磁力分离器装置的制作方法

文档序号:5059353阅读:253来源:国知局
专利名称:磁力分离器装置的制作方法
技术领域
此处所公开和要求保护的是用于精细分离细碎的固体、液体、蒸汽和气体的磁力分离器装置,该固体、液体、蒸汽和气体是有害的,即它们可能是腐蚀性的、易燃的、有毒的或者是这些危害的组合,本申请还要求保护这种装置在氯硅烷制造中的使用。本申请对2003年6月9日提交的临时申请60/476,978要求优先权。
背景技术
磁力分离已在文献中进行了充分的描述。Jan Svoboda已经在“矿物处理的磁力方法”(Developments In MineralProcessing-8,ISBNO-44-42811-9,Elsevier,New York,1987)中评论了磁力分离技术的状态。其他的一般文献包括“磁力分离”(Perry化学工程师手册,McGraw-Hill,纽约,第七版,1998,第19至49页)和John Oberteuffer及Ional Wechsler的“磁力分离”(Kirk-Othmer化学技术百科全书,第3版,1978,John Wiley & Sons,纽约,第15栏,第708至732页)。
几项专利已经阐述了用振动基体分离器进行处理,即Frantz,在1937年3月16日公开的美国专利2,074,085中描述了微细粉末的磁力分离器。Frantz揭示,当供给微细粉末时,基于滑轮、转子或皮带的分离器无法进行有效的分离。Frantz的磁力分离器包括电磁螺线管、外壳容器和作为基体的吸引器筛网。在本发明的一个实施例中,基体利用偏心锤进行振动,该偏心锤固定到由电机带动旋转的垂直轴上。
机械方法不是使基体振动的唯一方法;使用电磁方法也是可能的。Kolm在1971年3月2日公开的美国专利3,567,026和1972年7月11日公开的美国专利3,676,337中公开了使用交流线圈的直流螺线管分离器中微细钢丝绒基体的振动。Kolm的两个专利都描述了包括一个直流线圈和三个交流线圈的磁力分离器。该直流线圈提供使得钢丝绒基体磁化,以进行主分离的背景磁场。第一交流线圈是将剩余磁性从直流线圈上去除的消磁线圈。其它两个交流线圈产生振动钢丝绒基体的涡电流,以将残留部件振荡松弛。需要关闭直流电场并施加交流电场以将磁粉末冲洗到基体之外的过程。除了铁磁绒(ferromagneticwool)之外,可以有选择地添加铜磁绒,以加强振动。涡电流在每秒钟18000至20000周期数量级的声速范围上限,并且也能够有选择地使用穿孔板进行流量分布。
尽管Kolm的专利主要涉及湿浆,但是也涉及到气流的干颗粒去除,如包含在来自发电厂的烟气中的飞尘。
Oder在1978年5月2日公开的美国专利4,087,358中描述了用于在操作的冲洗步骤期间振动粘土泥浆磁分离器的基体以去除杂质的方法和设备。通过辅助交流线圈振动锤打、晃动基体,以及使用高强度声音都是向基体施加辅助机械力的建议方法。
Wulff在1945年3月20日公开的美国专利2,372,665中描述了通过加热混合进料到215℃将白口铸铁粉末分离成富含珠光体的碎屑和富含碳化物的碎屑的方法,从而碳化物颗粒高于居里温度,因此不被吸收到磁场中。
Collin在1976年12月28日公开的美国专利4,000,060中描述了用于热粉末混合物的磁分离器。该分离器包括带有水冷永磁体的鼓形滚动分离器。该非磁性辊子设置在温度控制的流化床中。进料粉末用如氮之类的惰性气体进行流化。
Inoue在1989年6月6日公开的美国专利4,836,914中描述了使用磁分离器从石油中去除铁颗粒的方法。操作的优选温度高达400℃。该方法具有超过如氢氧化物处理之类的其它处理方式的优点。它对于高粘性的石油尤其有利。
有时,期望将基体加热到有助于在循环之间对它进行清洁。Dijkuis在1982年10月5日公开的美国专利4,353,730中描述了通过将清洁流体加热到基体材料的居里温度以上来清洁磁力分离器基体的方法,从而释放磁性细屑。
Wiesner在2001年7月24日公开的美国专利6,262,843中披露了包括腐蚀颗粒的磁力分离的例子,其中揭示了如何从半导体材料的加工中去除杂质,其中可以将来自锯刃或研磨板的颗粒从硅的加工过程中所使用的切割流体中磁力分离。
有害粉末是那些细碎固体,这些固体是腐蚀性的、易燃的、有毒的或者是这些危害的组合。本身有害的粉末必须完全包含在具有高度可靠防泄漏设计的磁力分离器装置内部。有时,有危害的干粉末与有危害的气体、蒸汽或液体同时进行处理。该有危害的流体也增加了磁力分离器对这些粉末的处理难度。
将这些材料限制在分离器中是非常重要的。腐蚀性材料的少量泄漏能够导致容器壳的腐蚀破裂,这将导致巨大的、甚至是灾难性的泄漏。腐蚀性的材料和有毒材料能够对工作人员造成伤害。易燃性材料在从封闭的惰性环境泄漏到大气中时能够导致火灾和爆炸。因此,容器系统的完整性和可靠性是非常重要的。
当在高于环境温度、高于环境压力下,或者当固体有特殊磨蚀作用而进行分离时,会引起另外的问题。高温操作不可能使用许多在低温下才可用的聚合体或弹性体材料。这些材料可能是防腐蚀或防磨损属性的构造的优选材料。在高温下,许多聚合体和弹性体严重弱化,并因此在操作中失效。
如果构造的材料用于压力容器或密封的话,压力会使这些问题加重。容器在高于环境压力的操作期间失效会使处理材料快速从分离器泄漏到大气中,从而产生如火灾或爆炸之类的有害突发事件。如果在真空中操作,在容器失效的情况下使得空气吸入装置中,也可以在分离器内部产生类似危害。除了容器失效的危害性后果之外,在生产过程中也可能导致质量问题。一个例子是氧气为杂质并且磁力分离器在真空下操作的工艺过程。
装置的构造材料的磨损也是一个问题。容器可以受到腐蚀,导致容器失效。密封特别易于使容器失效,所以避免旋转机械密封面或类似设计特征是至关重要的。对失效的探测也是高度期望的。
