用于指示膜层变化的宽频带光学终点检测系统与方法

文档序号:6016804阅读:142来源:国知局
专利名称:用于指示膜层变化的宽频带光学终点检测系统与方法
技术领域
本发明总体上涉及在化学机械抛光过程中的终点检测,更具体涉及利用宽频带反射光谱光学干涉的终点检测。
现有技术在半导体器件的制造中,集成电路器件典型地呈多层结构的状态。在基底层中形成了具有扩散区域的晶体管器件。在随后的层中,图形化互连金属线并将其电连接到晶体管器件,从而确定了需要的功能性器件。众所周知,图形化的导电层通过介电材料(如二氧化硅)与其它导电层绝缘。当形成更多的金属层以及与其相关的介电层时,更加需要使该介电材料平坦。若不进行平坦化,则制造另外的金属层会变得相当地更加困难,这是由于表面形貌差异更大造成的。在其它应用中,将金属线的图案形成在介电材料中,然后进行金属的化学机械抛光(CMP)操作,以除去多余的金属。
在现有技术中,CMP系统典型地具有带台、轨道式台、或刷台,其中的带子、垫子、或刷子用于擦洗、抛光、打磨晶片的一面或两面。将研浆用于方便并加强CMP操作。通常将研浆加到移动的准备表面上,例如带子、垫子、刷子等,并使研浆分布在该准备表面上以及正在进行抛光、打磨或其他准备进行CMP制程的半导体晶片表面上。该分布通常是由准备表面的移动、半导体晶片的移动以及半导体晶片与准备表面间生成的摩擦力共同作用而实现的。
图1A是介电层102的横截面图,该介电层102正在进行构造镶嵌及双镶嵌互连金属线的一般制造过程。介电层102具有扩散阻挡层104,该扩散阻挡层104沉积在介电层102的刻蚀图形化的表面上。众所周知,该扩散阻挡层典型是由氮化钛(TiN)、钽(Ta)、氮化钽(TaN)或氮化钽(TaN)与钽(Ta)的组合物构成。当扩散阻挡层104已经沉积到需要的厚度时,在该扩挡阻障层上,以填满介电层102的刻蚀图形的方式形成铜层106。某些多余的扩散阻挡层与金属材料,不可避免地也沉积到了场区上。为了除去这些过多的材料并且限定需要的互连金属线和与其相关的通路(未示出),需要实施化学机械平坦化(CMP)操作。
如上所述,CMP操作是设计用于除去介电层102上的顶部金属材料。例如图1B所示,已经除去了铜层106及扩散阻挡层104的过多部分。该CMP操作必须持续到将所有的过多金属及扩散阻挡材料104从介电层102上去除为止,这在CMP操作中是常见的。然而,为确保从介电层102上除去所有扩散阻挡层104,在CMP过程中需要一种方法来监测制程进行状态以及晶片表面状态。这通常称为终点检测。因为铜无法以定时的方式成功地抛光,所以需对铜实施终点检测。定时抛光无法应用于铜的原因是CMP制程的去除速率对于铜层的定时抛光来讲不够稳定。CMP制程中铜的除去速率变化很大。因此,必须进行监测,以确定何时达到终点。在多步骤CMP操作中,必须确定多个终点(1)以确保从扩散阻挡层上除去铜;(2)以确保从介电层上除去扩散阻挡层。因此,终点检测技术用于确保除去了所有需要除去的过多材料。
已经为金属CMP中的终点检测提出了许多方法。现有技术的方法通常可分为直接或间接检测抛光的物理状态。直接方法,使用了明确的外部信号源或化学试剂,来探测抛光过程中晶片的状态。另一方面,间接方法,监测因抛光制程中自然发生的物理或化学变化而在工具内部生成的信号。
间接终点检测方法包括监测垫/晶片表面的温度、抛光工具的振动、垫与抛光头之间的摩擦力、研浆的电化学势以及声发射。温度方法采用了放热过程反应,因为抛光剂选择性地与所抛光的金属膜反应。美国专利第5,643,050号即是该方法的一个实施例。美国专利第5,643,050号与第5,308,438号公开了基于摩擦力的方法,其中,当抛光不同的金属层时,监测马达电流的变化。
