一种负载型钴基催化剂及其制备方法和费托合成应用与流程

文档序号:12353246阅读:167来源:国知局

本发明涉及一种费托合成催化剂及其制备方法和应用,具体地说是一种活性炭微球负载钴基费托合成催化剂及制备方法及其应用。

技术背景

全球化石燃料的消耗和日益增长的能源需求及造成的环境污染使煤炭清洁利用成为亟待解决的问题。其中,费托合成技术一直是各国石油公司及科研机构研究的热点。费托合成是合成气在催化剂的作用下生产低硫、无氮、无金属、低芳烃含量的清洁液体燃料和化学品的有效途径之一。

经过八十多年的发展,费托合成在催化剂、反应器及反应工艺方面已取得很大进步,但由于受ASF规律限制,难以选择性地合成某种特定产物、不能系统地对费托合成全产物分布进行控制并选择性进行生产并提高产品附加值和经济性,不能适应市场的变化。如何进一步提高目标产物选择性,适应市场行情,一直是费托合成技术实现大规模工业化亟待解决的问题。



技术实现要素:

为解决上述费托合成反应受ASF规律限制,目标产品选择性低这一问题。本发明的目的是提供一种目标产物选择性高的负载型钴基催化剂及其制备方法和费托合成应用

本发明是以活性碳微球为载体,负载钴制备新型钴基催化剂,通过调变碳微球孔径分布以调控钴颗粒大小,最终解决上述问题。

活性炭微球作为炭材料之一,具有良好的化学稳定性、热稳定性、吸附性能及优良的导电和导热性,并且它的制备原料价廉无毒、合成方法简单、稳定性好,目前已应用于催化载体等诸多领域。与传统的多孔材料相比,由于其特殊的形貌和高的孔隙率,可为客体物质提供高的表面积并且减少内外扩散效应。一般活性碳材料随着中孔含量的增加,比表面积则会降低,因此很难获得具有高比表面积的中孔型活性碳材料。近年来使用强碱性化合物作为活化剂制备高比表面积活性碳材料取得较大进展。例如,日本大阪瓦斯公司以中间相沥青微球为原料,以KOH为活化剂,制得比表面积高达3000~4600m2/g的超高比表面积活性炭微球。T.Kasuh,G.Morino在US 5143889(1992)中描述了使用KOH通过化学活化作用制备超级活性碳微球,其比表面积超过4000m2/g,这类高比表面积活性炭材料孔径分布很窄,微孔孔容占90%左右,但中孔(直径大于2nm的孔隙)和大孔(直径大于50nm的孔隙)的含量很小。沈曾民、薛锐生在《Fuel Processing Technology》84(2003)95-103中报告了使用KOH对碳微球进行化学活化,制备出活化中孔微球,它的总孔体积可以达到2.45cm3/g,比表面积达到3128m2/g,并且中孔含量达到56.1~65.7%。

本发明催化剂由四氧化三钴、贵金属助剂氧化物、非贵金属助剂氧化物和活性炭微球组成,其重量组成为四氧化三钴:贵金属助剂氧化物:非贵金属助剂氧化物:活性炭微球=(15~60):(0~1):(0~15):100。

如上所述,贵金属助剂氧化物为二氧化铂、氧化钯、三氧化二铑、二氧化锇、二氧化铱、二氧化钌的一种。

如上所述,非贵金属助剂氧化物为氧化铜、氧化锌、氧化钾、三氧化二镧、二氧化铈、七氧化二铼、二氧化锆、三氧化二钇、五氧化二铌、三氧化钼、氧化镁、二氧化锰等的一种。

如上所述,活性炭微球的比表面积为1000~5000m2/g,孔容为1.0~3.0cm3/g,孔径为0.5~15nm。

本发明的制备方法,包括如下步骤:

将沥青基炭微球或者淀粉基炭微球用过量活化剂强碱进行活化处理,得到活性炭微球,然后以活性炭微球作为载体等体积浸渍可溶性钴盐、可溶性贵金属盐和可溶非贵金属性盐,经干燥、惰性气氛焙烧,制备得到负载型钴基费托合成催化剂。

