内燃机的排气净化催化剂加热系统及其方法

文档序号:5250073阅读:167来源:国知局
专利名称:内燃机的排气净化催化剂加热系统及其方法
技术领域
本发明涉及一种用于加热设置在内燃机的排气管中的排气净化催化剂的排气净化催化剂加热系统和方法。
背景技术
在内燃机的排气系统中设置有排气净化催化剂,其将诸如一氧化碳或氧化氮(NOx)等有害成分,通过氧化还原作用从排气中去除。因为在排气净化催化剂至少达到预定温度(例如350℃)之前,其不会被充分活化,所以在内燃机启动之后,由于催化剂的温度在预定温度之下,可能不会立即有效地将该有害成分从排气中去除。
鉴于上述说明,例如,公开号为JP-A-2004-108248的日本专利申请描述了一种用于当内燃机启动时,迅速活化排气净化催化剂的二次空气供应装置,该装置将空气供应到内燃机的排气管,并且使排气中未燃烧的燃料进行燃烧。用二次空气供应装置,通过促进排气管中未燃烧的成分的燃烧来增加排气的温度,可以迅速提高催化剂的温度。此外,大气压越低,上述二次空气供应装置延长空气供应到排气管的时间越长。这样,即使当大气压低时,也能使催化剂的温度增加到活化温度或高于活化温度。
公开号为JP-A-2005-16396的日本专利申请描述了一种用于内燃机的控制器,其不仅响应降低的大气压而增加内燃机的进气量,而且喷射响应于该进气量的量的燃料。根据此内燃机控制器,即使当大气压低时,也可以迅速提高催化剂的温度。
然而,在公开号为JP-A-2004-108248的日本专利申请中描述的二次空气供应装置,通过延长空气供应到排气管的时间来响应降低的大气压,换句话说,通过延长催化剂的加热的时间,使温度提高到至少活化温度。为此,虽然即使在大气压低时,也可以使催化剂的温度提高到活化温度或高于活化温度,但是,存在的问题是不能迅速地活化催化剂。
此外,在公开号为JP-A-2005-16396的日本专利申请中,当排气净化催化剂被加热时,内燃机的控制器响应降低的大气压而增加进气量,并且喷射响应于该进气量的量的燃料。为此,伴随进气量和燃料喷射量的增加,发动机的输出扭矩增加。这样,当发动机空转时,发动机速度增加,并且当车辆运行时,车辆以可被司机注意的程度加速。

发明内容
本发明提供了一种内燃机的排气净化催化剂加热系统,其响应大气压的变化,迅速地活化排气净化催化剂。
本发明的第一方案涉及一种内燃机的排气净化催化剂加热系统,该内燃机具有二次空气供应装置,该二次空气供应装置将空气供应到排气净化催化剂上游的排气管,该排气净化催化剂设置在内燃机的排气管中。内燃机的排气净化催化剂加热系统的特征在于具有大气压检测装置,其检测大气压;燃料校正装置,当排气净化催化剂被加热时,该燃料校正装置执行校正,使得大气压检测装置检测的大气压越高,燃料增加度越小;以及控制装置,当排气净化催化剂被加热时,该控制装置控制二次空气供应装置执行空气的供应。
即使用二次空气供应装置将空气供应到内燃机的排气管,由于与燃料的未燃烧成分不充分混合、及排气温度降低等,实际上仅有供应的空气和燃料的未燃烧成分的一部分燃烧。为此,如果二次空气或未燃烧成分其中的任一个的量降低,未燃烧成分中发生燃烧的量趋于降低,并且如果二次空气或未燃烧的成分其中的任一个的量增加,未燃烧成分中发生燃烧的量趋于增加。
因此,如果内燃机运行在大气压低的环境中,由于空气密度降低,供应的二次空气的量极大地降低,并且燃烧的未燃烧成分的量趋于降低。关于此点,根据上述构造,由于使燃料增加度大并且未燃烧成分中发生燃烧的量增加,可以抑制由于大气压的降低导致的产生热量的降低,并且可以迅速活化排气净化催化剂。