欧洲专利申请EP0739687A2公开了另一种终点检测方法,该方法解调由抛光过程产生的声发射,从而得到关于抛光制程的信息。声发射的监测通常用于检测金属终点。该方法监测抛光制程中出现的抛光动作。将麦克风置于与晶片相距预定距离处,以检测当材料除去的深度到达与界面相距某个可确定的距离时生成的声波,从而生成了输出检测信号。所有这些方法提供了一种抛光状态的整体测量,并且对于制程参数设定和耗材选择具有强烈的依赖性。然而,以上方法中除摩擦感应之外,均未在业内实现商业应用价值。
直接终点检测方法,利用声波速率、光学反射及干涉、阻抗/电导、加入特定化学试剂而引起的电化学势的变化,来监测晶片表面。美国专利第5,399,234号及第5,271,274号公开了使用声波的金属终点检测方法。这些专利描述了用于监测通过晶片/研浆传播的声波速率,以检测金属终点的方法。当由一个金属层转移到另一层时,声波速率会改变,以此用于终点检测。另外,美国专利第6,186,865号公开了一种终点检测方法,该方法使用传感器来监测位于抛光垫下方的液体轴承的液压。该传感器用于检测抛光过程中的液压变化,该变化对应于当抛光从一个材料层转移到下一层时的剪切应力变化。不幸地,该方法对于制程变化并不牢靠。此外,所检测的终点是整体的,因此该方法无法检测在晶片表面上特定点处的局部终点。而且,专利第6,186,865号的方法仅限于需要空气轴承的线性抛光机。
已经有许多方案使用晶片表面的光学反射来检测终点。这些方案可分为两类利用激光光源或者覆盖全部可见电磁光谱范围的宽频带光源,来监测单一波长的反射光学信号。美国专利第5,433,651号公开了一种利用单一波长的终点检测方法,其中,激光光源发出的光学信号照射到晶片表面上并监测经反射的信号以用于终点检测。当抛光从一种金属转移到另一种时,反射率会有变化,于是将该变化用于检测该转移。
宽频带方法通常依赖于使用电磁光谱的多个波长的信息。美国专利第6,106,662号公开了利用光谱仪来获得可见光谱范围的反射光的强度光谱。在光谱中选择两个频带的波长,当抛光从一种金属转移到另一种时,该波长频带提供了对于反射率变化的高灵敏度。然后,通过计算所选的两个频带中的平均强度之比来确定检测信号。检测信号的明显变化表示从一种金属转移到了另一种。
目前终点检测技术中,有一个共同的问题,就是需要某种程度的过度抛光,以确保将所有导电材料(例如,金属材料或扩散阻挡层104)从介电层102上除去,从而防止非故意的金属线间的电互联。不恰当的终点检测或过度抛光的副作用在于将在介电层102内需要保持的金属化层上产生碟状物108。碟状效应实质上去除了超过所需程度的金属材料并在金属线上留下了碟状图形。已知该碟状物会对互连金属线的性能产生负面影响,并且过多的碟状物会造成预期的集成电路不能达到其所要达到的目的。
现有技术的方法仅仅可以近似预测实际的终点而无法真正检测实际的终点。现有技术检测一些波长的强度何时变化,例如当材料变成半透明时出现的变化(例如,该材料对于某些波长变成基本上透明的但并非对于全部波长都是透明的)。当材料变成半透明时,某些波长的强度会改变,这是因为当前正在去除的材料下方的层反射了这些波长。
因为现有技术实际检测到的结果是正在被除去的层(例如金属层)何时变成半透明的而非消失掉(即完全除去),因此,然后现有技术必须推算实际的终点(即何时真正完全除去了全部所要除去的材料)。在一个例子中,当该材料的厚度为500时,出现了检测到的实际结果,即半透明点。从在前的制程已知该CMP过程除去材料的速率为每分钟3000。因此,利用以下公式1,来推算实际终点。
公式1(半透明材料厚度)/(材料去除速率)=预测终点的时间延迟在本实例中(500)/(3000/分)=10秒因此,现有技术的CMP制程,在实际检测结果出现之后,再持续另外10秒的CMP去除过程。此外,该时间延迟是基于先前的经验计算而得的,而且也假设去除速率是恒定的。
综上所述,需要一种终点检测系统以及方法,以改善终点检测的准确性。

