铁路车辆用减震装置制造方法

文档序号:5656202阅读:89来源:国知局
铁路车辆用减震装置制造方法
【专利摘要】本发明的铁路车辆用减震装置(1)具备:罐体(7),其贮存向致动器的缸体(2)供给及从缸体(2)排出的液体;第一开闭阀(9),其设置在使由插入到缸体(2)内的活塞(3)所划分的杆侧室(5)与活塞侧室(6)连通的第一通路(8),能够打开和关闭该第一通路(8);第二开闭阀(11),其设置在使上述活塞侧室(6)与上述罐体(7)连通的第二通路(10),能够打开和关闭该第二通路(10);泵(12),其从上述罐体(7)向上述杆侧室(5)供给液体;电动机(15),其以固定的转速旋转来驱动上述泵(12)进行旋转;以及区段判断部(44c),其根据上述电动机(15)的目标转速和实际的转速之间的速度偏差,判断铁路车辆正在行驶的区段种类是明线区段还是隧道区段。
【专利说明】铁路车辆用减震装置
【技术领域】
[0001 ] 本发明涉及一种铁路车辆用减震装置的改进。
【背景技术】
[0002]一直以来,作为铁路车辆用减震装置,例如已知为了抑制相对于铁路车辆的行进方向的左右方向的震动而安装在车体与转向架之间使用的装置。
[0003]在JP2010-65797A中公开了一种铁路车辆用减震装置,其具备:缸体,其与铁路车辆的转向架和车体中的一方连结;活塞,其滑动自如地插入到缸体内;杆,其插入到缸体内,并与转向架和车体中的另一方以及活塞连结;杆侧室和活塞侧室,其通过活塞在缸体内划分而得到;罐体,其贮存向缸体供给的液体;第一开闭阀,其设置在使杆侧室与活塞侧室连通的第一通路的中途;第二开闭阀,其设置在使活塞侧室与罐体连通的第二通路的中途;泵,其向杆侧室供给动作油;排出通路,其将杆侧室与罐体连接;以及可变溢流阀,其设置在排出通路的中途,能够变更开阀压力。通过对该泵、第一开闭阀、第二开闭阀以及可变溢流阀进行驱动,致动器能够向伸缩双方发挥推力,通过该推力来抑制车体的震动。

【发明内容】

[0004]在铁路车辆用减震装置中,求出致动器所要产生的推力作为推力指令值,按照推力指令值控制致动器的推力,来抑制车体的震动。
[0005]通过使用控制增益等来计算该推力指令值。例如,在高空气球控制的情况下,将作为控制增益的高空气球增益与车体的横向的速度相乘,从而计算推力指令值。这样,通过检测加速度、速度等,将其乘以控制增益,来求出推力指令值。
[0006]铁路车辆在一次运营行驶中,几乎都是必须行驶于包含作为非隧道区段的明线区段和隧道区段的路线的情况。在明线区段和隧道区段中,车体的震动模式不同。因此,铁路车辆在一次运营行驶中,必须在震动模式不同的区段中行驶。另外,即使在明线区段内,在直线区段和曲线区段中,车体的震动模式不同。
_7] 用于解决问题的方案
[0008]因此,在保持控制增益固定的情况下计算推力指令值来控制致动器时,有可能推力指令值不适合于震动模式,无法有效地抑制车体的震动,无法良好地保持乘坐舒适性。因此,在现有的铁路车辆用减震装置中,从铁路车辆的车辆监视装置等得到铁路车辆的行驶位置的信息、正在行驶的区段是哪个区段种类的信息。另外,参照将所得到的信息和控制增益关联起来的表,选择最优的控制增益。
[0009]为了这样从车辆监视装置等得到铁路车辆正在行驶的区段种类、行驶位置之类的信息,需要用于将铁路车辆用减震装置与车辆监视装置连接起来的接口。另外,针对如地方干线那样车辆信息传送设备不完备的铁路车辆,无法得到上述的信息,难以安装铁路车辆用减震装置。
[0010]本发明就是鉴于上述的问题点而提出的,其目的在于,提供一种铁路车辆用减震装置,其不从车辆监视装置取得行驶位置、正在行驶的区段种类的信息,就能够判断铁路车辆的正在行驶的区段种类。
[0011]根据本发明的某个方式,是一种铁路车辆用减震装置,求出要使致动器输出的推力作为推力指令值,控制上述致动器来抑制车体的震动,上述致动器具备:缸体,其与铁路车辆的转向架和车体中的一方连结;活塞,其滑动自如地插入到上述缸体内;杆,其插入到上述缸体内,并与上述转向架和上述车体中的另一方以及上述活塞连结;以及杆侧室和活塞侧室,其通过上述活塞在上述缸体内划分而得到,该铁路车辆用减震装置具备:罐体,其贮存向上述缸体供给及从上述缸体排出的液体;第一开闭阀,其设置在使上述杆侧室与上述活塞侧室连通的第一通路,能够打开和关闭该第一通路开闭;第二开闭阀,其设置在使上述活塞侧室与上述罐体连通的第二通路,能够打开和关闭该第二通路;泵,其从上述罐体向上述杆侧室供给液体;电动机,其以固定的转速进行旋转来驱动上述泵进行旋转;以及区段判断部,其根据上述电动机的目标转速与实际的转速之间的速度偏差,判断上述铁路车辆正在行驶的区段种类是明线区段还是隧道区段。
[0012]以下参照附图详细说明本发明的实施方式、本发明的优点。
【专利附图】

【附图说明】
[0013]图1是表示以平面视图观察安装有本发明的实施方式的铁路车辆用减震装置的铁路车辆的状态的结构图。
[0014]图2是本发明的实施方式的铁路车辆用减震装置的详细图。
[0015]图3是本发明的实施方式的铁路车辆用减震装置的控制器的控制框图。
[0016]图4是说明区段判断部的区段种类的判断内容的图。
[0017]图5是本发明的实施方式的铁路车辆用减震装置的控制器的指令运算部的控制框图。
【具体实施方式】
[0018]以下,参照附图,说明本发明的实施方式的铁路车辆用减震装置I。
[0019]铁路车辆用减震装置I被用作铁路车辆的车体B的减震装置。铁路车辆用减震装置I如图1所示,具备:前侧的致动器Af,其安装在前侧的转向架Tf与车体B之间;后侧的致动器Ar,其安装在后侧的转向架Tr与车体B之间;以及控制器C,其对这些致动器Af、Ar进行主动控制。铁路车辆用减震装置I求出要使致动器Af、Ar输出的推力作为推力指令值,控制致动器Af、Ar来抑制车体B的震动。
