一种循环微泡式气液混合装置的制作方法

文档序号:12545148阅读:800来源:国知局
一种循环微泡式气液混合装置的制作方法

本发明属于气液混合技术领域,尤其涉及一种循环微泡式气液混合装置,可应用于高中低温压条件下、用量小、精度要求高的气液混合。该装置可用于油气、水气或其他溶液与气体的气液混合,适用于石油、化工、水利、医药等需要气液混合的行业。



背景技术:

随着化石能源储量的持续减少以及开采难度的不断增大,油气二次开采、三次开采在能源开采中发挥着越来越重要的作用,通常情况下利用注水驱油气进行二次或三次开采,然而,由于水资源的紧缺,其它驱油气方式应运而生,主要包括空气(N2)驱、CO2驱等。除此之外,非常规能源,如页岩油气、致密油气、地热、天然气水合物等,逐渐成为了当前的研究热点,在能源结构中占据的比例也显著提高。在上述能源开采过程中,气、水、油处于共存状态,且部分处于相互混溶状态,尤其是气-水混合溶液在储集地层运移过程中将会与岩石矿物发生化学反应或物理反应,从而影响岩石的孔隙结构、矿物吸附特性等,这都将影响油、气、地热及天然气水合物在岩石孔隙中的赋存和运移状态。目前气-水-岩石之间物理、化学反应的研究以室内实验为主,因此,气液混合对混合温度、压力以及混合精度等条件有了更高的要求。

目前主要的气液混合方法有传统曝气法、气液混合泵和微气泡混合器等。

传统曝气法主要在一些大型污水处理中使用,属于粗放型气液混合方式,混合效率较低,且无法控制混合压力;气液混合泵为常温常压条件下的机械搅拌混合,不适用于密封条件下的气液混合;微气泡混合器通过多种方法使气体以气泡的形式与水接触并混合,如文丘里式微泡发生器、射流震荡法、静电喷射技术、微孔材料等,其中利用微孔材料形成微气泡被认为是能耗最低的方法。张小伟和徐美倩等在专利《微纳米气泡发生装置》(申请号201410077966.5)中提出了微纳米气泡发生装置,用于污水处理、水产养殖等水体中的气液混合,此装置采用具有一定开孔率的微孔结构将气体分散成大气泡,再利用液体剪切作用将大气泡分散成微纳米气泡,这一方法依然存在微气泡尺寸不均匀的问题,此外,由于液体处于流动状态,无法保证气体在液体中充分饱和,且无法实现高温、高压条件下的气液混合。刘献玲和吴翔等在专利《一种旋流式微气泡气液混合器》(申请号201520049663.2)中提出了利用内外两层大、小孔径的陶瓷膜、金属粉末烧结管、有机膜、多孔玻璃膜、金属烧结网等将气体分散成不同尺寸的气泡,再利用液体剪切作用形成尺寸更小的气泡,但此方法依然无法满足对气液混合温度、压力条件的控制。

为了满足较高压力需求,气液混合容器需要选用密封容器,其中没有传动装置贯穿气液混合容器的静密封成为最佳选择。此外,为了提高气液混合效率,使气体以微泡的形式与水接触被认为是最为行之有效的方式,其中采用孔径较小的多孔介质材料对气体进行机械分散,从而产生微气泡,具有能耗低、微泡发生效果好等优点。由此可见,结合静密封和小孔径多孔介质材料的使用,可以实现高压条件下的气液混合,且混合效率更高。



技术实现要素:

本发明的目的是提供一种循环微泡式气液混合装置,该装置结构简单,操作方便,能够实现高中低温压条件下、用量小、精度要求高的气液混合,从而满足对气液混合控制精度较高的要求。

为实现上述目的,本发明采用以下技术方案:

本发明的一种循环微泡式气液混合装置,由气液混合容器、柱塞式计量泵、压力传感器、系统泄压口、阀门和管路组成,其中,气液混合容器进气口与柱塞式计量泵加压口相连,气液混合容器出气口通过管路分出两个分支,一个分支与柱塞式计量泵充气口连接,另一个分支与系统泄压口连接,两个分支分别由阀门控制。

本发明的一种循环微泡式气液混合装置,其中,气液混合容器包含压力容器封盖、紧固螺栓、O型密封圈、压力容器槽、亲气型多孔介质板、微泡发生装置,在压力容器槽内侧安装了亲气型多孔介质板,在压力容器槽底部安装了微泡发生装置,在压力容器槽下部设置了排水口和进气口,在压力容器槽上部设置了出气口。

本发明的一种循环微泡式气液混合装置,其中,微泡发生装置由进气管、四通、三通和多孔介质空心圆柱相互连接组成,多孔介质空心圆柱的材料具有亲气性或亲液性,多孔介质孔径一般小于50μm。

与现有气液混合装置相比,本发明的有益效果有:

(1)本发明的气液混合容器采用静密封,可以进行高压条件下的气液混合,还可以将气液混合容器单独置于高温水浴或气浴中进行高温条件下的气液混合;