发明内容
广义而言,本发明通过提供一种宽频带光学终点检测系统与方法满足了这些需要。应当理解本发明可以多种方式实现,包括制程、装置、系统、计算机可读取媒质、或设备。以下描述了本发明的几个创造性实施例。
公开了用于在化学机械抛光过程中检测终点的系统与方法,包括利用第一宽频带光束照射晶片表面的第一部分。接收第一反射光谱数据。第一反射光谱数据对应于从晶片表面的第一照射部分反射的第一光谱的光。利用第二宽频带光束照射晶片表面的第二部分。接收第二反射光谱数据。第二反射光谱数据对应于从晶片表面的第二照射部分反射的第二光谱的光。将第一反射光谱数据和第二反射光谱数据标准化。基于标准化的第一光谱数据与第二光谱数据之间的差别来确定终点。
在一个实施例中,第一光谱数据包括对应于相应第一光谱中各个波长的强度级别。在一个实施例中,第二光谱数据包括对应于相应第二光谱中各个波长的强度级别。
在一个实施例中,第一光谱和第二光谱的波长可包括约300nm至约720nm的范围。
在一个实施例中,第一光谱和第二光谱可包括约200个至约520个独立数据点。
在一个实施例中,将第一光谱数据标准化包括基本排除与制程相关的强度波动,该排除是通过基本去除对应的强度值来实现的。在一个实施例中,将第二光谱数据标准化包括基本排除与制程相关的强度波动,该排除是通过基本去除对应的强度值来实现的。
在一个实施例中,基本去除对应的强度值可包括调整每个波长的强度值,使得每个波长的强度值的总和等于0,并且每个波长的强度值的平方和等于1。
在一个实施例中,基于标准化的第一光谱数据与第二光谱数据之间的差别来确定终点,可包括对于第一与第二光谱中多个波长的至少一部分来确定标准化强度比例的变化。
在一个实施例中,确定第一与第二光谱中波长的至少一部分的标准化强度比例的变化,可包括将标准化的第一光谱数据转变为第一向量,并将标准化的第二光谱数据转变为第二向量。可以计算出第一向量与第二向量之间的距离。可以将第一向量与第二向量之间的距离与阈值距离进行比较,如果第一向量与第二向量间的距离大于或等于阈值距离,那么就确认发生了第一与第二光谱中多个波长的至少一部分的标准化强度比例的变化。
通过下面结合附图的详细说明以及通过实例的方式对本发明的原理的说明,本发明其他特征及其优点将变得明显。


图1A与图1B是横截面图,表示了正在进行构成镶嵌及双镶嵌互连金属线的一般制造过程的介电层102。
图2A表示了根据本发明实施例的CMP系统,其中的垫子设计为围绕滚轮转动。
图2B表示了根据本发明的一个实施例的终点检测系统。
图3表示了根据本发明的一个实施例,在CMP制程中,受到宽频带光源照射的晶片的部分。
图4A是根据本发明一个实施例的流程图,表示了为CMP制程确定终点时所实施的操作方法。
图4B是根据本发明一个实施例中,计算第一和第二光谱中多个波长的至少一部分的比率变化的操作方法450的流程图。
图5A表示了根据本发明一个实施例的一个接收到的反射光谱数据(即触发(shot))。
图5B表示了根据本发明一个实施例的一个标准化的反射光谱数据(即标准化触发)。
图5C是立体图,表示了根据本发明的一个实施例的数个未标准化的触发。
图6与图7是根据本发明一个实施例的以上图5C中所示的数据图。
图8与图9表示了根据本发明一个实施例的已经增强的以上图5C所示的数据的二维图。
图10表示根据本发明一个实施例的反射数据图,其中各波长的反射系数随时间变化,反射系数但尚未相对于强度标准化。
图11表示根据本发明一个实施例的反射数据图,其具有强度标准化的反射系数变化。
图12是根据本发明一个实施例的用于确定终点的操作方法的流程图。
图13是根据本发明一个实施例的材料除去过程的向量距离平方(VD)图。
实施方式以下将描述用于以光学方式确定终点的几个典型实施例。对于本领域技术人员来讲,可以实施本发明而无需本说明书中的部分或全部特定细节。