如上所述,沥青基炭微球按照专利CN 201310208313.1、CN 200610141086.5、CN 200910241779.5等公开的方法制备。

如上所述,淀粉基炭微球按照专利CN 201610225264.6、CN 200810053417.9等公开的方法制备。

如上所述,活化剂为氢氧化钾或氢氧化钠或者二者的混合物。

如上所述,活化剂的浓度为1.0~7.5mol/L,活化处理时间2-12h。

如上所述,可溶性钴盐包括硝酸钴或者醋酸钴。

如上所述,可溶性贵金属盐包括六水氯铂酸、二水硝酸钯、六水硝酸铑、三水氯化钌、二水锇酸钾、六水氯铱酸、

如上所述,可溶非贵金属性盐为三水硝酸铜、六水硝酸锌、无水硝酸钾、六水硝酸镧、六水硝酸铈、高铼酸铵、二水硝酸氧锆、五水硝酸锆、无水硝酸锶、六水硝酸钇、六水草酸铌、正钼酸铵、六水硝酸镁、硝酸锰等。

如上所述,干燥温度为60~120℃,干燥时间为6~24h。

如上所述,焙烧温度为250~450℃,焙烧时间为2~12h。

如上所述,惰性气氛为氦气、氩气或者氮气的一种。

如上所述的费托合成钴基催化剂在固定床反应器中应用;还原条件为:350~450℃,0.1~1.0MPa,GHSV=500~1500h-1,恒温12~48h,采用氮中氢还原气,H2含量为5%~95%(v/v);反应条件为:170~250℃,2.0~5.0Mpa,GHSV=1000~5000h-1,H2/CO(v/v)=2.0~2.5。

本发明催化剂具有比表面积大、孔径分布集中可调,孔道结构丰富,钴颗粒尺寸均一可调的优点。费托产物不受ASF规律限制,可对费托合成全产物分布进行控制并选择性进行生产以适应市场需求,可提高产品附加值和经济性。

具体实施方式

实施例1

称取100g沥青基炭微球(按专利CN 201310208313.1制备),以过量7.5mol/L的NaOH活化处理2h,得到活性炭微球载体(比表面积为1000m2/g,孔容为1.0cm3/g,孔径为15nm);将144.96g Co(NO3)2·6H2O、0.78g RuCl3·3H2O和35.91gLa(NO3)3·6H2O溶于水等体积浸渍于上述活性炭微球,于烘箱60℃干燥24h,然后于管式炉在氮气气氛下450℃焙烧4h,制得最终催化剂,重量组成为Co3O4:RuO2:La2O3:活性炭微球=40:0.5:10:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:450℃,0.3MPa,恒温12h,1500h-1(v/v),采用氮中氢,H2含量为10%(v/v)。反应条件为:170℃,5.0MPa,1000h-1(v/v),H2/CO(v/v)=2.0。评价结果:CO转化率60.8%,全产物中CH4占5.8wt%,C2-C4占4.3wt%,C5-C11占12.3wt%,C12-C18占20.3wt%,C19-C25占32.3wt%,C26+占25.0wt%。

实施例2

称取100g淀粉基炭微球(按专利CN 201610225264.6制备),以过量6mol/L的KOH活化处理4h,得到活性炭微球载体(比表面积为2000m2/g,孔容为1.2cm3/g,孔径为10nm);将181.2g Co(NO3)2·6H2O、0.23g H2PtCl6·6H2O和32.53g(N ZrO O3)2·2H2O溶于水等体积浸渍于上述活性炭微球,于烘箱70℃干燥20h,然后于管式炉在氦气气氛下420℃焙烧4h,制得最终催化剂,重量组成为Co3O4:PtO2:ZrO2:活性炭微球=50:0.1:15:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:430℃,0.2MPa,恒温16h,1300h-1(v/v),采用氮中氢,H2含量为5%(v/v)。反应条件为:190℃,4.5MPa,1500h-1(v/v),H2/CO(v/v)=2.2。评价结果:CO转化率55.9%,全产物中CH4占8.1wt%,C2-C4占7.7wt%,C5-C11占12.3wt%,C12-C18占32.5wt%,C19-C25占21.0wt%,C26+占18.4wt%。

实施例3

称取100g沥青基炭微球(按专利CN 200610141086.5制备),以过量5mol/L的NaOH和5mol/L的KOH混合液活化处理6h,得到活性炭微球载体(比表面积为2500m2/g,孔容为1.5cm3/g,孔径为5.0nm);将186.06g C4H6O4·Co·4H2O、0.44g Pd(NO3)2·2H2O和30.27g Ce(NO3)3·6H2O溶于水等体积浸渍于上述活性炭微球,于烘箱80℃干燥16h,然后于管式炉在氩气气氛下400℃焙烧12h,制得最终催化剂,重量组成为Co3O4:PdO:CeO2:活性炭微球=60:0.2:12:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:410℃,0.3MPa,恒温20h,1200h-1(v/v),采用氮中氢,H2含量为15%(v/v)。反应条件为:200℃,4.0MPa,2000h-1(v/v),H2/CO(v/v)=2.1。评价结果:CO转化率51.6%,全产物中CH4占11.5wt%,C2-C4占13.4wt%,C5-C11占19.6wt%,C12-C18占25.8wt%,C19-C25占14.3wt%,C26+占15.4wt%。