[0020]致动器Af、致动器Ar分别各设置一对。前后的致动器Af、Ar与向铁路车辆的车体B的下方垂下的销P连结,在车体B和前后的转向架Tf、Tr之间成对地并列安装。
[0021 ] 前后的致动器Af、Ar基本上通过主动控制来抑制相对于车体B的车辆行进方向的水平横向的震动。在该情况下,控制器C控制前后的致动器Af、Ar,来进行主动控制使得抑制车体B的横向的震动。
[0022]具体地说,控制器C在进行抑制车体B的震动的控制时,检测相对于车体B的前部Bf的车辆行进方向的水平横向的横向加速度a f和相对于车体B的后部Br的车辆行进方向的水平横向的横向加速度ar。控制器C根据检测出的横向加速度af和横向加速度ar,计算前后的转向架Tf、Tr的正上方的围绕车体中心G的角加速度即摇摆加速度ω。另夕卜,控制器C根据检测出的横向加速度af和横向加速度a r,计算车体中心G的水平横向的加速度即晃动加速度β。另外,控制器C根据计算出的摇摆加速度ω和晃动加速度β,计算要通过前后的致动器Af、Ar分别产生的推力即推力指令值Ff、Fr。控制器C进行反馈控制使得前后的致动器Af、Ar产生如这些推力指令值Ff、Fr那样的推力,由此抑制车体B的横向的震动。
[0023]另外,在图1中,致动器Af和致动器Ar分别设置两个,通过单一的控制器C控制它们,但也可以代替它,而对各个致动器Af、Ar逐一地设置控制器C。
[0024]接着,参照图2说明铁路车辆用减震装置I的具体结构。
[0025]使前后的致动器Af、Ar伸缩的铁路车辆用减震装置I具有相同的结构。以下,为了避免说明的重复,而只说明具备前侧致动器Af的铁路车辆用减震装置I的结构,省略对具备后侧的致动器Ar的铁路车辆用减震装置I的具体说明。
[0026]致动器Af具备:缸体2,其与铁路车辆的转向架Tf和车体B中的一方连结;活塞3,其滑动自如地插入到缸体2内;杆4,其插入到缸体2内,并与转向架Tf和车体B中的另一方以及活塞3连结;以及杆侧室5和活塞侧室6,其通过活塞3在缸体2内划分而得到。致动器Af构成为单杆型的致动器。另外,铁路车辆用减震装置I还具备:罐体7,其贮存向缸体2供给及从缸体2排出的作为液体的动作油;第一开闭阀9,其设置在使杆侧室5与活塞侧室6连通的第一通路8,能够打开和关闭第一通路8 ;第二开闭阀11,其设置在使活塞侧室6与罐体7连通的第二通路10,能够打开和关闭第二通路10 ;泵12,其从罐体7向杆侧室5供给动作油;以及电动机15,其以固定的转速旋转来驱动泵12进行旋转。在杆侧室5和活塞侧室6中填充有动作油,并且在罐体7中除了动作油以外还填充有气体。另外,在罐体7内,不需要特别通过压缩地填充气体而成为加压状态。
[0027]致动器Af在由第一开闭阀9使第一通路8成为连通状态并且将第二开闭阀11关闭的状态下驱动泵12,由此进行伸长动作。另外,致动器Af在由第二开闭阀11使第二通路10成为连通状态并且将第一开闭阀9关闭的状态下驱动泵12,由此进行收缩动作。
[0028]以下,详细说明致动器Af的各部。
[0029]缸体2形成为筒状,其一端(在图2中为右端)被盖子13闭塞,其另一端(在图2中为左端)安装有环状的杆导轨14。另外,在杆导轨14内,滑动自如地插入有移动自如地插入到缸体2内的杆4。该杆4的一端向缸体2外突出,另一端与滑动自如地插入到缸体2内的活塞3连结。
[0030]杆4的外周与杆导轨14之间被未图示的密封构件密封。由此,在缸体2内维持密闭状态。另外,通过活塞3在缸体2内划分出的杆侧室5和活塞侧室6中如上述那样填充有动作油。在缸体2内填充的液体除了动作油以外,还能够使用适合于致动器的液体。
[0031]在致动器Af中,形成为杆4的截面积为活塞3的截面积的二分之一。即,杆侧室5侧的活塞3的受压面积为活塞侧室6侧的活塞3的受压面积的二分之一。由此,在伸长动作时和收缩动作时,杆侧室5的压力相同的情况下,在伸缩双方产生的推力也相同。另外,向杆侧室5供给及从杆侧室5排出的动作油量在伸缩两侧相对于致动器Af的位移量也相同。
[0032]具体地说,在使致动器Af进行伸长动作的情况下,成为杆侧室5和活塞侧室6经由第一通路8连通的状态,杆侧室5和活塞侧室6内的动作油的压力相等。由此,产生活塞3的杆侧室5侧和活塞侧室6侧之间的受压面积差乘以动作油的压力所得的推力。另一方面,在使致动器Af进行收缩动作的情况下,杆侧室5与活塞侧室6的连通被切断,成为活塞侧室6经由第二通路10与罐体7连通的状态。由此,产生活塞3的杆侧室5侧的受压面积乘以杆侧室5内的动作油的压力所得的推力。这样,致动器Af所产生的推力在伸缩双方时为活塞3的截面积的二分之一乘以杆侧室5内的动作油的压力所得的值。因此,在控制致动器Af的推力的情况下,在伸长动作、收缩动作时都只要控制杆侧室5的压力即可。
[0033]这时,在致动器Af中,活塞3的杆侧室5侧的受压面积被设定为活塞侧室6侧的受压面积的二分之一。因此,在使伸缩两侧产生相同的推力的情况下,杆侧室5的压力在伸长侧和收缩侧相同,因此控制简单。另外,向杆侧室5供给及从杆侧室5排出的动作油量相对于位移量也相同,因此在伸缩两侧响应性相同。
[0034]另外,在不将活塞3的杆侧室5侧的受压面积设定为活塞侧室6侧的受压面积的二分之一的情况下,也能够按照杆侧室5的压力对致动器Af的伸缩两侧的推力进行控制。
[0035]在杆4的自由端(在图2中左端)和闭塞缸体2的一端的盖子13设置有未图示的安装部。通过这些安装部,能够将致动器Af安装在铁路车辆的车体B与转向架Tf之间。
[0036]杆侧室5和活塞侧室6通过第一通路8连通。在第一通路8的中途设置有第一开闭阀9。该第一通路8在缸体2的外部使杆侧室5与活塞侧室6连通,但也可以代替它,在活塞3内设置使杆侧室5与活塞侧室6连通的通路。
