乙炔法生产醋酸乙烯的催化剂的制作方法

文档序号:12215365阅读:413来源:国知局

本发明涉及乙炔法生产醋酸乙烯的催化剂,所述乙炔气相法醋酸乙烯催化剂的制备方法以及乙炔气相法醋酸乙烯的合成方法。



背景技术:

醋酸乙烯(Vinyl acetate,简称VAC)是重要的有机化工原料,广泛应用于制造聚醋酸乙烯、聚乙烯醇并进一步加工用于粘结剂、涂料、维纶纤维、织物加工、乳液、树脂和薄膜等方面。目前,工业生产醋酸乙烯的方法有乙炔气相法和乙烯气相法。

乙炔法生产醋酸乙烯经历了液相和气相工艺两个发展阶段。1940年以前,主要是以液相工艺为主,在30~70℃常压下进行反应,催化剂为氧化汞和硫酸或磷酸;20世纪40年代以后,开始以乙炔气相法为主,催化剂为负载了醋酸锌的活性炭。

1922年德国Wacker公司Muqaen发现浸渍在活性炭上的醋酸锌可以气相合成醋酸乙烯,随后提出使用乙炔气相合成VAc的方法,后经Hochst公司改进投入工业生产。其催化剂以Zn(OAc)2为活性组分、以活性炭为载体,且一直沿用至今。美国专利(US166482,Production of vinyl acetate)报道了使用催化剂Zn(OAc)2/C,合成了醋酸乙烯。中国专利CN1903435(标题为:一种用于醋酸乙烯合成的催化剂及其制备方法)提供了一种乙炔法醋酸乙烯催化剂的制备方法,催化剂活性组分采用氧化锌和醋酸,并加入少量碳酸铋,将其浸渍在活性炭干燥得到催化剂。但上述技术提供的催化剂活性都不高,限制了乙炔法醋酸乙烯的应用。



技术实现要素:

本发明所要解决的技术问题之一是现有技术中乙炔法醋酸乙烯催化剂活性低的问题,提供一种新的乙炔法生产醋酸乙烯的催化剂,该催化剂具有活性高的特点。

本发明所要解决的技术问题之二是采用上述技术问题之一所述催化剂的生产方法。

本发明所要解决的技术问题之三是采用上述技术问题之一所述催化剂的醋酸乙烯的合成方法。

为解决上述技术问题之一,本发明采用的技术方案如下:乙炔法生产醋酸乙烯的催化剂,所述催化剂采用活性炭为载体,活性组分包括醋酸锌、醋酸钾和选自VIII金属或碱金属中的至少一种金属元素的化合物。优选所述活性组分同时包括醋酸锌、醋酸钾、选自VIII金属元素中的至少一种金属元素的化合物和选自碱金属中的至少一种金属元素的化合物。此时VIII金属中的金属元素的化合物与碱金属中的金属元素的化合物之间在提高醋酸乙烯催化剂的时空收率方面具有协同作用。

上述技术方案中,所述活性炭优选自煤质柱状炭、椰壳活性炭、杏壳活性炭和竹质活性炭的至少一种。所述活性炭的比表面积优选为1000~1500cm2/g,吸附孔容优选为0.60~1.00cm3/g。

上述技术方案中,所述VIII金属元素优选自钴、镍、铁、铂、钯、锇、铱、钌和铑中的至少一种,更优选同时包括钴和铑。

上述技术方案中,所述碱金属金属优选自锂、钠、铷和铯中的至少一种,更优选同时包括锂和铷。

上述技术方案中,更更优选所述VIII金属元素同时包括钴和铑,所述碱金属金属同时包括锂和铷。

上述技术方案中,作为最优选的技术方案,所述活性组分同时包括醋酸锌、醋酸钾、VIII金属元素的化合物和碱金属元素的化合物;例如所述活性组分由醋酸锌、醋酸钾、醋酸铷(或醋酸锂)和醋酸铑组成,或者由醋酸锌、醋酸钾、醋酸铷、醋酸锂和醋酸铑(或醋酸钴)组成,或者由醋酸锌、醋酸钾、醋酸铷、醋酸锂、醋酸铑和醋酸钴组成。

上述技术方案中,所述催化剂中醋酸锌的含量优选为50~300g/L,更优选为80~200g/L;所述催化剂中醋酸钾的含量优选为0.10~10.00g/L,更优选为3.00~7.00g/L;所述催化剂中选自VIII金属和碱金属中金属元素的至少一种含量优选为0.50~8.00g/L,更优选为1.00~5.00g/L。