与上述形成对比,如果内燃机运行在大气压高的环境下,由于空气密度增加,供应的二次空气的量极大地增加,并且燃烧的未燃烧成分的量也增加。关于此点,根据上述构造,由于大气压越高,燃料增加度降低,以致降低未燃烧成分中发生燃烧的量,抑制了由于大气压的增加造成的产生热量的突然增加,而且可以抑制由于过热造成的排气净化催化剂的劣化。
本发明的第二方案涉及一种内燃机的排气净化催化剂加热系统,该内燃机具有二次空气供应装置,该二次空气供应装置将空气供应到排气净化催化剂上游的排气管,该排气净化催化剂设置在内燃机的排气管中。内燃机的排气净化催化剂加热系统的特征在于具有大气压检测装置,其检测大气压;燃料校正装置,当排气净化催化剂被加热时,该燃料校正装置执行校正,使得大气压检测装置检测的大气压越低,燃料增加度越大;以及控制装置,当排气净化催化剂被加热时,该控制装置控制二次空气供应装置执行空气的供应。
通过上述构造,即使该构造是使得在排气净化催化剂的加热中,燃料增加度响应检测的大气压的降低而增加,也能够获得与第一方案相同的效果。
本发明的第三方案涉及一种内燃机的排气净化催化剂加热方法。该方法的特征在于包括检测大气压;当排气净化催化剂被加热时进行校正,使得检测的大气压越高,燃料增加度越小;以及当排气净化催化剂被加热时,将空气供应到排气净化催化剂上游的排气管,该排气净化催化剂设置在内燃机的排气管中。


从参考附图对例举的实施例进行的如下描述中,本发明的上述和其它目的、特征和优点将变得很明显,其中,类似的附图标记用于表示类似的部件,并且其中图1为示出根据本发明的实施例的内燃机的排气净化催化剂加热系统的构造的视图;图2为示出排气净化催化剂的加热控制的流程图;图3为示出校正系数关于大气压改变的变化曲线图;和图4为示出校正系数关于大气压改变的变化曲线图。
具体实施例方式
下面参考图1至图3,详细描述本发明例举的实施例,其中图1示出了安装在车辆上的内燃机2的排气净化催化剂加热系统的构造。
首先描述内燃机2的结构。如图1所示,在内燃机2的气缸体3内形成多个气缸3a(在图1中仅示出了一个)。在气缸3a(在图1中仅示出了一个)内设置活塞6,该活塞6能够沿气缸3a的方向往复运动。气缸盖4设置在气缸体3的顶部,如图所示,气缸体3、气缸盖4和活塞6限定出燃烧室10。
在气缸盖4内设置有与燃烧室10连接的进气口11和排气口12,并且在进气口11和排气口12处分别设置有进气门13和排气门14。通过打开和关闭进气门13,进气口11和燃烧室10在互相连通和互相封闭之间切换,并且通过打开和关闭排气门14,排气口12和燃烧室10在互相连通和互相封闭之间切换。
在发动机2中,在每一气缸3a设置有喷嘴8,用来喷射燃料。喷嘴8是所谓的气缸喷嘴,其通过输送管(未示出)与高压燃料泵(未示出)连接。通过高压燃料泵、在压力下传送的燃料从输送管被分送到每一喷嘴8,燃料从其喷射口直接喷射到燃烧室10。内燃机2还在每一气缸3a处具有火花塞9,用于点燃在燃烧室10内的混合气体。
进气管31连接到进气口11。在内燃机2的进气行程处,进气门13打开,并且将大气中的空气经过进气管31和进气口11,吸入到燃烧室10。在此进气管31处设置有节气门30,并且改变节气门的开启角度,以改变进气量。