[0037]第一开闭阀9是电磁开闭阀,具备:具有连通位置9b和切断位置9c的阀9a;弹簧9d,其对阀9a施压使得切换到切断位置9c ;以及螺线管9e,其在通电时使阀9a与弹簧9d相对而切换到连通位置%。第一开闭阀9在切换到连通位置9b时,打开第一通路8而使杆侧室5与活塞侧室6连通。第一开闭阀9在切换到切断位置9c时,切断杆侧室5与活塞侧室6的连通。
[0038]活塞侧室6和罐体7通过第二通路10连通。在第二通路10的中途设置有第二开闭阀11。第二开闭阀11是电磁开闭阀,具备:阀11a,其具有连通位置Ilb和切断位置Ilc ;弹簧lld,其对阀Ila施压使得切换到切断位置Ilc ;以及螺线管lie,其在通电时使阀Ila与弹簧Ild相对而切换到连通位置lib。第二开闭阀11在切换到连通位置Ilb时,打开第二通路10而使活塞侧室6与罐体7连通。第二开闭阀11在切换到切断位置Ilc时,切断活塞侧室6与罐体7的连通。
[0039]泵12被电动机15驱动。泵12是只向一个方向喷出动作油的泵。泵12的喷出口经由供给通路16与杆侧室5连通,泵12的吸入口与罐体7连通。泵12在被电动机15驱动时,从罐体7吸入动作油,向杆侧室5供给动作油。
[0040]这样,泵12只向一个方向喷出动作油,不需要旋转方向的切换动作。因此,完全没有在切换旋转方向时喷出量变化之类的问题。由此,能够将廉价的齿轮泵等应用于泵12。进而,泵12的旋转方向始终是同一方向,因此,驱动泵12的驱动源即电动机15也不要求对旋转切换的高响应性。由此,也能够将廉价的电动机应用于电动机15。另外,在供给通路16设置有阻止动作油从杆侧室5向泵12的逆流的逆止阀17。
[0041]在铁路车辆用减震装置I中,从泵12向杆侧室5供给规定的喷出流量。在铁路车辆用减震装置I中,在使致动器Af进行伸长动作时,打开第一开闭阀9,并且打开和关闭第二开闭阀11,由此调节杆侧室5内的压力。另一方面,在铁路车辆用减震装置I中,在使致动器Af进行收缩动作时,打开第二开闭阀11,并且打开和关闭第一开闭阀9,由此调节杆侧室5内的压力。由此,能够得到如上述的推力指令值Ff所指示那样的推力。
[0042]在伸长动作时,杆侧室5和活塞侧室6成为连通状态,活塞侧室6内的压力与杆侧室5的压力相同。因此,在铁路车辆用减震装置I中,在伸长动作时和收缩动作时,都对杆侧室5的压力进行控制,由此能够控制致动器Af的推力。
[0043]另外,第一开闭阀9和第二开闭阀11也可以是能够调节开阀压力并具备开闭功能的可变溢流阀。在该情况下,不是在伸缩动作时使第一开闭阀9或第二开闭阀11进行开闭动作,而是调节开阀压力,由此能够调节致动器Af的推力。
[0044]如上述那样,能够调节致动器Af的推力,但为了能够更简单地进行推力调节,在铁路车辆用减震装置I中设置有:排出通路21,其使杆侧室5与罐体7连接;以及可变溢流阀22,其设置在该排出通路21的中途并能够变更开阀压力。
[0045]可变溢流阀22是比例电磁溢流阀,具备:阀体22a,其设置在排出通路21 ;弹簧22b,其对阀体22a施压使得切断排出通路21 ;以及比例螺线管22c,其在通电时产生与弹簧22b相对的推力。可变溢流阀22通过调节流过比例螺线管22c的电流量,能够调节开阀压力。
[0046]在可变溢流阀22中,处于排出通路21的上游的杆侧室5的动作油的压力作为引导压力而作用于阀体22a。在可变溢流阀22中,在作用于阀体22a的动作油的压力超过溢流压力(开阀压力)时,因杆侧室5的动作油的压力造成的推力和因比例螺线管22c产生的推力的合力克服向切断排出通路21的方向对阀体22a施压的弹簧22b的施压力,使阀体22a后退,由此打开排出通路21。
[0047]在可变溢流阀22中,在使向比例螺线管22c供给的电流量增大时,比例螺线管22c所产生的推力增大。因此,在使向比例螺线管22c供给的电流量成为最大时,开阀压力成为最小,相反,在完全不向比例螺线管22c供给电流时,开阀压力成为最大。
[0048]因此,通过设置排出通路21和可变溢流阀22,在使致动器Af进行伸缩动作时,杆侧室5内的压力与可变溢流阀22的开阀压力变得相同。由此,通过调节可变溢流阀22的开阀压力,能够容易地调节杆侧室5的压力。
[0049]这样,通过调节可变溢流阀22的开阀压力,来控制致动器Af的推力。由此,不需要调节致动器Af的推力所需要的传感器类,也不需要高速地打开和关闭第一开闭阀9和第二开闭阀11,或将第一开闭阀9和第二开闭阀11设为带有开闭功能的可变溢流阀。因此,能够廉价地构成铁路车辆用减震装置1,通过硬件和通过软件都能够构筑稳固的系统。
[0050]另外,通过使用能够根据所施加的电流量使开阀压力比例性地变化的比例电磁溢流阀来作为可变溢流阀22,由此开阀压力的控制变得容易。但是,可变溢流阀22只要是能够调节开阀压力的溢流阀即可,因此并不限于比例电磁溢流阀。
[0051]可变溢流阀22在与第一开闭阀9和第二开闭阀11的开闭状态无关地对致动器Af具有伸缩方向的过大输入而成为杆侧室5的压力超过开阀压力的状态时,打开排出通路21,将杆侧室5与罐体7连通。由此,杆侧室5内的压力向罐体7释放,能够保护铁路车辆用减震装置I的系统整体。这样,通过设置排出通路21和可变溢流阀22,还能够保护系统。
[0052]铁路车辆用减震装置I具备减震器回路D。该减震器回路D用于在第一开闭阀9和第二开闭阀11都闭阀的情况下,使致动器Af作为减震器发挥功能。减震器回路D具备:整流通路18,其形成在活塞3内,只允许动作油从活塞侧室6流向杆侧室5 ;以及吸入通路19,其只允许动作油从罐体7流向活塞侧室6。另外,铁路车辆用减震装置I具备排出通路21和可变溢流阀22,因此在致动器Af作为减震器发挥功能时,可变溢流阀22作为衰减阀而发挥功能。