为解决上述技术问题之二,本发明的技术方案如下:上述技术问题之一的技术方案中所述催化剂的生产方法,包括如下步骤:

①按催化剂的组成将醋酸锌、醋酸钾、VIII金属和碱金属的化合物的溶液与载体混合;

②干燥。

上述技术方案中,步骤①所述VIII金属元素的化合物优选自醋酸亚铁、二茂铁、氯化铁、硫酸铁、羰基钴、醋酸钴、氯化钴、硝酸钴、羰基镍、醋酸镍、硝酸镍、硫酸 镍、氯化镍、氯化铑、醋酸铑二配体、三苯基膦氯铑、硝酸铑、氯化钯、二氯四氨钯、醋酸钯、氯亚钯酸铵、氯化钌、过钌酸四内胺、醋酸钌、二氯化铂、氯亚铂酸铵、氯铂酸、醋酸铂、三氯化锇、醋酸锇、三氯化铱、醋酸铱和氯铱酸中的至少一种;更优VIII金属元素的醋酸盐;步骤①所述碱金属中金属的化合物优选自碱金属氧化物、碱金属氯化物、碱金属硫酸盐、碱金属硝酸盐和碱金属醋酸盐中的至少一种;更优选碱金属醋酸盐。步骤②所述干燥温度为80~120℃,更优选为100~120℃。

为解决上述技术问题之三,本发明的技术方案如下:醋酸乙烯合成方法,以醋酸、乙炔为原料,在上述技术问题之一的技术方案中任一项中所述催化剂存在下反应生成醋酸乙烯。

本发明的关键是催化剂的选择,本领域技术人员知道如何根据实际需要确定合适的反应温度、反应时间、反应压力和物料的配比。但是,上述技术方案中反应的温度优选为150~200℃;反应的压力优选为0.1~0.5MPa;以摩尔比计原料组成优选为乙炔:醋酸=(5~12):1;原料体积空速优选为250~350h-1

本发明反应产物中各组分的含量用气相色谱法分析,并计算催化剂的时空收率。

与现有技术相比,本发明的关键是催化剂的活性组分中包括醋酸锌、醋酸钾和选自VIII金属元素的化合物和碱金属中的至少一种金属元素的化合物,有利于提高催化剂的活性和稳定性,从而提高了醋酸乙烯的收率。

实验结果表明,采用本发明催化剂时,催化剂的时空收率达到162.31g/L·h,取得了较好的技术效果,尤其是催化剂中活性组分同时包括醋酸锌、醋酸钾、选自VIII金属元素中的至少一种金属元素化合物和选自碱金属中的至少一种金属元素化合物时,取得了更加突出的技术效果,可用于醋酸乙烯的工业生产中。下面通过实施例对本发明作进一步阐述。

具体实施方式

【实施例1】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50gRb的醋酸铷(RbOAc)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rb含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为162.31g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例2】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50gRh的醋酸铑(Rh2(OAc)4)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rh含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为162.40g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【比较例1】

为【实施例1】和【实施例2】的比较例。

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)和含6.10g醋酸钾(KOAc)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为121.44g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

通过与实施例1~2相比可以看出,本发明采用的催化剂,使用同时含醋酸锌、醋酸钾和醋酸铷活性组分、同时含醋酸锌、醋酸钾和醋酸铑活性组分的催化剂性能比只含醋酸锌、醋酸钾活性组分催化剂的性能要更优,醋酸乙烯催化剂的时空收率都要高。

【实施例3】

催化剂的制备:将含80g醋酸锌(Zn(OAc)2)、含3.00g醋酸钾(KOAc)和含1.00gCo的醋酸钴(Co(OAc)2·4H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.60cm3/g、比表面积为1000cm2/g的圆柱型椰壳活性炭载体浸渍在上述浸渍液中,静置3h于80℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为80g/L,K含量3.00g/L,Co含量1.00g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为127.53g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例4】