在现代工业中有多种类型的磁力分离器。此处,发明人已知几种类型的大梯度(high gradient)磁力分离器。一个是包括MagnaCat分离器的封闭带分离器,该MagnaCat分离器由位于得克萨斯休斯敦的Merrichem公司制造。
在Hettinger等的美国专利4,406,773中公开了Sala大梯度圆盘传送带磁力分离器用于对混有水的催化剂样本进行分离。该专利假定在接近环境温度的情况下进行该浆液的分离。在Hettinger的美国专利5,147,527中公开了皮带辊磁力分离器,尤其是安装有静电传导皮带的Eriez磁稀土辊子永磁分离器。与Eriez大梯度磁力分离器相比较,但是大梯度磁力分离器的产量是有限的。在美国专利5,190,635中,描述了一种优选的工艺过程,其中催化剂磁化率和居里温度受到工艺条件的控制。在美国专利5,985,134中,说明了优选分离温度高达260℃。在美国专利5,972,208和6,059,959中描述了催化剂冷却器的选择使用,以将催化剂温度从大约700℃的优选回热器温度降低到38℃至260℃的冷却温度。Goolsby和Kowalczyk在EP 0951940 A2中公开了优选的钐/钴磁体,以允许有效操作在“没有额外冷却设备”的情况下高达232℃(450华氏度)。
Nippon Oil Company已经开发了催化剂分离器的另一现代形式。Ushio及其合作者在1982年11月16日公开的美国专利4,359,379中公开了使用带有铁磁基体的Sala大梯度磁力分离器将催化剂磁力分离。如其中所述,发明人注意到鼓形磁力分离器能够去除铁锈,但是对分离金属沉淀催化剂却“不起作用”。在一些例子中,空气在大梯度磁力分离器中用作载流流体。其中未表明在高温下进行分离,并且一个例子示出了室温下进行的操作。Ino及其合作者在1996年5月28日公开的美国专利5,520,797中也使用了带有铁磁基体和气体载体的Sala大梯度磁粒分离器。这些装置存在限制磁力分离有害干粉的有效性和有用性的问题。
皮带分离器装置可以封闭在压力密闭的(或接近压力密闭的)容器中。这种装置在Hettinger、Goolsby及其合作者的美国专利中进行了描述。这些装置当前以商标名MagnaCat进行销售,以分离流化的催化裂化装置催化剂。皮带分离器具有相当多的缺点。由于进料粉末在分离处理期间位于皮带上,所以颗粒与颗粒之间的吸引力干扰磁吸引力。因此,颗粒附着力和静电能够使磁性和非磁性颗粒彼此粘结。当发生粘结时,难以将颗粒分成磁性流和非磁性流。这些装置的另一问题是皮带的磨损。当皮带由于老化、腐蚀、磨耗或拉伸而磨损时,必须进行更换。如果该工艺过程是有危害的,则特别难以更换。除了自然的颗粒吸引力之外,皮带实际上能够增大颗粒与颗粒之间的吸引力。静电能够在转动的皮带装置上积累,特别是如果皮带为非导电弹性体的话。如上所述,能够将皮带分离器封闭在容器中。
另一种类型的分离器为基体/筒(canister)大梯度磁力分离器。由于其基体构造,所以该分离器具有提高分离的强烈本身磁力梯度。通过振动该装置,使得颗粒与颗粒之间的相互作用最小化。用于振动该装置的一种方法是将筒与筒的整个直径周围的柔性胶靴相连接。然而,这种胶靴在腐蚀性材料和热的受压工艺条件下是有问题的。由于柔性靴往往由于内部压力作用而膨胀,所以该装置也难于在高于环境压力的情况下进行工作。由于具有与筒一样大的直径,所以这种类型的靴也难以制作得可靠。对于十二英寸的筒,该靴的直径最小必须是十二英寸。整个大梯度磁力分离器可以安装在压力密闭容器中,但是这增加了设备的费用,并且增加了维护操作的复杂性。
此处所公开的本发明的装置为振动基体大梯度磁力分离器。它能够处理腐蚀性的、易燃的或有毒的粉末、蒸汽、液体和气体。它允许在高于环境温度和高于环境压力的情况下工作。尤其适合于高磨损性的微细粉末。也提供处理危险工艺的安全容器。
此处所阐述的工艺过程为用于制造氯硅烷的工艺过程。

发明内容
此处公开和要求保护的是具有振动部件和固定部件的振动磁力分离器,其中振动磁力分离器包含柔性风管,以将所处理的材料密封在分离器内部。
进一步说明的是,具有振动磁力分离器,它组合性地包括电磁铁;具有入口和出口的压力容器,其中该压力容器安装在电磁铁中,使得电磁铁基本环绕压力容器的一部分;铁磁基体;用于振动铁磁基体的振动器,其中该振动器在垂直方向上移动基体,以及将磁力分离器的固定部件与磁力分离器的振动部件连接和密封的风管。
此处所公开和要求保护的本发明的一个实施例是磁力分离器装置,它组合性地包括具有顶半部、下半部和下半部终端(lower halfterminus)的压力容器。该压力容器顶上安装有压力容器盖凸缘,并具有垂直壁。该压力容器盖凸缘具有贯穿的中央开口,该开口中设置有轴和轴封。
至少一个进料喷嘴安装在压力容器上,用于将材料供给到压力容器,在压力容器的下半部中设置有基体,该基体通过轴支承在压力容器中。部分根据将进行分离的材料,可以有两个或多个进料喷嘴。
在压力容器壁的外侧上且在基体位置处具有环绕压力容器的电磁装置。另外,在电磁装置和压力容器壁之间设置有隔热层,以对压力容器进行隔热。
第一支承机构安装在压力容器盖凸缘上,用于支承振动器安装框架,并且振动器安装框架具有贯穿的中央开口。振动器安装框架顶上具有第二支承机构,用于支承至少一个下部控制弹簧,其中第二支承机构也支承包含振动器的磁振动器外壳。振动器和振动器外壳具有贯穿的中央开口,以容纳下文中所描述的单一的垂直轴。
安装在振动器外壳上的是第三支承机构,安装在第三支承机构上的是支承板,安装在支承板上的是第四支承机构。该第四支承机构上安装有至少一个具有上表面的上部控制弹簧。
该装置具有单一的可移动垂直轴,该垂直轴具有下端和上端,并且单一的可移动垂直轴在其下端处连接到基体上。该单一的可移动垂直轴向上延伸穿过轴封和压力容器盖凸缘的中央开口,并向上延伸穿过风管的中央,继续向上延伸穿过振动器安装框架中央开口,并继续向上延伸穿过下部控制弹簧,穿过振动器中央开口,然后向上延伸穿过上部控制弹簧,并在上部控制弹簧的上表面上方和端板下方终止。