排气管32连接到排气口12。排气净化催化剂33设置在排气管32中。在内燃机2的排气行程处,排气门14打开,并且燃烧的气体通过排气口12和排气管32供应到排气净化催化剂,然后燃烧的气体被排气净化催化剂33净化,并且喷入空气中。排气净化催化剂33由两个催化器,三元催化器和NOx存储还原催化器(这些催化器作为一个催化器在图1中示出)构成。该三元催化器主要通过其氧化还原作用,去除包含在排气内的碳氢化合物(HC)、一氧化碳(CO)和氧化氮(NOx)。相比之下,当在稀薄空燃比下进行燃烧时,NOx存储还原催化器吸收和存储排气内的NOx,并且在浓空燃比或在理论配比的空燃比下进行燃烧时,通过利用包含在排气内的HC和CO还原NOx,而还原存储的NOx。此外,因为除非在排气净化催化剂33达到例如活化温度,否则排气净化催化剂33不能被充分活化,所以在诸如发动机刚刚启动之后,排气净化效率降低。
为了更快地活化催化剂,采用如下结构,其中,通过将二次空气供应到排气管32,将排气内未燃烧的成分燃烧,由此通过使包含在排气内的未燃烧的成分燃烧,来提高温度。具体地,如图1所示,设置了作为二次空气供应装置的固定排量气泵60,气泵60通过气泵60的通气道61,将大气中的空气供应到排气管32的部分,其位于排气净化催化剂33的上游更远处。设定车辆使用地点的大气压为参考大气压,并且具有与参考大气压相称(commensurate)的排量的气泵60通常安装在车辆内,作为实现排气净化催化剂的有效活化的条件。在本实施例中,例如,在海平面(0m)的大气压可以设定为参考大气压。
即使通过气泵60将空气供应到内燃机2的排气管32,仅一部分实际供应的空气和燃料的未燃烧的成分燃烧。为此,如果二次空气或未燃烧成分其中的任一个的量降低,则未燃烧燃料中发生燃烧的量趋于降低,并且如果二次空气或未燃烧的成分其中的任一个的量增加,则未燃烧成分中发生燃烧的量趋于增加。
因此,如果内燃机2运行在大气压低于参考大气压的环境中,由于未燃烧成分中发生燃烧的量趋于降低,所以再燃烧产生的热降低,不能迅速活化排气净化催化剂。
鉴于上述原因,本实施例的内燃机的排气净化催化剂加热系统采用克服上述问题的构造。下面详细描述内燃机的此排气净化催化剂加热系统。
如图1所示,内燃机2具有用于检测发动机运行条件等的各种传感器。例如,在节气门30的上游的排气管中设置空气流量计51,用于检测每单位时间流入进气管31的进气量的体积,并且设置大气压传感器53来检测大气压。在内燃机2的曲轴(未示出)附近设置有曲轴传感器56,其用于检测曲轴的旋转速度和旋转位置。在加速踏板(未示出)的附近设置加速传感器52,其用于检测加速踏板的压低量。此外,在气缸体3内设置有冷却剂温度传感器55,其用于检测发动机中的冷却剂的温度。
来自上述检测器的检测信号传送到发动机控制单元100。发动机控制单元100基于这些检测信号,对喷嘴8、火花塞9和节气门30等执行控制,由此对内燃机2进行整体控制。发动机控制单元100具有用于所述各种控制功能的控制程序,需要用于执行的功能图,以及用于存储基于其控制结果的存储器100a。
下面参考图2,描述通过发动机控制单元100的排气净化催化剂33的加热控制,图2为排气净化催化剂33的加热控制的流程图。在每一预定控制周期内,发动机控制单元100反复执行图2中的一系列处理步骤。在此处理中,首先,基于启动后内燃机2的运行状况,计算燃料喷射量的参考值Qbase(S100)。
具体地,捕捉表示加速传感器52检测的加速踏板的压低量的检测信号,并且基于检测信号改变节气门30的开度,以改变进气量。然后,捕捉来自空气流量计51和曲轴传感器56的检测信号,并且计算一个循环的进气量的实际值。基于实际进气量和发动机空燃比的目标值,计算燃料喷射量的参考值Qbase。发动机空燃比的目标值的设定要考虑内燃机的驱动动力特征和排气净化等。在正常运行条件下,发动机空燃比的目标值设定为所谓理论配比的空燃比的空燃比,在此空燃比,混合的燃料和空气发生完全燃烧(汽油是14.7)。