催化剂的制备:将含200g醋酸锌(Zn(OAc)2)、含7.00g醋酸钾(KOAc)和含5.00g Na的醋酸镁(NaOAc·3H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为1.00cm3/g、比表面积为1500cm2/g的圆柱型 杏壳活性炭载体浸渍在上述浸渍液中,静置3h于120℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为200g/L,K含量7.00g/L,Na含量5.00g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为162.94L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例5】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50g Li的醋酸锂(LiOAc·2H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的圆柱型竹质活性炭载体浸渍在上述浸渍液中,静置3h于120℃干燥,得到所述催化剂。经ICP和ICP-MS测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Li含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为162.34g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例6】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50gCs的醋酸铯(CsOAC)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该 催化剂的Zn含量为100g/L,K含量6.10g/L,Cs含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为162.35g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例7】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50gNi的醋酸镍(Ni(OAc)2)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Ni含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为150℃,反应压力为0.10MPa;原料体积空速:250h-1;原料组成:乙炔/醋酸摩尔比=5:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为153.15g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例8】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)和含3.50gRu的醋酸钌(Ru(OAc)3·3H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Ru含量3.50g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为200℃,反应压力为0.50MPa;原料体积空速:350h-1;原料组成:乙炔/醋酸摩尔比=12:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为163.01g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例9】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)、含1.60gRb的醋酸铷(RbOAc)和含1.90gRh的醋酸铑(Rh2(OAc)4)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rb含量1.60g/L,Rh含量1.90g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为164.59g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

通过实施例9与实施例1和实施例2同比看出,在提高醋酸乙烯催化剂时空收率方面,本发明使用的催化剂中,碱金属中金属Rb与VIII金属中金属Rh有较好的协同作用,说明了醋酸锌、醋酸钾、醋酸铷和醋酸铑之间在提高催化剂的活性方面具有较好的协同效应。

【实施例10】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)、含1.60gLi 的醋酸锂(LiOAc·2H2O)和含1.90gRh的醋酸铑(Rh2(OAc)4)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Li含量1.60g/L,Rh含量1.90g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为164.68g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例11】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)、含0.90gRb的醋酸铷(RbOAc)、含0.70gLi的醋酸锂(LiOAc·2H2O)和含1.90gRh的醋酸铑(Rh2(OAc)4)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rb含量0.90g/L,Li含量0.70g/L,Rh含量1.90g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为167.26g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

通过实施例11与实施例9和实施例10同比看出,在提高醋酸乙烯催化剂时空收率 收率方面,本发明使用的催化剂中,碱金属中Rb、Li之间具有协同作用。说明了醋酸锌、醋酸钾、醋酸铷、醋酸锂和醋酸铑之间在提高催化剂的活性方面具有较好的协同效应。

【实施例12】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)、含0.90gRb的醋酸铷(RbOAc)、含0.70gLi的醋酸锂(LiOAc·2H2O)和含1.90g Co的醋酸钴(Co(OAc)2·4H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rb含量0.90g/L,Li含量0.70g/L,Co含量1.90g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比=6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为167.18g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

【实施例13】

催化剂的制备:将含100g醋酸锌(Zn(OAc)2)、含6.10g醋酸钾(KOAc)、含0.90gRb的醋酸铷(RbOAc)、含0.70gLi的醋酸锂(LiOAc·2H2O)、含1.00gRh的醋酸铑(Rh2(OAc)4)和含0.90g Co的醋酸钴(Co(OAc)2·4H2O)充分混合溶解于浓度为60wt%的醋酸水溶液中,得到浸渍液350ml,将1L直径3mm、长2cm、孔容为0.80cm3/g、比表面积为1200cm2/g的煤质圆柱状活性炭载体浸渍在上述浸渍液中,静置3h于100℃干燥,得到所述催化剂。经ICP测定该催化剂的Zn含量为100g/L,K含量6.10g/L,Rb含量0.90g/L,Li含量0.70g/L,Rh含量1.00g/L,Co含量0.90g/L。

醋酸乙烯的合成:将30ml催化剂装填在微型固定床反应器中,用N2试漏后,用N2对系统充分吹扫,系统升温后,关闭N2,依次切入乙炔、开启醋酸泵,控制反应温度为175℃,反应压力为0.25MPa;原料体积空速:280h-1;原料组成:乙炔/醋酸摩尔比= 6:1,持续反应50h后,停止反应。

产物分析:将上述反应得到的反应混合物冷却、减压、分离,液相采用气相色谱-质谱联用仪(GC-MASS)分析。

经计算催化剂的时空收率为169.65g/L·h,为了便于说明和比较,催化剂的制备条件、反应条件、物料进料量、催化剂的时空收率分别列于表1和表2。

通过实施例13与实施例11和实施例12同比看出,在提高醋酸乙烯催化剂时空收率收率方面,本发明使用的催化剂中,VIII金属中Rh与Co之间具有协同作用。说明了醋酸锌、醋酸钾、醋酸铷、醋酸锂、醋酸铑和醋酸钴之间在提高催化剂的活性方面具有较好的协同效应。

表1

表2

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1