳米颗粒的坍陷。该活化还可以由用于前面所描述目的的最終用户来进行。实施例I考虑两面而具有98m2总表面积的35x 140x 0. 065mm的99. 6%的镍薄片,仔细地用丙酮除油,并在炉子中在550°C在纯氩气的轻气流之下处理30分钟用于应カ解除,并使得在炉子的冷区在氩气中冷却。该薄片的重量在处理后为2. 8296±0. 0002g。接着,在空气的轻气流下将炉子的热区升温至900°C。将该薄片置于该(热)区并在此保持1800秒(操作a))。该薄片氧化后的重量为2. 8333±0. 0002g。因此固定于该表面的氧 0. 53g/m2。用于稳定锚定层的溶胶包含含有12nm微胶粒的胶体ニ氧化硅,其具有以重量计30%的SiO2含量。将该溶胶用I至20倍(体积)的二次蒸馏水稀释。将该薄片在环境温度(24°C)下浸入液体中持续30秒,移出并使得排液60秒(操作b))。在此之后,将该薄片置于炉子中900°C的区域在空气的轻气流中,并在此保持1200秒(操作c))。该薄片在该处理之后的最终重量为2. 8454±0. 0002g。将操作a)、b)和c)重复第二次。处理后的薄片的最终重量为2. 8634±0. 0002g,超出最初重量所增加的总重量 34mg0将以该方式处理的薄片置于具有2. 025升体积、安装有压电压力測量装置的不锈钢容器中。施加I. 3X10_3bar的真空度。接着,引入氩气至大约2个大气压,然后再次施加 1.3 * X lO^mbar的真空度。当容器的温度为与环境温度相同的26. 5°C时,将氢引入以在几秒内将压カ升高至I. Ibar0 5000秒之后,在26. 2°C的温度下(环境温度26. 6V )压カ几乎稳定在0. 93bar (最終平衡状态的 98% )0因此,可以测得镍片吸附了 0. 014摩尔的H2,达到0. 58的X = H/Ni原子浓度。5000秒的时间与文献中示出的扩散系数一致,在25°C,
2.O-X IO-9Cm2 *s。0. 58的X = H/Ni值非常接近于当全部金属质量作为催化剂(兰尼镍)时可以获得的H/Ni值,而在本实施例的情况下,催化剂的厚度最大为I U m。实施例2五根99. 5%的镍线(姆根直径200 ii m,长200cm,侧面表面积12. 5cm2,五根线的总重量为2. 7952g),每根以以下方式处理a)在70°C下、在2M NaOH中除油;用二次蒸馏水洗涤;在丙酮中洗涤;最后在二次蒸馏水中洗涤并在热空气中干燥。b)姆根线由焦耳热(Joule heating)在空气中加热至大概1000°C的温度,持续400秒的时间。通过线的电阻的改变而估测温度。c)冷却后,每根线用刷子经过三次涂以胶体ニ氧化硅溶液(以重量计30%的SiO2,溶胶尺寸12nm)。d)以该方式处理的每根线如在b)中经焦耳热加热。冷却之后,将5根线再次称重;记录重量的总增加大约为I. 2mg。e)将20ml以重量计85%的H3P04、IOOml以重量计20%的PdNO3溶液和IOOml以重量计20%的NiNO3溶液加入到胶体ニ氧化硅溶液(IOOcm3)中。f)利用在c)中描述的方法利用在e)中提到的溶液处理这五根线。g)最后,将这五根线如在b)中经焦耳热加热。冷却之后,测得与裸线相比增加的重量为大约2. 3mg。h)这五根线,每根插入直径0.2cm并适当弯曲的石英纤维套管,置于圆柱形气密的安装有压カ和温度传感器的不锈钢容器(体积2025cm3)中,并保持在150°C的温度。i)在施加真空之后,氢被快速引入容器中直至达到5bar的压カ;容器的温度保持在150°C。Ni线吸附氢直至大约500秒达到饱和;评估由压カ变化所产生的H/Ni原子比为
0.65。I)将包含这些线的容器抽真空并充入环境压力的空气;容器的温度保持在100°C以评估对于这些线的释放时间(discharge time)。惊奇地发现, 600小时后,Ni线所保留的氢含量几乎没有变化。
权利要求