[0053]具体地说,整流通路18使活塞侧室6与杆侧室5连通,在其中途具备逆止阀18a。通过该逆止阀18a,整流通路18成为只允许动作油从活塞侧室6流向杆侧室5的单向通行的通路。另一方面,吸入通路19使罐体7与活塞侧室6连通,在其中途具备逆止阀19a。通过该逆止阀19a,吸入通路19成为只允许动作油从罐体7流向活塞侧室6的单向通行的通路。
[0054]另外,通过在第一开闭阀9的切断位置9c安装只允许动作油从活塞侧室6流向杆侧室5的逆止阀,还能够将第一通路8用作整流通路18。另外,通过在第二开闭阀11的切断位置Ilc安装只允许动作油从罐体7流向活塞侧室6的逆止阀,还能够将第二通路10用作吸入通路19。
[0055]通过设置上述那样构成的减震器回路D,在铁路车辆用减震装置I的第一开闭阀9和第二开闭阀11分别切换到切断位置9c、llc的情况下,通过整流通路18、吸入通路19以及排出通路21,将杆侧室5、活塞侧室6以及罐体7连通为一串。另外,整流通路18、吸入通路19以及排出通路21是动作油只向一个方向流动的通路,因此,在致动器Af由于外力而伸缩时,从缸体2排出的动作油经由排出通路21返回到罐体7,从罐体7经由吸入通路19向缸体2内供给在缸体2中变得不足的动作油。
[0056]这时,针对动作油的流动,可变溢流阀22成为阻抗而作为将缸体2内的压力调节为开阀压力的压力控制阀发挥功能。由此,致动器Af作为无源单向流动型的减震器发挥功倉泛。
[0057]在发生无法向铁路车辆用减震装置I的各设备通电那样的失效时,第一开闭阀9和第二开闭阀11的各个阀9a、lla被弹簧9d、lld按压,分别切换到切断位置9c、llc。这时,可变溢流阀22作为开阀压力被固定为最大的状态的压力控制阀发挥功能。因此,致动器Af在失效时,自动作为无源减震器发挥功能。
[0058]另外,也可以代替设置有可变溢流阀22和排出通路21的结构,而设为由将杆侧室5与罐体7连接的通路和设置在该通路的中途的衰减阀构成减震器回路D。
[0059]在使致动器Af、Ar发挥希望的伸长方向的推力的情况下,控制器C使电动机15旋转而从泵12向缸体2内供给动作油,并且将各第一开闭阀9切换到连通位置%,将第二开闭阀11切换到切断位置11c。这样,杆侧室5和活塞侧室6成为连通状态,从泵12向两者供给动作油,向伸长方向(在图2中为左方)按压活塞3。由此,致动器Af、Ar发挥伸长方向的推力。这时,致动器Af、Ar发挥活塞3的活塞侧室6侧与杆侧室5侧的受压面积差乘以杆侧室5和活塞侧室6的压力所得的大小的向伸长方向的推力。
[0060]在杆侧室5和活塞侧室6的压力高于可变溢流阀22的开阀压力时,可变溢流阀22开阀,从泵12供给的动作油的一部分经由排出通路21向罐体7释放。由此,根据由对可变溢流阀22施加的电流量所决定的可变溢流阀22的开阀压力,来控制杆侧室5和活塞侧室6的压力。[0061]另一方面,在使致动器Af发挥希望的收缩方向的推力的情况下,控制器C使电动机15旋转而从泵12向杆侧室5内供给动作油,并且将各第一开闭阀9切换到切断位置9c,将第二开闭阀11切换到连通位置lib。这样,活塞侧室6和罐体7成为连通状态,从泵12向杆侧室5供给动作油,由此向收缩方向(在图2中为右方)按压活塞3。由此,致动器Af、Ar发挥收缩方向的推力。这时,致动器Af、Ar发挥活塞3的杆侧室5侧的受压面积乘以杆侧室5的压力所得的大小的向收缩方向的推力。
[0062]这时,与使得发挥伸长方向的推力的情况同样地,根据由对可变溢流阀22施加的电流量所决定的可变溢流阀22的开阀压力,来控制杆侧室5内的压力。
[0063]另外,致动器Af、Ar不只作为致动器发挥功能,还能够与电动机15的驱动状况无关地,只通过第一开闭阀9和第二开闭阀11的开闭切换而作为减震器发挥功能。由此,不会伴随有麻烦并且急剧的阀的切换动作,由此能够提供响应性和可靠性高的系统。
[0064]另外,该致动器Af、Ar是单杆型,与双杆型的致动器相比,容易确保冲程长度。由此,致动器Af、Ar的全长变短,由此向铁路车辆的安装性提高。
[0065]另外,关于从泵12的动作油的供给和因伸缩动作产生的动作油的流动,依次地通过致动器Af、Ar的杆侧室5和活塞侧室6,最终回流到罐体7。由此,即使气体混入到杆侧室5或活塞侧室6,也由于致动器Af、Ar的伸缩动作而自动地向罐体7排出。因此,能够防止因气体混入到动作油中造成的产生推进力时的响应性的恶化。
[0066]因此,在制造铁路车辆用减震装置I时,不会强迫进行麻烦的油中的组装、真空环境下的组装。另外,也不需要动作油的高度的脱气。由此,铁路车辆用减震装置I的生产性提高,并且能够降低制造成本。
[0067]进而,即使在杆侧室5或活塞侧室6中混入气体,气体通过致动器Af、Ar的伸缩动作,也自动地向罐体7排出。因此,不需要频繁地进行用于性能恢复的维护。由此,能够减轻维护方面的劳力和成本负担。
[0068]接着,主要参照图3和图4,说明控制器C的结构。
[0069]控制器C如图所示,具备:前侧加速度传感器40,其针对作为车体的前侧的车体前部Bf的车辆行进方向,检测水平横向的横向加速度a f ;以及后侧加速度传感器41,其针对作为车体的后侧的车体后部Br的车辆行进方向,检测水平横向的横向加速度ar。另外,控制器C如图2和图3所示,具备:带通滤波器42、43,其从横向加速度af、ar中除去曲线行驶时的恒定加速度、漂移成分以及噪声;以及控制部44,其根据通过带通滤波器42、43进行滤波所得的横向加速度a f、a r,计算控制指令并向电动机15、第一开闭阀9的螺线管9e、第二开闭阀11的螺线管lie以及可变溢流阀22的比例螺线管22c输出。由此,控制器C控制各致动器Af、Ar的推力。
[0070]此外,由于通过带通滤波器42、43除去包含在横向加速度a f和横向加速度ar中的曲线行驶时的恒定加速度,因此控制器C能够只抑制使乘坐舒适性恶化的震动。