然后程序执行到步骤S110,在此步骤判定在内燃机2启动后是否经过了预定时间T。如果判定从内燃机2的启动经过了预定时间T,假定排气净化催化剂33已经活化,则程序进行到步骤S230,在该步骤,燃料喷射量的参考值设定为最终燃料喷射量,之后,程序进行到步骤S170。
然而,如果判定从内燃机2的启动尚未经过预定时间T,假定排气净化催化剂33尚未充分加热,并且通过电动驱动气泵60供应二次空气(步骤S120)。然后,程序进行到步骤S130,在此步骤,基于发动机运行状况,来预计排气净化催化剂33的加热状况,并且响应排气净化催化剂33的加热状况,来设定加热增加基值Abase。例如,在发动机控制单元100的存储器100a内预先存储一图,该图有关用冷却剂温度作为参数的排气净化催化剂33的温度,通过在运行中访问该图,基于水温传感器55检测的冷却剂的温度,预计排气净化催化剂33的温度。排气净化催化剂33的预计温度越高,加热增加基值Abase的值设定得越小。
然后,大气压传感器53检测大气压Pr(S140),并且程序进行到步骤S150,在此步骤,基于检测的实际大气压Pr,设定加热增加基值Abase的校正系数Fadj。
具体地,如图3所示,大气压传感器53检测的实际大气压Pr越低,相应实际大气压Pr设定的校正系数Fadj越大。接下来,采用下面的公式(1),基于燃料喷射量的参考值Qbase、加热增加量基值Abase和校正系数Fadj,计算最终燃料喷射量Qinj。
Qinj←Qbase+Abase·Fadj ......公式(1)然后,在步骤S170,喷射计算的最终燃料喷射量Qinj(S170),在此点程序结束。上述步骤S130至S160相应于本实施例的燃料校正方式。
根据上述实施例,可获得如下效果。具体地,根据上述实施例的排气净化催化剂加热系统,当加热排气净化催化剂33时,由于校正系数Fadj响应检测的大气压Pr的降低而增加,当加热排气净化催化剂33时,检测的大气压Pr越低,燃料喷射量的增加度越大。为此,通过增加排气管32的未燃烧的成分的量,再次燃烧产生的热量趋于增加。这样,可以抑制由于大气压的降低,再次燃烧产生的热量的降低,并且可以迅速活化排气净化催化剂33。
此外,根据上述实施例的排气净化催化剂加热系统,由于校正系数Fadj响应检测的大气压Pr的增加而降低,当加热排气净化催化剂33时,检测的大气压Pr越高,燃料喷射量增加度越小。因此,通过降低排气管32内的未燃烧的成分,可以抑制由于大气压的增加引起的再次燃烧产生的热突然增加,可以抑制由于过热造成的排气净化催化剂33的劣化。
上述实施例可以如下形式适当地变化和实施。具体地,通过改变加热增加量基值Abase的校正系数Fadj,喷射到燃烧室10内的燃料的量改变,并且在排气管32内未燃烧的成分中发生燃烧的量改变。或者,可以采用如下构造,例如,其中,在排气管32中设置燃料添加阀,并且燃料通过燃料添加阀,直接添加到排气管32。
在上述实施例中,校正系数Fadj基于实际大气压的变化,连续改变。或者如图4所示,校正系数Fadj可以基于实际大气压的变化,分段式改变。
具体地,预先设置关于大气压的预定范围ΔP(i)的预定校正系数Fadj(i)并存储在存储器100a内。当执行加热控制时,确定大气压的范围ΔP(i),其中,检测的实际大气压Pr下降,读出相应于大气压范围的校正系数Fadj,并且校正加热增加量基值Abase。
