一种石墨烯复合八面体氧化亚铜材料的制备方法及其应用与流程

文档序号:11794420阅读:675来源:国知局
一种石墨烯复合八面体氧化亚铜材料的制备方法及其应用与流程

本发明属于纳米可见光催化材料的制备领域,具体涉及一种石墨烯复合八面体氧化亚铜材料的制备方法及其作为光催化剂的应用。



背景技术:

由于在有效利用太阳能和环境净化等方面的优势,基于半导体的光催化剂已经吸引了越来越多的学者的关注。作为一种典型的窄带隙P型半导体,氧化亚铜的带隙值在2.17eV左右,能够被大部分的可见光激发,因而在可见光的光催化领域有着广泛的应用。同时,和其他的窄带隙半导体如金属硫化物相比,氧化亚铜以其低毒性、低成本和能够被广泛的大量制备而成为可见光下的水分解和染料污染物的降解的理想半导体。然而,由于光生电子和空穴的快速复合,使得氧化亚铜的光催化能力还需要进一步的提升,光催化降解效率需要进一步的增加。通过改变反应条件和过程,不同形貌的氧化亚铜微晶已经被深入的研究,研究结果显示光催化活性与晶面的暴露有很大的关系。Sun Shaodong等人在RSC Advance 4(2013)3804-3822上对氧化亚铜的形貌研究做了一个综述,表明高指数的晶面族比低指数的晶面族有更高的化学活性;Ho Jinyi等人在The Journal of Physical Chemistry C 113(2009)14159-14164上报道了立方、截角立方、立方八面体、截角八面体和八面体的氧化亚铜的光催化活性,研究结果显示拥有更多{111}晶面族的八面体氧化亚铜比拥有{100}晶面族的立方氧化亚铜有更高的光催化活性;Wu Hsinlun等人在Science 351(2016)1306-1310上报道了八面体的氧化亚铜拥有更高的离子交换活性。

石墨烯是一种新型的二维纳米材料,由单层碳原子呈蜂窝状连接而成。自从2004年被发现以来,由于它超强的导电能力、优秀的机械和光学性能、高的电子迁移率和极高的比表面积,以及它在理想状况下可被认为是零带隙的材料,使得石墨烯复合半导体用于光催化方面被大量的研究报道。Xiang Quanjun等人在Chemical Society Reviews 41(2012)782-796上报道了石墨烯复合半导体用于光催化的综述。主要用于二氧化钛、氧化锌、氧化锡等金属氧化物和一些盐如硫化锌、硫化镉、钒酸铋等的复合。Julkapli,N.M.等人在International Journal of Hydrogen Energy 40(2015)948-979上报道了石墨烯与多种多样的半导体的复合作为催化剂方面的应用。石墨烯以其高的吸附能力和电子传导率显著提高了半导体的光催化性能。因此推断石墨烯与氧化亚铜的复合能够提高氧化亚铜的光催化效率,特别是与具有高活性的八面体氧化亚铜的复合,会显著提高对于有机染料污染物的降解速率。

目前已经有的研究在这种复合产物的合成上具有很大的缺陷。首先是制备方法的复杂繁琐,高温的水热反应和超长时间的搅拌等都使得反应条件变得苛刻,引入了表面活性剂增加了反应的复杂程度,成本较高;另一方面则是复合产物的形貌不佳,复合产物的氧化亚铜多以不规则球形和多孔结构呈现,使得其光催化性能提升不高,吸附能力远高于降解能力。因此,以一种简单、低成本的制备方法得到形貌优良、性能提升的光催化复合材料是迫切需要的。



技术实现要素:

本发明所要解决的技术问题是:克服上述现有技术的不足,提出一种简易低成本的制备具有高效光催化能力和优良形貌的石墨烯复合八面体氧化亚铜光催化剂的方法。

为实现上述目的,本发明提供了一种石墨烯复合八面体氧化亚铜光催化剂的制备方法。该方法通过简单的一锅原位合成法得到石墨烯复合八面体氧化亚铜光催化剂。本发明的石墨烯复合八面体氧化亚铜材料的制备方法包括以下步骤:

步骤一、将一水醋酸铜和氧化石墨烯超声分散于水中,在室温下搅拌20~30分钟;

步骤二、在室温和搅拌下,向步骤一得到的溶液中加入0.5~2mol/L的氢氧化钠溶液;