[0071]控制部44如图3所示,具备:摇摆加速度计算部44a,其根据横向加速度a f和横向加速度ar,计算前后的转向架Tf、Tr正上方的围绕车体中心G的摇摆加速度ω ;晃动加速度计算部44b,其根据横向加速度af和横向加速度a r,计算车体B的车体中心G的晃动加速度β ;区段判断部44c,其判断铁路车辆正在行驶的区段种类;指令计算部44d,其根据摇摆加速度ω和晃动加速度β,计算要通过前后的致动器Af、Ar分别产生的推力即推力指令值Ff、Fr ;驱动部44e,其根据推力指令值Ff、Fr,驱动电动机15、第一开闭阀9的螺线管9e、第二开闭阀11的螺线管lie以及可变溢流阀22的比例螺线管22c。
[0072]作为硬件,控制器C构成为例如具备:A/D转换器,其用于将前侧加速度传感器40和后侧加速度传感器41输出的信号转换为数字信号而取入;上述的带通滤波器42、43 ;ROM (Read OnlyMemory:只读存储器)等存储装置,其存储在控制铁路车辆用减震装置I所需要的处理中使用的程序;CPU(Central Processing Unit:中央处理单元)等运算装置,其执行基于程序的处理;以及RAM (Random Access Memory:随机存取存储器)等存储装置,其向CPU提供存储区域。能够通过由CPU执行用于进行上述处理的程序,来实现控制器C的控制部44的各部。另外,关于带通滤波器42、43,也可以代替设置为硬件,而由CPU执行程序从而在软件上实现。
[0073]横向加速度af、a r例如设定为:以在行进方向(在图1中为左右方向)上通过车体B的中央的轴为基准,在成为朝向右侧(在图1中为上方侧)的方向的情况下为正的加速度,在成为朝向左侧(在图1中为下方侧)的方向的情况下为负的加速度。摇摆加速度计算部44a将前侧的横向加速度af与后侧的横向加速度a r之差除以2,从而计算前侧的转向架Tf和后侧的转向架Tr各自的正上方的围绕车体中心G的摇摆加速度ω。晃动加速度计算部44b将横向加速度a f与横向加速度ar之和除以2,从而计算车体中心G的晃动加速度β。
[0074]为了计算摇摆加速度ω,前侧加速度传感器40可以配置在沿着包含车体B的车体中心G的前后方向或对角方向的线上并且前侧致动器Af附近。另外,后侧加速度传感器41也同样可以配置在沿着包含车体B的车体中心G的前后方向或对角方向的线上并且后侧致动器Ar附近。
[0075]另外,能够根据加速度传感器40、41相对于车体中心G的距离、它们之间的位置关系以及横向加速度a f、a r,来计算摇摆加速度ω。因此,也能够任意地设定加速度传感器40,41的安装位置。在该情况下,摇摆加速度ω不是将横向加速度a f与横向加速度ar之差除以2而求出的,而是根据横向加速度af与横向加速度a r之差、加速度传感器40、41相对于车体中心G的距离以及它们之间的位置关系来计算。
[0076]具体地说,在设前侧加速度传感器40与车体中心G之间的前后方向距离为Lf、后侧加速度传感器41与车体中心G之间的前后方向距离为Lr时,通过ω = (α f-ar)/(Lf+Lr)来计算摇摆加速度ω。另外,也可以代替根据由前侧加速度传感器40和后侧加速度传感器41检测出的加速度计算摇摆加速度ω,而使用摇摆加速度传感器来检测摇摆加速度ω。
[0077]区段判断部44c根据电动机15的目标转速Vref和实际的转速V之间的速度差即速度偏差ε,判断铁路车辆正在行驶的区段种类是明线区段还是隧道区段。在此,明线区段是隧道以外的区段,是非隧道区段的统称。
[0078]以下,详细说明区段判断部44c的判断。
[0079]首先,说明用于控制部44以固定转速驱动电动机15的控制内容。由控制部44的驱动部44e进行电动机15的驱动。由驱动部44e驱动电动机15以固定转速进行旋转。
[0080]具体地说,控制部44使用由解析器、霍尔元件等构成的用于检测电动机15中的未图示的转子的旋转位置的旋转位置传感器45,测量电动机15的转速。另外,驱动部44e根据由旋转位置传感器45检测出的旋转位置计算转速V,反馈该转速V而控制电动机15。
[0081]如果更详细地说明,驱动部44e为了以固定转速驱动电动机15,具备:速度环路,其为了反馈检测出的电动机15的转速V而负反馈转速V ;设置在速度环路内的电流环路;以及驱动器,其用于向电动机15的未图示的卷线施加电压。在速度环路中,将上述的电动机15的固定转速设为目标转速Vref,对该目标转速Vref和转速V之间的速度偏差ε进行PI补偿、PID补偿等而求出目标电流值,将其输入到电流环路。在电流环路中,反馈流过电动机15的实际电流,最终生成对驱动器施加的电压指令值。驱动部44e通过驱动器向电动机15的卷线施加电压,控制电动机15。
[0082]这样,在驱动部44e中,成为以固定转速驱动电动机15。但是,在铁路车辆在隧道区段中行驶的情况下,由于车体B周围的气流混乱,对车体B产生大的外力作用。因此,车体B在隧道区段中行驶时,以比在明线区段中行驶时大的振幅震动。
[0083]作用于车体B的外力也作用于致动器Af、Ar,杆侧室5内的压力产生变动,或者由于抑制车体B的震动而使致动器Af、Ar输出的推力也产生很大变动。因此,这些变动对泵12的喷出压力产生影响,泵12的转速也振荡。在泵12的转速振荡时,与之连接的电动机15的转速与明线区段相比在隧道区段中当然也振荡。由此,具有以下的倾向,即实际的转速V和目标转速Vref之间的速度偏差ε在隧道区段中行驶时比在明线区段中行驶时大。
[0084]因此,在目标转速Vref和电动机15的实际的转速V之间的差即速度偏差ε的绝对值大的情况下,能够判断为铁路车辆正在隧道区段中行驶。