虽然在上述实施例中,加热增加量基值Abase通过冷却剂温度作为参数来计算,附加参数也可以包括发动机速度或进气量。此外,虽然在上述实施例中,通过校正系数Fadj乘以加热增加量基值Abase来计算加热增加量,但是如果包括校正使得大气压越高,燃料增加度变小,或者校正使得大气压越低,燃料增加度大,那么可以一次计算加热增加量,这两种方法没有差别。
权利要求
1.一种内燃机的排气净化催化剂加热系统,该内燃机具有二次空气供应装置(60),该二次空气供应装置(60)将空气供应到排气净化催化剂(33)上游的排气管(32),该排气净化催化剂(33)设置在内燃机(2)的排气管(32)中,该系统的特征在于包括大气压检测装置(53),其检测大气压;燃料校正装置,当排气净化催化剂(33)被加热时,该燃料校正装置进行校正,使得大气压检测装置(53)检测的大气压越高,燃料增加度越小;以及控制装置(100),当排气净化催化剂(33)被加热时,该控制装置控制二次空气供应装置(60)供应空气。
2.如权利要求1所述的内燃机的排气净化催化剂加热系统,其特征在于,该燃料校正装置响应检测的大气压,连续校正燃料增加度。
3.如权利要求1所述的内燃机的排气净化催化剂加热系统,其特征在于,该燃料校正装置响应检测的大气压,分段式校正燃料增加度。
4.如权利要求1所述的内燃机的排气净化催化剂加热系统,其特征在于,该控制装置(100)基于燃料增加度,改变喷向内燃机(2)的燃烧室(10)的燃料喷射量。
5.如权利要求1所述的内燃机的排气净化催化剂加热系统,其特征在于,该内燃机(2)的排气净化催化剂加热系统还包括燃料添加阀,其将燃料供应到排气净化催化剂(33)上游的排气管(32),在该排气净化催化剂加热系统中控制装置(100)基于燃料增加度,改变燃料添加阀的燃料喷射量。
6.如权利要求1所述的内燃机的排气净化催化剂加热系统,其特征在于,该二次空气供应装置(60)是固定排量气泵。
7.一种内燃机的排气净化催化剂加热方法,其特征在于,包括检测大气压;当排气净化催化剂被加热时进行校正,使得检测的大气压越高,燃料增加度越小;以及当排气净化催化剂被加热时,将空气供应到排气净化催化剂上游的排气管,该排气净化催化剂设置在内燃机的排气管中。
8.如权利要求7所述的内燃机的排气净化催化剂加热方法,其特征在于,响应检测的大气压,连续校正燃料增加度。
9.如权利要求7所述的内燃机的排气净化催化剂加热方法,其特征在于,响应检测的大气压,分段式校正燃料增加度。
10.如权利要求7所述的内燃机的排气净化催化剂加热方法,其特征在于,还包括基于燃料增加度,改变喷向内燃机(2)的燃烧室(10)的燃料喷射量。
11.如权利要求7所述的内燃机的排气净化催化剂加热方法,其特征在于,还包括基于燃料增加度,改变将燃料供应到排气净化催化剂(33)上游的排气管(32)的燃料喷射量。
全文摘要
一种内燃机(2)的排气净化催化剂加热系统,该内燃机具有气泵(60),该气泵(60)将空气供应到排气净化催化剂(33)上游,该排气净化催化剂(33)设置在内燃机(2)的排气管(32)中,当排气净化催化剂(33)被加热时,泵供应空气,并且该系统具有大气压传感器(53),其检测大气压,其中,执行校正,以使大气压传感器检测的大气压越高,燃料增加度越小。
文档编号F01N3/22GK101082295SQ200710107369
公开日2007年12月5日 申请日期2007年5月29日 优先权日2006年5月29日
发明者村口智一 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1