该装置具有安装在压力容器盖凸缘顶上的容器风管,并且该风管固定到凸缘上,该凸缘与单一的可移动垂直轴形成整体。
该装置具有清洁气体净化装置,它包括位于压力容器盖凸缘中的清洁气体净化入口,该净在入口在净化空间中开放,该净化空间通过以轴封作为底板、以压力容器盖凸缘作为侧面、以容器风管作为顶部形成。清洁气体净化防止灰尘汇集在风管的回旋部分之间。如果存在蒸气的话,也防止可冷凝液体汇集在风管中。因此,清洁气体净化防止风管的自由移动阻塞。清洁气体可以是任何无灰尘气体。它可以是如氮之类的惰性气体。轴封与单一的垂直轴交汇的地方允许惰性气体以低流速泄漏到压力容器中,从而防止颗粒进入轴封和风管中。
压力容器已经将排放锥管安装在下半部终端上。该排放锥管具有下端,排放喷嘴安装在该下端上。
本发明的另一实施例是包括第二风管的磁力分离器装置,该第二风管为平衡风管。除了平衡风管和振动机构与上、下控制弹簧的位置之外,本实施例的磁力分离器非常类似于上述第一实施例。
因此,该磁力分离器具有压力容器,该压力容器具有顶半部、下半部和下半部终端。如第一实施例中那样,压力容器盖凸缘安装在压力容器顶上,并且压力容器具有垂直壁。该压力容器盖凸缘具有贯穿的中央开口,并且在中央开口中具有轴封。
至少一个进料喷嘴安装在压力容器上,用于将材料供给到压力容器,并且部分根据将要分离的材料,可以有两个或多个这种进料喷嘴。
如第一实施例中那样,在压力容器的下半部中具有基体。该基体由固定到轴上的支座支承在压力容器中。由于基体支承在压力容器中,所以在压力容器壁的外侧上,基本在基体的位置处具有环绕压力容器的电磁装置。在电磁装置和压力容器壁之间具有隔热层。
压力容器盖凸缘上安装有第一支承机构,用于将至少一个下部控制弹簧支承机构和下部控制弹簧支承在它上面。另外,第二支承机构安装在下部控制弹簧支承机构顶上,其中第二支承机构支承含有磁振动器的磁振动器外壳。
该磁振动器和磁振动器外壳具有贯穿的中央开口,并且第三支承机构安装在磁振动器外壳上。至少一个上部控制弹簧支承机构和至少一个上部控制弹簧安装在第三支承机构上。
如第一实施例中那样,在压力容器盖凸缘顶上安装有容器风管,该容器风管由上部支承机构支承,该上部支承机构环绕将在下面描述的单一的可移动垂直轴。
第四支承机构顶上安装有顶部支承板,该第四支承机构安装在上部控制弹簧支承机构顶上,其中该顶部支承板如上文所述支承平衡风管。该平衡风管在凸缘上连接到轴上,该凸缘与单一的可垂直移动轴整体形成。
单一的可垂直移动轴具有下端和上端,并且该单一的可垂直移动轴的下端由基体板固定。而且,单一的可垂直移动轴向上延伸穿过压力容器盖凸缘中央开口和位于压力容器盖凸缘中的轴封,向上延伸穿过容器风管的中央,向上延伸穿过下部控制弹簧和下部控制弹簧支承机构,向上延伸穿过磁振动器中央开口,向上延伸穿过上部控制弹簧支承机构和上部控制弹簧,向上延伸穿过平衡风管,并终止于顶部支承板的下表面下方。
惰性气体净化设备位于压力容器盖凸缘中,该惰性气体净化设备在净化空间中开放,该净化空间以轴封作为底板、以压力容器盖凸缘作为侧面且以下部容器风管作为顶部形成,在轴封与单一的垂直移动轴交汇的地方具有小开口,以使得惰性气体能够流入到压力容器中。与第一实施例相反,在本实施例中具有压力平衡管,该压力平衡管从下部容器风管开放性地连接到上部平衡风管上。
另外,压力容器在下半部终端上安装有排放锥管,该排放锥管具有下端,排放喷嘴安装在排放锥管的下端上。
本发明的另一实施例是在产生氯硅烷的反应器中使用的含硅固体材料的处理工艺。该工艺包括使已经在所述反应器中使用的含硅固体材料经过此处所述的磁力分离器装置,以将含硅固体材料中的成分分离成磁性部分和非磁性部分。
本发明的另一实施例是处理含硅固体材料的工艺过程。该工艺过程包括从流化床反应器的流化床中去除含硅固体材料,并使含硅固体材料经过此处所述的磁力分离器装置,以将含硅固体材料中的组份分离成磁性部分和非磁性部分,然后将含硅固体材料的非磁性部分返回到流化床反应器的流化床中。
本发明的又一实施例是氯硅烷制造的工艺过程。该工艺过程包括通过使含硅固体材料经过此处所述的磁力分离器装置,以将含硅固体材料中的组份分离成磁性部分和非磁性部分,然后将含硅固体材料中的磁性部分从反应器中去除,对已经在用于制造氯硅烷的反应器中使用过的含硅固体材料进行处理。
本发明的再一实施例是用于准备氯硅烷的工艺过程。该工艺过程包括提供流化床反应器,将流化床反应器中充入研细的硅、用于直接法(Direct Process)反应的至少一种催化剂和用于直接法反应的至少一种助催化剂。
然后,向流化床反应器提供烷基氯,以在反应器中形成流化床,允许研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷。
然后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过使流化床内含物经过此处所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分,并从该处理过程中去除流化床内含物的磁性部分,从而对流化床内含物进行处理。
本发明的又一实施例是用于准备氯硅烷的工艺过程,包括提供流化床反应器,并将流化床反应器中充入研细的硅、用于直接法反应的至少一种催化剂和用于直接法反应的至少一种助催化剂。
此后,向流化床反应器提供烷基氯,以在反应器中形成流化床,并使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷,此后,在期望的比例确实增大或者期望的反应速度确实减小时,对流化床内含物进行处理,使流化床的内含物经过一处理过程,该过程包括通过研磨流化床内含物以减小固体的平均颗粒尺寸,然后使研磨的流化床内含物经过此处所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分,并从该过程中去除流化床内含物的磁性部分,继续进行该直接法工艺过程。