[0085]因此,区段判断部44c在目标转速Vref和电动机15的实际的转速V之间的差即速度偏差ε的绝对值超过速度阈值Vb时,判断为铁路车辆正在隧道区段中行驶。另外,区段判断部44c在速度偏差ε的绝对值为速度阈值Vb以下的情况下,判断为铁路车辆正在明线区段中行驶。对于这时的速度阈值Vb,实际使铁路车辆行驶,通过实验收集在明线区段中行驶时的速度偏差ε的数据和在隧道区段中行驶时的速度偏差ε的数据,设定为最适合于判断。例如能够将速度阈值Vb设为在隧道区段中行驶时的速度偏差ε的平均值、根据平均值-标准偏差Xa(a=l、2)而计算的值、希望值,或者设为在明线区段中行驶时的速度偏差ε的上限值、根据平均值+标准偏差Xa(a=l、2)而计算的值。
[0086]另外,目标转速Vref如图3所示,可以每次从驱动部44e得到,也可以从其他部件得到,另外也可以预先存储在区段判断部44c中。
[0087]这样,在铁路车辆用减震装置I中,不监视铁路车辆的行驶位置,就能够判断区段种类,因此不需要从其他装置取得行驶位置信息。
[0088]区段判断部44c如上述那样,能够判断铁路车辆正在行驶的区段种类。但是,在目标转速Vref和通过一次采样得到的转速V之间的速度偏差ε的绝对值超过速度阈值Vb的情况下而判断为隧道区段的情况下,即使实际正在明线区段中行驶,在由于任意的干扰而车体B有很大震动时,也有可能误判断为隧道区段。同样,即使实际正在隧道区段中行驶,在速度偏差ε为速度阈值Vb以下的情况下,也有可能误判断为明线区段。
[0089]因此,区段判断部44c为了进一步提高区段种类的判断的精度,而计算速度偏差ε的均方根(Root Mean Square),在该均方根超过规定的速度阈值Vb的情况下,判断为铁路车辆的行驶位置是隧道区段,在为速度阈值Vb以下的情况下,将铁路车辆的行驶位置判断为明线区段。[0090]为了根据速度偏差ε的均方根的值而判断区段种类而设定该情况下的速度阈值Vb,因此并不限于设定为与对上述的速度偏差ε的绝对值设定的速度阈值Vb相同的值。通过计算将预定的个数的速度偏差ε的平方的总和除以该个数所得的值的平方根,而得到速度偏差ε的均方根。与采样时间、控制频率、区段判断部44c的判断所需要的时间对应地,任意地设定用于得到速度偏差ε的均方根的速度偏差ε的个数。例如将速度偏差ε的个数设定为在0.5秒?2秒中采样的个数。
[0091]这样,通过在判断中使用速度偏差ε的均方根,即使速度偏差ε的绝对值瞬间地增大或减小,对速度偏差ε的均方根的影响也小。因此,通过对该速度偏差ε的均方根和速度阈值Vb进行比较,即使在明线区段中行驶时由于任意的干扰而车体B瞬间地产生大的震动,也难以误判断为隧道区段,另外在隧道区段中行驶时即使速度偏差ε瞬间地成为速度阈值Vb以下,也难以误判断为明线区段。由此,能够更正确地判断铁路车辆正在行驶的区段种类。
[0092]在使用速度偏差ε的均方根进行判断的情况下,对于速度阈值Vb,实际使铁路车辆行驶,通过实验收集在明线区段中行驶时的速度偏差ε的均方根的数据和在隧道区段中行驶时的速度偏差ε的均方根的数据,设定为最适合于判断。例如能够将速度阈值Vb设为在隧道区段中行驶时的速度偏差ε的均方根的平均值、根据平均值-标准偏差Xa(a=l、2)而计算的值、希望值,或者设为在明线区段中行驶时的速度偏差ε的均方根的上限值、根据平均值+标准偏差Xa(a=l、2)而计算的值。
[0093]另外,在通过区段判断部44c判断为隧道区段后,再次判断为明线区段时,也可以必须连续多次地判断为明线区段。
[0094]如以上那样,区段判断部44c能够判断铁路车辆正在行驶的区段种类是明线区段还是隧道区段。不只是这样,区段判断部44c还判断致动器Af、Ar的推力的绝对值是否超过推力阈值。由此,区段判断部44c能够判断明线区段是直线区段还是曲线区段、另外铁路车辆用减震装置I是否有异常。
[0095]具体地说,区段判断部44c除了如上述那样使用速度阈值Vb判断区段种类以外,还判断致动器Af、Ar的推力的绝对值是否超过推力阈值Fe。通过检测电动机M的未图示的输出传动轴的转矩,能够得到致动器Af、Ar实际输出的推力。电动机15的输出传动轴与泵12的输入轴连结。另外,泵12的喷出压力为杆侧室5的压力。因此,如果预先得到致动器Af、Ar和转矩的关系,则通过检测电动机15的输出传动轴的转矩,能够得到致动器Af、Ar所输出的推力。
[0096]另外,在检测出的转矩中,包含因泵12的可动部的动摩擦力造成的分量。因此,如果无法无视因动摩擦力造成的分量,则通过计算除去即可。
[0097]另外,致动器Af、Ar所输出的推力根据可变溢流阀22的开阀压力而调节,因此也能够根据向可变溢流阀22的比例螺线管供给的电流量估计推力。另外,也可以根据电动机15的转矩与流过电动机15的电流成正比的关系,检测流过电动机15的电流,得到致动器Af、Ar的推力。
[0098]区段判断部44c如图4所示,在判断为铁路车辆正在行驶的区段种类是明线区段的情况下,在致动器Af、Ar的推力的绝对值超过推力阈值Fe的情况下,将区段种类判断为曲线区段(在图4中为区域Y)。另一方面,在判断为铁路车辆正在行驶的区段种类是明线区段的情况下,在致动器Af、Ar的推力的绝对值为推力阈值Fe以下的情况下,将区段种类判断为直线区段(在图4中为区域W)。
[0099]—般,在曲线区段中,由于轨道倾斜而无法缓和的被称为过剩离心加速度的恒定加速度对车体B产生作用。由于该恒定加速度产生的车体B的震动的频带接近于为了提高乘坐舒适性而希望抑制的车体B的震动的频带。因此,难以通过带通滤波器42、43完全除去恒定加速度。其结果是在曲线区段中,将由于干扰造成的车体B的震动加上恒定加速度。因此,存在曲线区段中的致动器Af、Ar的推力的绝对值比直线区段中的致动器Af、Ar的推力的绝对值大的倾向。
[0100]另外,对于推力阈值Fe,例如实际使铁路车辆行驶,通过实验收集在明线区段的直线区段中行驶时的致动器Af、Ar的推力的数据和在明线区段的曲线区段中行驶时的致动器Af、Ar的推力的数据,设定为最适合于判断。例如能够将推力阈值Fe设为在曲线区段中行驶时的致动器Af、Ar的推力的绝对值的下限值、根据平均值-标准偏差Xa(a=l、2)而计算的值、希望值,或者设为在直线区段中行驶时的致动器Af、Ar的推力的绝对值的上限值、根据平均值+标准偏差Xa(a=l、2)而计算的值。