1.一种用于生产在包括镍或其合金的至少一个表面层的基底上具有催化活性的表面层的方法,其特征在于包括以下操作 a)氧化所述基底的表面以获得氧化镍的锚定层, b)将胶体二氧化硅施加至所述锚定层, c)加热由步骤b)所获得的所述基底的表面以促进二氧化硅与氧化镍之间的反应,以及 d)通过在还原气氛下处理以将其氧化物和其硅酸盐还原成镍金属而活化所述表面。
2.根据权利要求I所述的方法,其特征在于,步骤a)的氧化的镍表面是通过在一种气氛下加热所述表面进行,所述气氛用于镍在300至1300°C之间的温度下,优选在800和1100°C之间,氧化10,000至300秒的时间。
3.根据权利要求I或2所述的方法,其特征在于,实施氧化步骤a)以获得不少于0. 05g/m2的结合于镍的氧含量。
4.根据以上权利要求中任一项所述的方法,其特征在于,在步骤b)中,使用能够在所述基底的整个表面上形成连续液膜的含水硅溶胶。
5.根据以上权利要求中任一项所述的方法,其特征在于,所述硅溶胶包含尺寸小于30nm,优选小于15nm的二氧化娃颗粒。
6.根据以上权利要求中任一项所述的方法,其特征在于,步骤b)通过施加胶体二氧化娃以形成二氧化娃含量不小于0. lg/m2的液膜。
7.根据以上权利要求中任一项所述的方法,其特征在于,所述胶体二氧化硅是含水硅溶胶,进一步包含选自包括镍、钯、钼、铑、铱、及其混合物的组中的金属的水溶性盐,所述可溶性盐能够在加热至低于在加热步骤c)中使用的温度时分解成它们相应的氧化物。
8.根据以上权利要求中任一项所述的方法,其特征在于,所述胶体二氧化硅或含水二氧化硅还包含选自包括硼酸、磷酸、铬酸及其混合物的组中的化合物。
9.根据以上权利要求中任一项项所述的方法,其特征在于,所述含水硅溶胶进一步包含在所述含水硅溶胶中完全可溶的碱性或碱土化合物。
10.根据以上权利要求中任一项项所述的方法,其特征在于,所述步骤c)通过加热到300至1300°C之间的温度持续10,000至300秒之间的时间而进行。
11.根据权利要求7、8和9所述的方法,其特征在于,所述步骤c)通过加热至足以引起二氧化硅层玻璃化的温度而进行。
12.根据权利要求I至11中任一所述的方法,其特征在于,在步骤c)之后,其包含以下操作 e)用溶液处理所述基底的表面,所述溶液包含选自磷酸、铬酸和硼酸及其混合物的酸性化合物,至少一种为玻璃化氧化物的前体的碱性或碱土化合物,以及至少一种选自镍、钯、钼、铑、铱的金属的可溶性盐或所述盐的混合物,所述溶液可选地包含胶体二氧化硅。
13.根据权利要求12所述的方法,其特征在于,在步骤e)之后,包含以下操作 f)将所述基底加热至足以弓I起所述二氧化硅玻璃化的温度。
14.根据以上权利要求中任一项所述的方法,其中,所述活化步骤d)包括在氢和/或其同位素气氛下处理由步骤a)、b)和c)或者,如果应用,步骤e)和f)所获得的所述基底。
15.根据权利要求14所述的方法,其特征在于,在氢气氛下的所述处理在120至900°C之间的温度下进行,且持续50至1200秒之间的时间。
16.根据权利要求14或15所述的方法,其特征在于,所述基底在活化步骤d)之后具有大于0. 3的氢/镍原子比。
17.由根据权利I至16所述的方法获得的基底作为储氢装置的应用。
全文摘要
在镍或其合金表面上的薄纳米结构层,用于通过直接的金属/气体接触快速达到高的氢吸附值(H/Ni~0.7)。所述层由这样的方法生产,该方法包含以下步骤氧化所述表面,将含水硅溶胶的膜施加至所述表面,接着在氧化气氛下加热以及通过在还原气氛下还原的最终活化。
文档编号B01J23/89GK102725064SQ201080035085
公开日2012年10月10日 申请日期2010年8月9日 优先权日2009年8月7日
发明者中村米萨, 保罗·马里尼, 弗朗切斯科·塞拉尼, 维托里奥·迪斯特凡诺 申请人:艾内斯巴克责任有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1