本发明的另一个实施例还包括提供流化床反应器,向流化床反应器中充入研细的硅、用于直接法反应的至少一种催化剂和用于直接法反应的至少一种助催化剂,然后向流化床反应器提供烷基氯,以在反应器中形成流化床。
然后使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷,然后在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过用空气动力离心分类工艺使流化床内含物经过尺寸分类法处理,通过减少和去除流化床内含物的固体部分的杂质,来处理流化床内含物,然后使净化的流化床内含物经过此处所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分,并从流化床反应器中去除流化床内含物的磁性部分,继续进行直接法工艺过程。
本发明的再一实施例是用于准备氯硅烷的工艺过程,其中该过程包括提供流化床反应器,向流化床反应器中充入研细的硅、用于直接法反应的至少一种催化剂和用于直接法反应的至少一种助催化剂,然后向流化床反应器提供烷基氯,以在反应器中形成流化床。
然后,允许研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷,然后在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过用空气动力离心分类工艺使流化床内含物经过尺寸分类法处理,通过研磨流化床内含物以减小其中的固体的平均颗粒尺寸,并减少和去除流化床内含物的已研磨固体部分的杂质,来处理流化床内含物,然后使净化的流化床内含物经过此处所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分,然后从流化床反应器的流化床中去除流化床内含物的磁性部分,继续进行直接法工艺过程。
最后,本发明的实施例是用于准备氯硅烷的工艺过程,其中该过程包括提供流化床反应器,向流化床反应器中充入研细的硅、用于直接法反应的至少一种催化剂和用于直接法反应的至少一种助催化剂。
然后,向流化床反应器提供烷基氯,以在反应器中形成流化床,并允许研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷,然后在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程而对流化床内含物进行处理,该过程包括通过研磨流化床内含物以从流化床内含物颗粒的表面去除杂质,然后使研磨的流化床内含物经过此处所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分,然后从该过程中去除流化床内含物的磁性部分,继续进行直接法工艺过程。


附图1是本发明的分离器的一个实施例的完整正视图,该分离器位于支承架上。
附图2是附图1的分离器沿着线A-A的剖视图,其中去掉了支承架。
附图3A是附图2中指定区域B的放大详视图。
附图3B是附图3A的区域C的透视放大视图,示出了圆周盘簧围绕轴封的位置。
附图4是振动器的示意图。
附图5是附图4的振动器的示意顶视图。
附图6是本发明的另一实施例的完整正视图,它是示出容器风管和平衡风管就位的分离器,进料管从平衡风管延伸至容器风管。
附图7是附图6沿着线E-E的剖视图。
附图8是附图7的区域D的平衡风管的完整视图。
附图9是附图7的区域E的容器风管的完整视图。
附图10附图8的区域F中平衡风管的大约1/2的放大视图。
具体实施例方式
进一步说明的是,此处所公开和要求保护的本发明是在分离细碎固体中使用的磁力分离器装置,该细碎固体悬浮在危险的液体、蒸汽和气体中,或与之接触。
现在参照附图1,其中示出了安装在金属支承架72上的本发明的磁力分离器装置1,还示出了压力容器2,压力容器盖凸缘5安装在该压力容器顶上。第一支承机构14安装在压力容器盖凸缘5上,该第一支承机构具有四根支柱,但是说明和示出为两根支柱39。
板40安装在第一支承机构14的顶部上,该板40为用于支承下部弹簧18的机构的一部分。第二支承机构17支承在板40上,它也具有四根支柱,但是图中显示了两根支柱41,并且磁振动器15安装在该支承机构17上(也在附图2中示出)。
安装在支柱41上的是带有第二套上部弹簧24的板。在压力容器盖凸缘5上方的一点处,示出了风管28,该风管安装在压力容器盖凸缘5的顶部43上。出于本发明的目的,风管28为实际的压力保持风管,这意味着它不仅仅是用作封盖的靴。
转到附图2,附图2是沿着附图1的线A-A的完整剖视图,去掉了支承架72,其中类似附图标记表示相同部件,其中示出压力容器2,和压力容器2的顶半部3,以及压力容器2的下半部4。图中示出了进料喷嘴9位于顶半部3中,该进料喷嘴用于将材料供给压力容器2。
基体10位于压力容器2的下半部4中,该基体作为基体支座支承在压力容器2中。绝缘层13在大约与基体10相同的位置处环绕压力容器2,该绝缘层通过将外壳与热压力容器2屏蔽来帮助控制电磁装置外壳45的温度。电磁装置12也在电磁装置外壳45中。
在附图2中线G-G所表示的垂直线上移动的是单一的垂直轴25。该轴25向上延伸穿过基体支座,然后向上穿过压力容器2的中央,继续向上穿过位于压力容器盖凸缘5的中央开口7中的轴封8,然后穿过风管28的中央,然后向上穿过板40的中央开口47,然后连接到下部控制弹簧18上,继续连接到振动器15的移动部分上,最终连接到上部控制弹簧24上,然后终止于端板52下面的较短距离处。该轴25上下移动以振动基体10,该基体通过板11和84连接到轴上。