实施例4

称取100g淀粉基炭微球(按专利CN 200810053417.9制备),以过量4mol/L的KOH活化处理8h,得到活性炭微球载体(比表面积为3000m2/g,孔容为1.8cm3/g,孔径为2.5nm);将144.96g Co(NO3)2·6H2O、4.47g Rh(NO3)3·6H2O和0.96g NH4ReO4溶于水等体积浸渍于上述活性炭微球,于烘箱90℃干燥12h,然后于管式炉在氩气气氛下380℃焙烧16h,制得最终催化剂,重量组成为Co3O4:Rh2O3:Re2O7:活性炭微球=40:0.7:1:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:400℃,0.5MPa,恒温24h,1000h-1(v/v),采用氮中氢,H2含量为45%(v/v)。反应条件为:210℃,3.5MPa,2500h-1(v/v),H2/CO(v/v)=2.3。评价结果:CO转化率48.6%,全产物中CH4占14.7wt%,C2-C4占16.5wt%,C5-C11占23.4wt%,C12-C18占20.4wt%,C19-C25占10.5wt%,C26+占14.5wt%。

实施例5

称取100g沥青基炭微球(按专利CN 200910241779.5制备),以过量3mol/L的NaOH和3mol/L的KOH混合液活化处理6h,得到活性炭微球载体(比表面积为3500m2/g,孔容为2.0cm3/g,孔径为2.0nm);将48.02g C4H6O4·Co·4H2O和10.21g Sr(NO3)2溶于水等体积浸渍于上述活性炭微球,于烘箱100℃干燥10h,然后于管式炉在氮气气氛下370℃焙烧16h,制得最终催化剂,重量组成为Co3O4:SrO:活性炭微球=15:5:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:380℃,0.7MPa,恒温30h,800h-1(v/v),采用氮中氢,H2含量为50%(v/v)。反应条件为:220℃,3.0MPa,3000h-1(v/v),H2/CO(v/v)=2.5。评价结果:CO转化率45.7%,全产物中CH4占16.9wt%,C2-C4占19.6wt%,C5-C11占23.6wt%,C12-C18占18.5wt%,C19-C25占9.9wt%,C26+占11.5wt%。

实施例6

称取100g淀粉基炭微球(按专利CN 201610225264.6制备),以过量2mol/L的NaOH活化处理10h,得到活性炭微球载体(比表面积为4000m2/g,孔容为2.5cm3/g,孔径为1.0nm);将108.72g Co(NO3)2·6H2O和2.30g H2IrCl6·6H2O溶于水等体积浸渍于上述活性炭微球,于烘箱110℃干燥8h,然后于管式炉在氦气气氛下350℃焙烧18h,制得最终催化剂,重量组成为Co3O4:IrO2:活性炭微球=30:1:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:370℃,0.8MPa,恒温36h,7000h-1(v/v),采用氮中氢,H2含量为65%(v/v)。反应条件为:230℃,2.5MPa,4000h-1(v/v),H2/CO(v/v)=2.2。评价结果:CO转化率43.3%,全产物中CH4占18.5wt%,C2-C4占17.8wt%,C5-C11占24.2wt%,C12-C18占19.9wt%,C19-C25占10.8wt%,C26+占8.8wt%。

实施例7

称取100g沥青基炭微球(按专利CN 201310208313.1制备),以过量1mol/L的KOH活化处理12h,得到活性炭微球载体(比表面积为5000m2/g,孔容为3.0cm3/g,孔径为0.5nm);将163.08g Co(NO3)2·6H2O和14.41g Mn(NO3)2溶于水等体积浸渍于上述活性炭微球,于烘箱120℃干燥6h,然后于管式炉在氮气气氛下300℃焙烧24h,制得最终催化剂,重量组成为Co3O4:MnO2:活性炭微球=45:7:100。

取上述催化剂5ml不稀释装填于固定床反应器中(Ф10×500mm),还原条件为:350℃,1.0MPa,恒温48h,500h-1(v/v),采用氮中氢,H2含量为95%(v/v)。反应条件为:250℃,2.0MPa,5000h-1(v/v),H2/CO(v/v)=2.0。评价结果:CO转化率38.8%,全产物中CH4占21.2wt%,C2-C4占20.0wt%,C5-C11占24.8wt%,C12-C18占23.7wt%,C19-C25占8.3wt%,C26+占2.0wt%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1