(2)本发明的微泡发生装置采用孔径更小的多孔介质材料,可以将气体更加均匀地分离成非常微小的气泡,大大增加了气泡与液体的接触面积,从而提高了气液混合效率;

(3)本发明的气液混合容器装有亲气型多孔介质板,积聚在气液混合容器顶部的气体可以缓慢进入该多孔介质板,并在该多孔介质板表面再次与液体接触,实现了微泡连续循环,从而进一步提高了气液混合效率;

(4)本发明的气液混合装置,既可以将内部压力维持在较高水平,也可以将积聚在气液混合容器顶部的气体吸入柱塞式计量泵,并通过气液混合容器进气口和微泡发生装置重新注入气液混合容器,实现气体以微泡的形式反复在气液混合容器中循环,从而再次大幅提高了气液混合效率。

附图说明:

图1为本发明一种循环微泡式气液混合装置的结构示意图;

图2为气液混合容器压力容器槽和封盖的俯视图;

图3为亲气型多孔介质板放大示意图;

图4为微泡发生装置放大示意图;

图5为微泡发生装置中的多孔介质空心圆柱放大示意图。

附图序号说明:

1-气液混合容器,

101-压力容器封盖,102-紧固螺栓,103-O型密封圈,104-压力容器槽,105-亲气型多孔介质板,106-微泡发生装置,1061-进气管,1062-四通,1063-三通,1064-多孔介质空心圆柱,107-气液混合容器排水口,108-排水控制阀,109-气液混合容器进气口,110-气液混合容器出气口;

2-进气控制阀,

3-柱塞式计量泵,

301-柱塞式计量泵加压口,302-柱塞式计量泵充气口;

4-回填控制阀,

5-压力传感器,

6-泄压阀,

7-系统泄压口,

8-管路。

具体实施方式:

下面结合附图对本发明的实施例进行详述。

如图1所示,本发明的一种循环微泡式气液混合装置,由气液混合容器1、阀门2、柱塞式计量泵3、阀门4、压力传感器5、阀门6和管路8组成,其中,气液混合容器进气口109与柱塞式计量泵加压口301相连,并由阀门2控制开合,气液混合容器出气口110通过管路8分出两个分支,一个分支与柱塞式计量泵充气口302连接,另一个分支与系统泄压口7连接,两个分支分别由阀门4和阀门6控制开合。以CO2-水在某温度、压力条件下的气液混合为例,对本发明的具体实施方式介绍如下:

(1)为减少杂质气体的影响,开始气液混合前所有阀门关闭,将气液混合容器1充满水并置于设定温度的水浴箱或气浴箱中;

(2)打开阀门108和阀门4,利用柱塞式计量泵3经由气液混合容器出气口110以一个较低的压力向气液混合容器1内注入CO2,并将部分水经由排水口107排出,然后关闭阀门108和阀门4。CO2将会积聚在气液混合容器1顶部,可根据需要确定排出水的体积;

(3)打开阀门2,利用利用柱塞式计量泵3经由气液混合容器进气口109以一个较低的、恒定的速率向气液混合容器1内注入CO2。CO2气体经过微泡发生装置106中多孔介质空心圆柱1064的机械分离作用,分散成众多微小气泡由水中上浮,上浮过程中,部分气泡溶解在水中从而与水混合;

(4)注意观察压力传感器5,当气液混合容器1中的压力达到设定值时停止注入CO2,然后关闭阀门2,并将气液混合容器1内的压力维持在该水平持续一段时间。

由于压力容器槽104内侧安装有亲气型多孔介质板105,在毛细管压力的作用下,一部分积聚在气液混合容器1顶部的CO2会进入亲气型多孔介质板105内部,并再次与气液混合容器1下部的水接触,发生CO2-水的二次溶解,由此实现了CO2微泡在气液混合容器1内部的循环。

根据需要执行步骤(5)或步骤(6);

(5)打开阀门4,将积聚在气液混合容器1顶部的CO2再次充填入柱塞式计量泵3,直到压力降到气液混合开始前的压力水平。关闭阀门4。再次执行步骤(3)、步骤(4),由此实现了CO2在气液混合容器1外部的循环。

(6)经过在气液混合容器1内部和外部的反复循环,CO2与水发生了充分混合,并最终得到该设定温度、压力条件下的CO2-水混合溶液。

(7)关闭阀门2,打开阀门4,利用柱塞式计量泵3将气液混合容器1内的CO2-水混合溶液压入其他容器以备使用。

需要注意的是,本发明不但可以应用在CO2-水气液混合中,还可以应用在其他气液混合中。步骤(3)、(4)、(5)的重复次数和气液混合容器1内部维持设定压力的时间与所选气、液类型有关,需要根据实际情况而定。此外,最终得到的气液混合溶液可以选择保温或保压储存,也可以选择常温或常压储存。

同时,本发明使用的亲气型多孔介质板105可以根据所选气体的不同而更换。微泡发生装置106中的多孔介质空心圆柱1064可以选择亲气型或亲液型,如果选择亲液型多孔材料,其进气值不宜太大,以免增加注气难度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1