附图3A是附图2的指定区域B的放大详细视图,示出了轴封8的细节。图中示出了用螺栓16固定在其位置中的保持板6,该保持板将轴封8保持在其位置中。在轴25的外侧表面上该点处示出的是具有磨光表面的硬涂覆表面21。图中还示出了将轴封8保持压缩在轴25周围的圆周盘簧22。另外,垂直盘簧23安装在轴封8顶上。
附图3B是附图3A的区域C的透视放大图,图中示出了环绕轴封的圆周盘簧22的定位。轴封8最好是碳制的分段轴衬,并且分段线26可以在附图3B中观察到。
现在转到附图4,附图4是放大示意性侧视图,该侧视图是沿着附图1的线H-H的本发明振动器15的详细视图,图中示出了常规振动器,该振动器具有带导线30的可变脉冲直流电源20,导线30供给能量以驱动振动器15。还应参考图5,图5为振动器15的示意性俯视图,在这种情况下,振动器15由四个振动器机构31组成。应当注意,每个机构31都构造相同,并且每个都具有通过电源的能量输入,如附图4中的20所指示的电源。
现在转到附图6,其中示出了本发明的另一实施例的分离器100的完整正视图,其中相同的附图标记表示与附图1和2相同的部件,图中示出了就位的容器风管28和平衡风管63,且具有从平衡风管63到容器风管28的压力平衡管65。
参照附图7,附图7是附图6的分离器100沿着线E-E的剖视侧视图,其中去掉了进料喷嘴9,其中示出了平衡风管63的入口/出口33和容器风管28的入口/出口34,所述入口/出口用于通过平衡管65使得两个风管之间的压力平衡(附图7中未示出,但在附图6中示出了平衡管65)。
图中还示出了气体入口35。应当注意,在轴25周围具有小间隙或开口61,它使得气体流入或流出已净化的空间。
在上部平衡风管63中,来自下部风管28的压力推力得到平衡。主要风管是下部容器风管28。风管63与风管28构造类似,并且它通过使用支承机构定位于上部控制弹簧24上方,该支承机构与上部控制弹簧下方的支承机构类似。
压力平衡管65在平衡风管63和容器风管28之间提供气体的畅流。当容器风管28受到压缩时,平衡风管63进行膨胀,反之亦然。
如附图1的振动磁力分离器1那样,在该分离器中,示出了压力容器2,压力容器2的顶半部3和下半部4,示出了其上安装进料喷嘴9的垂直壁53,压力容器盖凸缘5,压力容器盖凸缘5中的中央开口7,中央开口7中的轴封8,基体10,基体支承板11,带有环绕隔离层13的电磁装置12,和第一支承机构14。
凸缘5的顶部构造为平台75,该平台75显示为凸缘5的整体部件,它支承着容器风管28。平台75中具有中央开口77,该开口用于轴25从中通过。容器风管28的上端连接到轴25上的整体凸缘73上。
可任选的是,分离器100能够包含支承在支承机构14上的板79,该板具有中央开口80,轴25的线性轴承81定位在该中央开口中。下部控制弹簧18位于板79上方,该下部控制弹簧由支承物66保持在其位置中。该下部控制弹簧18在凸缘82处连接到轴25上。以这种方式,下部控制弹簧18控制轴25的垂直移动,并防止轴25的横向移动。
振动器15就定位在下部控制弹簧18上方,该振动器由支承机构17支承。轴25在该点处包含凸缘83,使得振动器15可以与轴25连接,以使轴25能够在分离器中上下振动。上部控制弹簧24就定位在振动器15上方。轴25在该点处具有膨胀部分85,以使得上部控制弹簧24能够控制轴25。分离器100的顶端就在上部控制弹簧24上方,其中定位有平衡风管63,该平衡风管由凸缘55支承在轴25中。如上所述,该装置具有用于风管63的盖板罩86,该盖板罩防止风管63向上移动。在平衡风管63的顶端具有入口/出口33。此后,顶板74将分离器100的组成部分结合在顶部上。
单一的可移动垂直轴25具有下端54和上端55。基体支座安装到轴的下端上。单一的可移动垂直轴25向上延伸穿过压力容器盖凸缘5,位于压力容器盖凸缘5中的中央开口7和轴封8。然后,轴25向上延伸穿过容器风管28的中央,进一步向上延伸而固定到下部控制弹簧18和下部控制弹簧支承机构上,向上延伸穿过振动器中央开口16,向上延伸穿过上部控制弹簧支承机构71,该轴在此连接到上部控制弹簧24上,并向上延伸穿过平衡风管28,终止于盖板罩86的下方。
该装置具有清洁气体净化装置77,它包括位于压力容器盖凸缘5中的清洁气体净化入口35,该清洁气体净化入口在净化空间62中开放,该净化空间通过以轴封8作为底板、以压力容器盖凸缘5作为侧面且以容器风管28作为顶部形成,在轴封8与单一的垂直轴25交汇的地方具有小开口61,以使得惰性气体能够流入到压力容器2中。
出于平衡两个风管之间压力的目的,该装置具有压力平衡管65,该压力平衡管从容器风管28开放地连接到平衡风管63上。
在分离器100的底部,压力容器2具有安装在其下半部终端上的排放锥管36,该排放锥管具有下端37,并且排放喷嘴38固定到该下端37上。
在操作中,参照本发明的第一实施例,磁力分离器1包括在压力容器2内部振动的基体10。该基体10通过环绕基体10的电磁装置12间歇地受到磁化和消磁。该基体10在可移动垂直轴25的作用下振动。为了使分离器1在高于环境温度和压力的情况下工作,风管28优选地由薄的柔性金属构成。
附图8是附图7的区域D的视图,附图9是附图7的区域E的视图。
附图10是附图8的区域F的放大视图和细节,它是平衡风管63的一部分。该视图示出了轴25的一部分、风管的最外层59和最内层58。图中示出了风管的顶部凸缘44和风管的底部凸缘46,其操作在下文中进行阐述。图中还示出了压力仪39、压力测量室57和真空阀60。容器风管28以类似方式构造,但是如可从附图9中观察到的那样,压力仪39、压力测量室57和真空阀60示出为在风管的底部。
出于说明和澄清分离器的操作的目的,两个风管上的凸缘已经进行了不同的命名。在平衡风管63中,顶部凸缘表示为44,该凸缘为固定凸缘,而底部凸缘表示为46,该凸缘为风管膨胀和收缩时移动的凸缘。
类似地,在附图9中,将容器风管显示为如附图7的区域E中所示,其中顶部凸缘表示为70并且是移动凸缘,而底部凸缘表示为71,该凸缘为固定凸缘并与平衡风管28同样操作。