步骤三、向步骤二得到的悬浊液中加入500~800μL水合肼溶液;随后保持在室温下搅拌40分钟,然后进行离心、洗涤、干燥,即得到石墨烯复合八面体氧化亚铜材料。

优选地,步骤一中所述一水醋酸铜的浓度为5~7mg/mL;所述氧化石墨烯的浓度为0.3~0.7mg/mL,所述氧化石墨烯是通过改进的Hummers方法制得的。所述超声的功率为400~600W,时间为5~10分钟。

优选地,步骤二中加入的所述氢氧化钠溶液与所述步骤一得到的溶液的体积比为1:3~1:7,且所述氢氧化钠溶液的加入是缓慢逐滴滴加。

优选地,步骤三中所述水合肼溶液的浓度为20%,且所述水合肼溶液的加入是快速全部加入。所述离心的转速为5000~8000转/分钟,每次3~5分钟;所述洗涤为使用超纯水和乙醇交替洗涤3~5次;所述干燥为30~50℃下真空干燥6~8小时。

与现有技术相比,本发明具有如下有益效果:工艺简单,成本低,实用性强,便于大批量工业生产;得到的复合材料形貌优良,光催化效率高,在环境治理和太阳能的利用方面有很好的应用前景。例如,本发明得到的复合材料可用作光催化剂,用于降解有机染料及其他有机污染物。

以下将结合附图对本发明的构思、具体实例及产生的技术效果作进一步说明,以充分地了解本发明。提供这些说明的目的仅在于帮助解释本发明,不应当用来限制本发明的权利要求的范围。

附图说明

图1是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料的扫描电子显微镜照片;

图2是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料的透射电子显微镜照片;

图3是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料的高分辨透射电子显微镜照片;

图4是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料的X射线衍射图;

图5是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料的紫外-可见吸收光谱图;

图6是本发明一个优选实施例得到的石墨烯复合八面体氧化亚铜材料在可见光下降解甲基橙的降解曲线。

具体实施方式

下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例1

步骤一、将0.3g一水醋酸铜和25mg氧化石墨烯加于50mL超纯水中,在500W的超声机中超声10分钟均匀分散;

步骤二、将上述溶液在20℃室温下磁力搅拌30分钟,将10mL的1mol/L氢氧化钠溶液逐滴滴加入上述溶液中;

步骤三、氢氧化钠溶液滴加完一分钟后,迅速加入700μL的20%水合肼溶液,持续在20℃下磁力搅拌40分钟;将得到的悬浊液以6000转/分钟的转速离心,用超纯水和乙醇交替洗涤、离心4次,在真空干燥箱中40℃真空干燥4小时即得到石墨烯复合八面体氧化亚铜材料粉体。

图1示出了实施例1得到的石墨烯复合八面体氧化亚铜材料的扫描电镜照片,图2和图3示出了其透射电镜照片,表明本发明得到的复合材料中,氧化亚铜呈八面体形貌,尺寸较为均一,结晶度高,氧化亚铜被包覆在石墨烯中。图4示出了实施例1得到的石墨烯复合八面体氧化亚铜材料的X射线衍射图,其中氧化亚铜的特征峰明显,且没有明显的杂质峰,表明氧化亚铜的结晶度和纯度都较高。图5示出了实施例1得到的石墨烯复合八面体氧化亚铜材料的紫外-可见吸收光谱图,可以看到,本发明的复合材料相对于纯的氧化亚铜材料在300~800nm的波长范围内均表现出更高的吸光度;尤其是在600nm以上的红光及近红外区,本发明的复合材料仍表现出较强的吸收,这是非常难得的。

将实施例1得到的石墨烯复合八面体氧化亚铜材料作为光催化剂对甲基橙的可见光催化降解进行研究。将实施例1得到的纳米复合粉体20mg加入100mL的10mg/mL甲基橙溶液中,避光搅拌20分钟以达到吸附平衡,然后进行可见光照射,每10分钟取样一次,共观测60分钟,其降解曲线如图6所示。可以看出,本发明的复合材料无论是相对于纯的氧化亚铜,还是相对于纯的还原氧化石墨烯(RGO),都显示出了优异的催化降解性能,其50分钟的降解率即达到95%以上,远远高于其他对照组材料。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1