[0101]根据以上说明,在铁路车辆在明线区段中行驶的情况下,铁路车辆用减震装置I能够根据致动器Af、Ar的推力的绝对值是否超过推力阈值Fe,来判断铁路车辆正在行驶的区段的种类是明线区段中的曲线区段还是直线区段。
[0102]另外,区段判断部44c在判断为铁路车辆正在行驶的区段种类是隧道期间的情况下,在致动器Af、Ar的推力的绝对值为推力阈值Fe以下的情况下,判断为铁路车辆用减震装置I性能下降(在图4中为区域Z)。[0103]具体地说,在隧道区段中,致动器Af、Ar的推力的绝对值比明线区段大,因此在该绝对值比推力阈值Fe大的情况下,即使正在隧道区段中行驶,也能够判断为铁路车辆用减震装置I正常发挥功能(在图4中为区域X)。与此相对,在致动器Af、Ar的推力的绝对值为推力阈值Fe以下的情况下,与正在隧道区段中行驶无关地,致动器Af、Ar的推力变小,因此能够判断为铁路车辆用减震装置I性能下降(在图4中为区域Z)。
[0104]在判断为铁路车辆用减震装置I性能下降的情况下,在直接继续进行抑制车体B的震动的控制时,有可能使车体B起振,或使车辆的乘坐舒适性恶化。因此,铁路车辆用减震装置I停止向电动机15、第一开闭阀9、第二开闭阀11、可变溢流阀22的电力供给,而使上述的减震器回路D有效。由此,致动器Af、Ar作为无源减震器发挥功能。这样,在性能下降时,使致动器Af、Ar作为无源减震器发挥功能,由此能够使致动器Af、Ar发挥衰减力而抑制车体B的震动。
[0105]另外,也能够代替致动器Af、Ar的推力,而使用致动器Af、Ar的推力指令值Ff、Fr,同样地进行上述的明线区段的直线区段和曲线区段的判断、铁路车辆用减震装置I的性能下降的判断。
[0106]指令计算部44d如图5所示,构成为包含!1吣控制器44(11、44(12。指令计算部44d具备:H c?控制器44dl,其根据由摇摆加速度计算部44a计算出的摇摆加速度ω,计算抑制车体B的摇摆震动的推力Fco (摇摆指令值);H c?控制器44d2,其根据由晃动加速度计算部44b计算出的晃动加速度β,计算抑制车体B的晃动震动的推力F β (晃动指令值);加法器44d3,其将推力Fco和推力Fi3相加,来计算指示前侧的致动器Af所要输出的推力的推力指令值Ff ;以及减法器44d4,其将推力Fi3减去推力Fco,来计算指示后侧的致动器Ar所要输出的推力的推力指令值Fr。
[0107]H c?控制器44dl、44d2保存有直线区段行驶用的控制增益、曲线区段用的控制增益、隧道区段用的控制增益。He?控制器44dl、44d2与上述的区段判断部44c的判断结果对应地,选择所对应的控制增益而计算推力Fco和推力F3。
[0108]另外,例如对于计算推力Fco时使用的控制增益,相对于直线区段用的控制增益而增大曲线区段用的控制增益,进而相对于曲线区段用的控制增益而增大隧道区段用的控制增益。这样,将控制增益设定为最适合于各个区段的值。另外,对于计算推力Fi3时使用的控制增益,也同样地设定为最适合于各个区段的值。这时,在曲线区段中,晃动加速度β包含恒定加速度,因此可以相对于直线区段用的控制增益而减小曲线区段用的控制增益,另外可以相对于直线区段用的控制增益而增大隧道区段用的控制增益。 [0109]在指令计算部44d中,执行H c?控制,因此能够与输入到车体B的震动的频率无关地得到高的减震效果,能够得到高耐用性。另外,这并不否定使用H c?控制以外的控制。因此,例如也可以使用根据横向加速度af、a r得到横向速度并将横向速度乘以高空气球衰减系数求出推力指令值的高空气球控制,来控制前后的致动器Af、Ar。另外,也可以代替根据摇摆加速度ω和晃动加速度β使前后的致动器Af、Ar关联地控制其推力,而分别独立地控制前侧的致动器Af和后侧的致动器Ar。
[0110]驱动部44e如图3所示,为了使各致动器Af、Ar按照推力指令值Ff、Fr发挥推力,而输出控制指令。具体地说,驱动部44e根据推力指令值Ff、Fr,计算要向电动机15、第一开闭阀9的螺线管9e、第二开闭阀11的螺线管lie以及可变溢流阀22的比例螺线管22c输出的控制指令,输出该控制指令。另外,在根据推力指令值Ff、Fr计算控制指令时,也可以反馈这时致动器Af、Ar输出的推力,进行反馈控制而计算控制指令。
[0111]具体地说,驱动部44e如上述那样,根据推力指令值Ff、Fr计算要对第一开闭阀9的螺线管9e、第二开闭阀11的螺线管lie以及可变溢流阀22的比例螺线管22c施加的控制指令,输出该控制指令。
[0112]这样,铁路车辆用减震装置I通过区段判断部44c判断铁路车辆正在行驶的区段种类是明线区段和隧道区段的哪个,根据该判断结果,选择适合于铁路车辆正在行驶的区段种类的控制增益。另外,铁路车辆用减震装置I计算推力指令值Ff、Fr,控制致动器Af、Ar。由此,能够有效地对在根据区段种类而不同的震动模式下震动的铁路车辆的车体B进行减震。
[0113]因此,根据铁路车辆用减震装置1,由区段判断部44c根据电动机15的目标转速Vref和实际的转速V的速度差即速度偏差ε,判断铁路车辆正在行驶的区段种类是明线区段还是隧道区段,由此不从车辆监视装置等其他设备取得铁路车辆的行驶位置信息、区段种类信息就能够判断区段种类。
[0114]另外,根据铁路车辆用减震装置1,不需要从车辆监视装置等其他设备取得铁路车辆的行驶位置信息、区段种类信息,因此不需要用于与车辆监视装置等连接的接口,也能够容易地安装到如地方干线那样车辆信息传送设备不完备的铁路车辆中。
[0115]进而,在本实施方式中,区段判断部44c能够进一步分为直线区段和曲线区段地判断明线区段,因此能够选择更适合于区段种类的控制增益。由此,能够进一步有效地对铁路车辆的车体B进行减震。