由于多层的金属风管具有较高水平的结构整体性,所以它是优选的。多层金属风管28也允许对风管28的整体性进行连续的失效测试。“多层”的意思是具有至少两个壁。风管28最好是如附图中所示那样设计的波纹管。多层风管28的壁是同心的。如附图10中所示的压敏腔57在风管的最内层58和最外层59之间形成。该腔可以利用已经连接到真空泵(未示出)上的阀60进行排空。然后,可以直接从压力仪39上读取腔57中的压力。该压力仪39可以是如图所示在该位置处安装的压力计,但是优选的是电子压力传感器,该传感器连接到如可编程逻辑控制器之类的控制系统或分布式控制系统上,该分布式控制系统具有报警器,以在任一风管失效的情况下马上向操作人员报警。压敏腔57可以进行加压或排空,但是压力必须与外部环境压力或压力腔2中的压力不同。在磁力分离器在高于环境压力下工作的情况中,最好将腔57排空,从而当压敏腔57中的压力升高到预定真空报警点以上时,可以探测到风管的外层59或风管的内层58中的失效、破裂或泄漏。如果压力容器2在真空下工作,则可期望对内层压敏腔57进行加压。在这种情况下,由于所述层之间的压力的原因,所以必须在设计风管时考虑风管中的额外硬度。
关于本发明的第二实施例,其中如附图6中所示那样使用第二风管,即平衡风管63,压力推力在两个风管之间得到平衡。用平衡风管63对容器风管28进行平衡。当容器风管28受到压缩时,平衡风管63进行膨胀,反之亦然。在第一实施例中,压力容器2中的高压作用到容器风管28上,产生向上的力。如果压力较高,则所得到的力比较大。压力容器2的压力也作用到可垂直移动的轴25的横截面区域上。轴封上的清洁气体的净化可以导致较小的压力。在第二实施例中,压力平衡管65以相等的向下的力在平衡风管63上产生相等的压力。容器风管28的向上的力和平衡风管63的向下的力彼此抵消。这减小了振动器15和弹簧18、24上的载荷。平衡的风管设计尤其适合于压力容器2中的变化的压力。
振动组件本身基本包括可垂直移动的轴25和基体10。该可垂直移动的轴25悬置在多个弹簧18和24上。可以使用盘簧,但要限制横向偏转,这些弹簧最好是板簧,从而可以控制横向偏转,以延长风管的寿命,换句话说,应当尽可能地限制横向偏转。板簧提高了穿过开口的轴的偏转控制和对准。例如,弹簧28、24可以由任何合适的材料制成,如钢或玻璃加强塑料。可以在顶部和底部位置处以叠置方式使用多个弹簧。为了使横向偏转最小化,板簧的堆叠可以在方向上旋转九十度。最好使栓接的凸缘部件自身与对准凹槽或对准标记相对准。
可垂直移动的轴25利用线性“E框架”振动器15进行垂直振动。该E框架振动器15连接到AC或脉冲DC电源上,该电源根据AC或脉冲DC电源的频率产生振荡的垂直振动。
可以有选择地将惰性或非惰性的净化应用于减小薄壁风管由于磨损性粉末的磨耗损伤而过早失效的风险。除了磨耗之外,风管区域中的固体能够充填风管,从而使风管受到固体充填,因此失去柔性。净化也能够防止蒸汽冷凝,该蒸汽在压力容器中在沸点以上进行处理。在这种情况下,清洁气体或某些其他合适流体流过净化管入口35而进入压力容器2上方的净化空间62中。风管28的上部凸缘70封闭净化空间62的顶部。净化空间62的下端通过小开口61部分向压力容器2打开,该小开口位于轴封8与单一的垂直轴25交汇处。净化空间62机械加工在压力容器盖凸缘5中,并且该空间装配有装配到压力容器盖凸缘5中的轴封8。轴封8加工成类似于垫圈的形状。它由明显比垂直轴25更硬或更软的结构材料制成,从而一个部件相对于另一个优先受到磨损和替换。轴封8可以是单件的垫圈或分段的轴衬。优选的设计是石墨轴封和合金轴。也可能是由金刚砂或类似陶瓷制成的较硬的轴封8。该轴封防止微细的磨损性颗粒进入。它也提供优选的磨耗点,从而可以更换廉价的轴封8,而不是更加难以修复的压力容器盖凸缘5或轴25。轴封8可以如图所示从下面安装,或者可以从上面安装。
基体10装配到基体托架中,并分别利用上部板11和下部板84固定到振动轴25上,该上部板和下部板夹紧到垂直的可移动轴25上。可利用多种类型的基体10,如筛网、穿孔板、膨胀的金属网或者甚至钢丝绒。优选的基体10为部分开放的盘,如膨胀的金属网。基体10由磁化的软钢制成,例如430不锈钢或410不锈钢。
基体10可以利用如螺线管之类的外部电磁装置12进行交替磁化和消磁,并且该螺线管容纳在外壳45中。外壳45填充有油87(附图2),油利用未示出的循环和体积膨胀系统进行外部冷却,所述油不是要求保护的本发明的一部分。
如果压力容器2在显著高于环境温度的情况下工作,则期望该装置装配有隔热层13。这防止外壳45过热而使螺线管12的电阻增大而产生降低的磁场强度。压力容器2和可垂直移动轴25的构造的优选材料是钢,如304和316不锈钢。螺线管12无法使这些钢明显磁化。为了提高耐磨性,可以在容器2、轴25和其他部件上涂覆非磁性的硬涂层21。
含有磁性颗粒的粉末通过进料喷嘴9供给。可以设置多个喷嘴以使流向容器不同侧的气流相等。如果进料粉末具有特别的磨损性,则期望将进料管插过喷嘴,从而可以在对压力容器不进行明显修复的情况下替换进料管。如果压力容器2为直径较大的容器,则可能期望提供较陡峭的排放锥管36,以限制下游收集和传送管的尺寸。
为了处理成批的进料粉末,首先对螺线管12通电,以磁化基体10。然后,大量粉末通过进料喷嘴9供给到基体10的顶部上。进料粉末流过由振动器15辅助的基体板10。磁性颗粒被吸附到基体10上。非磁性颗粒通过基体10,并通过排放喷嘴38排出。
在将非磁性颗粒从分离器中去除之后,分离器下面的分流阀(未示出)切换成将气流导向到不同管路上。然后,将螺线管12断电。在振动器15继续工作的情况下,将磁化细屑从基体10上释放,并排出排放喷嘴38。