[0116]另外,区段判断部44c在判断为铁路车辆正在行驶的区段种类是隧道区段的情况下,在致动器Af、Ar的推力或推力指令值为推力阈值以下的情况下,判断为铁路车辆用减震装置I是性能下降状态。因此,铁路车辆用减震装置I在性能下降状态下不继续进行抑制车体B的震动的控制。另外,在判断为铁路车辆用减震装置I是性能下降状态时,通过使致动器Af、Ar成为无源减震器,能够通过其衰减力而抑制车体B的震动。
[0117]另外,计算速度偏差ε的均方根,在该均方根超过规定的速度阈值Vb的情况下,判断为铁路车辆的行驶位置是隧道区段,在为速度阈值Vb以下的情况下,判断为铁路车辆的行驶位置是明线区段。在该情况下,铁路车辆用减震装置I能够更正确地判断铁路车辆正在行驶的区段种类。由此,防止频繁地切换区段种类那样的判断,由此能够选择更适合于车体B的震动模式的控制增益,稳定地抑制车体的震动。
[0118]进而,在本实施方式的铁路车辆用减震装置I中,在判断为铁路车辆的行驶位置是曲线区段的情况下,将计算推力Fco时的控制增益设为比在明线区段中但不是曲线区段的情况下的控制增益低。由此,能够降低难以通过带通滤波器42、43除去的恒定加速度的影响,飞跃性地提高在曲线区段中行驶时的铁路车辆的乘坐舒适性。
[0119]另外,在上述的实施方式中,通过单一的控制器C控制多个致动器Af、Ar,但并不限于此,当然可以针对每个致动器Af、Ar设置控制器C来分别进行控制。
[0120]以上,说明了本发明的实施方式,但上述实施方式只不过表示了本发明的应用例的一部分,并不是要将本发明的保护范围限定于上述实施方式的具体结构。
[0121]本申请基于在2011年6月20日向日本专利局申请的特愿2011-136163要求优先权,通过参照而将该申请的全部内容组合到本说明书中。
[0122]本发明的实施例所包含的排他性或特征如以下那样做出权利要求。
【权利要求】
1.一种铁路车辆用减震装置,求出要使致动器输出的推力作为推力指令值,控制上述致动器来抑制车体的震动, 上述致动器具备: 缸体,其与铁路车辆的转向架和车体中的一方连结; 活塞,其滑动自如地插入到上述缸体内; 杆,其插入到上述缸 体内,并与上述转向架和上述车体中的另一方以及上述活塞连结;以及 杆侧室和活塞侧室,其通过上述活塞在上述缸体内划分而得到, 该铁路车辆用减震装置具备: 罐体,其贮存向上述缸体供给及从上述缸体排出的液体; 第一开闭阀,其设置在使上述杆侧室与上述活塞侧室连通的第一通路,能够打开和关闭该第一通路; 第二开闭阀,其设置在使上述活塞侧室与上述罐体连通的第二通路,能够打开和关闭该第二通路; 泵,其从上述罐体向上述杆侧室供给液体; 电动机,其以固定的转速进行旋转来驱动上述泵进行旋转;以及 区段判断部,其根据上述电动机的目标转速与实际的转速之间的速度偏差,判断上述铁路车辆正在行驶的区段种类是明线区段还是隧道区段。
2.根据权利要求1所述的铁路车辆用减震装置,其特征在于, 上述区段判断部在判断为上述铁路车辆正在行驶的区段种类是明线区段、且上述致动器的推力或上述推力指令值超过推力阈值的情况下,将上述区段种类判断为曲线区段。
3.根据权利要求1所述的铁路车辆用减震装置,其特征在于, 上述区段判断部在判断为上述铁路车辆正在行驶的区段种类是隧道区段、且上述致动器的推力或上述推力指令值为推力阈值以下的情况下,判断为上述致动器的性能下降。
4.根据权利要求3所述的铁路车辆用减震装置,其特征在于, 在由上述区段判断部判断为上述致动器性能下降的情况下,将上述第一开闭阀和上述第二开闭阀切换到切断位置,并且停止上述电动机,使上述致动器作为无源减震器而发挥功能。
5.根据权利要求1所述的铁路车辆用减震装置,其特征在于, 上述区段判断部计算上述速度偏差的均方根,在该均方根超过规定的速度阈值的情况下,将上述铁路车辆的行驶位置判断为隧道区段,在该均方根为上述速度阈值以下的情况下,将上述铁路车辆的行驶位置判断为明线区段。
6.根据权利要求1所述的铁路车辆用减震装置,其特征在于, 还具备指令计算部,该指令计算部根据上述车体绕中心的摇摆加速度计算用于抑制上述车体的摇摆震动的摇摆指令值,根据上述车体的水平横向的晃动加速度计算用于抑制上述车体的晃动震动的晃动指令值,根据上述摇摆指令值和上述晃动指令值计算上述推力指令值。
7.根据权利要求6所述的铁路车辆用减震装置,其特征在于, 上述指令计算部将在由上述区段判断部判断为隧道区段的情况下计算上述摇摆指令值和上述晃动指令值时的控制增益设为比在由上述区段判断部判断为明线区段的情况下计算上述摇摆指令值和上述晃动指令值时的控制增益大。
8.根据权利要求6所述的铁路车辆用减震装置,其特征在于, 上述指令计算部将在由上述区段判断部判断为曲线区段的情况下计算上述晃动指令值时的控制增益设为比在由上述区段判断部判断为是明线区段但不是曲线区段的情况下计算上述晃动指令值时的控制增益小。
9.根据权利要求1所述的铁路车辆用减震装置,其特征在于,还具备: 排出通路,其将上述杆侧室与上述罐体连接;以及 可变溢流阀,其设置在上述排出通路的中途,能够变更开阀压力, 其中,调节上述可变溢流阀的开阀压力来控制上述致动器的推力。
10.根据权利要求1所述的铁路车辆用减震装置,其特征在于,还具备: 吸入通路,其只允许液体从上述罐体流向上述活塞侧室;以及 整流通路,其只允许液体`从上述活塞侧室流向上述杆侧室。
【文档编号】F16F15/02GK103608234SQ201280030687
【公开日】2014年2月26日 申请日期:2012年6月19日 优先权日:2011年6月20日
【发明者】小川贵之, 青木淳, 内田胜 申请人:萱场工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1