(0108)金属风管28和63的构造的合适材料是奥氏体不锈钢,如316不锈钢,或高镍合金,如铬镍铁合金625或耐蚀镍基合金(Hastelloy)C22。优选的材料是耐蚀镍基合金(Hastelloy)C22。内层风管58的构造材料必须与磁力分离器的内含物相适合。如果分离器位于户外,则风管28和63的外层59的构造材料必须与外部环境和天气相适合。
权利要求
1.一种具有振动部件和固定部件的振动磁力分离器,其中,振动磁力分离器包含压力保持柔性风管,以密封所处理的内含物,防止其泄漏到大气中,并将振动部件与固定部件隔离。
2.一种振动磁力分离器,包括如下组合A.电磁铁;B.具有入口和出口的压力容器,所述压力容器安装在电磁铁中;C.铁磁体基体;D.用于振动铁磁体基体的振动器,所述振动器在垂直方向移动,及E.风管,该风管将磁力分离器的固定部件连接到磁力分离器的振动部件上,并密封所处理的内含物,防止其泄漏到大气中。
3.如权利要求2所述的振动磁力分离器,其特征在于,向基体施加振动的装置是连接振动器和基体的可移动轴。
4.如权利要求2所述的振动磁力分离器,其特征在于,该柔性风管为在环境温度和压力以上使用的金属风管。
5.如权利要求2所述的振动磁力分离器,其特征在于,该柔性风管具有至少两层。
6.如权利要求2所述的振动磁力分离器,其特征在于,在两层之间具有失效探测装置。
7.如权利要求1所述的振动磁力分离器,其特征在于,具有至少一个线性振动器。
8.如权利要求2所述的振动磁力分离器,其特征在于,具有至少一个线性振动器。
9.一种磁力分离器装置,包括如下组合a.具有顶半部、下半部和下半部终端的压力容器,所述压力容器顶上安装有压力容器盖凸缘,所述压力容器具有垂直壁,所述压力容器盖凸缘具有贯穿的中央开口,其中轴封位于所述中央开口中;b.至少一个进料喷嘴安装在压力容器上,用于将材料供给到压力容器;c.位于压力容器的下半部中的基体,所述基体由支座支承在压力容器中;d.在压力容器壁的外侧且在基体的位置处环绕该压力容器的电磁装置,在所述电磁装置和压力容器壁之间具有隔热层;e.第一支承机构安装在压力容器盖凸缘上,用于支承振动器安装框架,所述振动器安装框架具有贯穿的中央开口;f.第二支承机构安装在振动器安装框架上,用于支承至少一个下部控制弹簧和下部控制弹簧支承机构,所述第二支承机构也支承包含磁振动器的磁振动器外壳,所述磁振动器和磁振动器外壳具有贯穿的中央开口,第三支承机构安装在磁振动器外壳上,支承板安装在所述第三支承机构上,第四支承机构安装在该支承板上,至少一个具有上表面的上部控制弹簧支承在该第四支承机构上;g.单一的可移动垂直轴具有下端和上端,所述单一的可移动垂直轴在其下端由基体板固定,所述单一的可移动垂直轴向上延伸穿过压力容器盖凸缘的中央开口和位于压力容器盖凸缘中的轴封,向上延伸穿过风管的中央,向上延伸穿过振动器安装框架中央开口,向上延伸穿过下部控制弹簧,向上延伸穿过磁振动器中央开口,向上延伸穿过上部控制弹簧,并基本在上部控制弹簧的上表面处终止;h.风管安装在压力容器盖凸缘上,并由环绕该单一的可移动垂直轴的风管上部支承机构支承;i.清洁气体净化装置,包括位于压力容器盖凸缘中的清洁气体净化入口,该净化入口在净化空间中开放,该净化空间以轴封为地板、以压力容器盖凸缘为侧面且以风管为顶部形成,在轴封与单一的垂直轴交汇的地方具有小开口,以使得惰性气体能够流入到压力容器中;j.压力容器盖凸缘具有安装在下半部终端上的排放锥管,所述排放锥管具有下端,可控制的排放喷嘴安装在排放锥管的下端上。
10.一种磁力分离器装置,包括如下组合(i)具有顶半部、下半部和下半部终端的压力容器,所述压力容器顶部安装有压力容器盖凸缘,所述压力容器具有垂直壁,所述压力容器盖凸缘具有贯穿的中央开口,轴封位于所述中央开口中;(ii)至少一个进料喷嘴安装在压力容器上,用于将材料供给到压力容器;(iii)位于压力容器的下半部中的基体,所述基体由基体板支承在压力容器中;(iv)电磁装置,该电磁装置在压力容器壁的外侧上且基本在基体的位置处环绕压力容器;(v)隔热层位于所述电磁装置和压力容器壁之间;(vi)第一支承机构安装在压力容器盖凸缘上,用于支承至少一个下部控制弹簧支承机构和下部控制弹簧;(vii)第二支承机构安装在下部控制弹簧支承机构上,所述第二支承机构支承含有磁体振动器的磁体振动器外壳,所述磁体振动器和磁体振动器外壳具有贯穿的中央开口;第三支承机构安装在磁体振动器外壳上,至少一个上部控制弹簧支承机构和至少一个上部控制弹簧安装在所述第三支承机构上;(viii)容器风管安装在压力容器盖凸缘的顶上,并由环绕单一的可移动垂直轴的上部支承机构支承;(ix)第四支承机构安装在上部控制弹簧支承机构顶上,所述第四支承机构顶上安装有顶部支承板,所述顶部支承板支承平衡风管,所述平衡风管由环绕单一的可移动垂直轴的下支承机构支承;(x)单一的可移动垂直轴具有下端和上端,所述单一的可移动垂直轴在其下端由基体板固定,所述单一的可移动垂直轴向上延伸穿过压力容器盖凸缘中央开口和位于压力容器凸缘中的轴封,向上延伸穿过容器风管的中央,向上延伸穿过下部控制弹簧和下部控制弹簧支承机构,向上延伸穿过磁体振动器中央开口,向上延伸穿过上部控制弹簧支承机构和上部控制弹簧,并向上延伸穿过平衡风管,且基本在顶部支承板的下表面处终止;(xii)清洁气体净化装置,包括位于压力容器盖凸缘中的清洁气体净化入口,该净化入口在净化空间中开放,该净化空间以轴封为地板、以压力容器盖凸缘为侧面且以容器风管为顶部形成,在轴封与单一的垂直轴交汇的地方具有小开口,以使得清洁气体能够流入压力容器中;(xiii)压力平衡管,所述压力平衡管从容器风管开放地连接到平衡风管上;(xiv)压力容器盖凸缘使排放锥管安装到下半部终端上,所述排放锥管具有下端,排放喷嘴安装到排放锥管的下端上。
11.一种处理含硅固体材料的方法,该含硅材料在反应器中使用,用于生产氯硅烷,该方法包括使已经在所述反应器中使用的含硅固体材料经过权利要求2所述的磁力分离器装置处理,以将含硅固体材料中的成分分离成磁性部分和非磁性部分。
12.一种处理含硅固体材料的方法,该方法包括(I)从流化床反应器的流化床中去除含硅固体材料;(II)使含硅固体材料经过权利要求2所述的磁力分离器处理,以将含硅固体材料中的成分分离成磁性部分和非磁性部分;(III)将含硅固体材料的非磁性部分返回到流化床反应器的流化床。
13.制造氯硅烷的过程,所述过程包括(I)通过使含硅固体材料经过权利要求2所述的磁力分离器装置来处理已经在用于制造氯硅烷的反应器中使用过的含硅固体材料,以将含硅固体材料中的成分分离成磁性部分和非磁性部分,及(II)从反应器中去除含硅固体材料的磁性部分。
14.一种用于制备氯硅烷的方法,该方法包括(I)提供流化床反应器,(II)向流化床反应器中充入(i)研细的硅;(ii)用于直接法反应的至少一种催化剂;(iii)用于直接法反应的至少一种助催化剂;(III)此后,向流化床反应器提供烷基氯,以在反应器中形成流化床;(IV)使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷;(V)此后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过使流化床内含物经过权利要求2所述的磁力分离器装置来处理流化床内含物,以将流化床内含物中的成分分离成磁性部分和非磁性部分,并从该过程中去除流化床内含物的磁性部分。
15.一种用于制备氯硅烷的方法,该方法包括(I)提供流化床反应器;(II)在流化床反应器中充入(i)研细的硅;(ii)用于直接法反应的至少一种催化剂;(iii)用于直接法反应的至少一种助催化剂;(III)此后,向流化床反应器提供烷基氯,以在反应器中形成流化床;(IV)使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应,以产生烷基氯硅烷;(V)此后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过研细流化床内含物以减小其中的固体的平均颗粒尺寸,此后使磨碎的流化床内含物经过权利要求2所述的磁力分离器装置来处理流化床内含物,以将流化床内含物中的成分分离成磁性部分和非磁性部分,此后从该过程中去除流化床内含物的磁性部分,并继续进行直接法处理。
16.一种用于制备氯硅烷的方法,该方法包括(I)提供流化床反应器;(II)在流化床反应器中充入(i)研细的硅;(ii)用于直接法反应的至少一种催化剂;(iii)用于直接法反应的至少一种助催化剂;(III)此后,向流化床反应器提供烷基氯,以在反应器中形成流化床;(IV)使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应,以产生烷基氯硅烷;(V)此后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过用空气动力离心分类工艺使流化床内含物经过尺寸分类法处理,通过减少和去除流化床内含物的固体部分的杂质,来处理流化床内含物,然后使净化的流化床内含物经过如权利要求1所述的磁力分离装置处理,以将流化床内含物中的成分分离成磁性部分和非磁性部分,并从流化床反应器中去除流化床内含物的磁性部分,继续进行直接法处理。
17.一种用于制备氯硅烷的方法,该方法包括(I)提供流化床反应器;(II)向流化床反应器中充入(i)研细的硅;(ii)用于直接法反应的至少一种催化剂;(iii)用于直接法反应的至少一种助催化剂;(III)此后,向流化床反应器提供烷基氯,以在反应器中形成流化床;(IV)使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷;(V)此后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过将流化床内含物研细以减小其中的固体的平均颗粒尺寸,并通过用空气动力离心分类工艺使流化床内含物经过尺寸分类法处理,从流化床内含物的磨碎固体部分减少和去除杂质来处理流化床内含物,然后使净化的流化床内含物经过如权利要求1所述的磁力分离装置处理,以将流化床内含物中的成分分离成磁性部分和非磁性部分,然后从流化床反应器中去除流化床内含物的磁性部分,并继续进行直接法处理。
18.一种用于制备氯硅烷的方法,该方法包括(I)提供流化床反应器;(II)向流化床反应器中充入(i)研细的硅;(ii)用于直接法反应的至少一种催化剂;(iii)用于直接法反应的至少一种助催化剂;(III)此后,向流化床反应器提供烷基氯,以在反应器中形成流化床;(IV)使研细的硅、催化剂、助催化剂和烷基氯相互作用,并以期望的比例和期望的速度反应产生烷基氯硅烷;(V)此后,在期望的比例确实增大或者期望的反应速度确实减小时,使流化床的内含物经过一处理过程,该过程包括通过研磨流化床内含物以从流化床内含物颗粒的表面去除杂质,然后使研磨的流化床内含物经过如权利要求1所述的磁力分离装置,以将流化床内含物中的成分分离成磁性部分和非磁性部分来处理流化床内含物,并从该过程中去除流化床内含物的磁性部分,并继续进行直接法。
全文摘要
在分离存在于液体、蒸汽和气体中的细碎固体中使用的磁力分离器装置,该液体、蒸汽和气体是有害的,即它们可能是腐蚀性的、易燃的、有毒的或者是这些危害的组合,以及这种装置在氯硅烷制造中的使用。
文档编号B03C1/034GK1819873SQ200480019787
公开日2006年8月16日 申请日期2004年6月8日 优先权日2003年6月9日
发明者P·D·阿姆斯特朗, J·A·布林森, D·W·斯诺德格拉斯, S·J·多布尼, S·法韦尔, P·盖纳, F·E·佩林 申请人:陶氏康宁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1