化学机械抛光(CMP)系统的一个重要控制方面是确定制程何时结束,即何时终止CMP制程。上述现有技术的系统,通常基于多个检测数据点来预测终点,但不能像以下详述的那样精确地检测准确终点。
图2A表示了根据本发明实施例的CMP系统,其中垫250设计为围绕滚轮251转动。平台254位于垫250下方,用于提供一个表面,利用输送器252将晶片放置于该表面上。如图2B所示,终点检测是利用光学探测器260来实施的,其中使光通过平台254、垫250并照射到正抛光的晶片200的表面上。为了完成终点检测,在垫250中形成了垫狭槽250a。在某些实施例中,该垫250可以包括多个垫狭槽250a,这些槽策略性地置于垫250的不同位置。典型地将垫狭槽250a设计为足够小,使其对抛光操作的影响减至最低。除垫狭槽250a外,在平台254上还限定了平台狭槽254a。该平台狭槽254a设计为,在抛光制程中允许宽频带光束通过平台254、垫250并照射到需要的晶片200表面上。
利用光学探测器260,可以确定从晶片表面上去除特定膜的程度。该检测技术设计为通过检查光学探测器260接收到的干涉图形来测量膜的厚度。此外,该平台254设计为策略性地向垫250施加某种程度的背压力,以能够从晶片200上精确地去除这些层。
图3表示了根据本发明的一个实施例,在CMP制程中,受宽频带光源照射的晶片300的一部分。该晶片300包括硅衬底302、置于硅衬底302上的氧化层304、形成于氧化层304上的铜层306。该铜层306表示镶嵌CMP制程中形成的过量的铜。该铜层306通常沉积于氧化层304上,而该氧化层304在先前步骤中已经经过刻蚀形成了用于铜互连的沟(trench)。然后,通过抛光除去过量的铜以使氧化层304暴露,从而在只留下沟内的导线。双镶嵌也是以类似的方式出现,可以同时形成金属插头和互连。
在抛光制程中,光学终点检测系统利用了光学干涉,来确定铜层306何时已除去。最初,由301a所示,铜层306较厚(例如约10,000),因此是不透明的。此时,照射晶片300表面的光308,极少干涉或无干涉地反射回来。进一步抛光该铜时,铜层306变成薄金属(例如厚度约300-400)。这被认为是薄金属区。此时,由301b所示,该铜层306对于光312的至少某些波长而言变成透明的,并且这些波长的光可以通过该铜层306照射其下面的层。
当光312的某些波长开始照射层304时,光312的其它波长继续从铜层306的薄金属区表面反射回来。从铜层306下方的层304与层302之间的界面反射的光318的反射波长的强度,不同于从铜层306反射的光314中相同波长的强度。然而,只有层304与层302之间的界面反射的该波长的强度会改变。从铜层306反射的光314的其余波长的强度不会改变。
光318的该波长的强度会改变的一个原因是由于各层302-306具有相对应的反射系数造成的。该反射系数影响从该层反射光的强度。
当完全除去铜时,由301c所示,该铜层306已不复存在,无法反射或阻挡任意波长的光322通过。因此,光322的所有波长都可以照射位于铜层306下方的层304。基本上,从层304反射回来的光324中的所有波长,与从铜层306反射的光中相同波长相比会有强度上的变化。
光学探测器260探测反射光308、314、318、324。因此,在本发明的一个实施例中,基本上当反射光的所有波长都经历了强度变化时就确定了终点。
因此,当铜层306厚时,光308的波长的强度不会改变。然而,多种干扰源,例如,抛光剂厚度、带子干扰、及其它干扰源会造成强度“噪声”,会使反射光的所有波长的强度改变。因此,必须将终点与这些强度噪声源区分开。在一个实施例中,本发明可检测实际的终点,并将终点与各种强度噪声源区分开。
图4A是根据本发明一个实施例的流程图,表示了确定CMP制程的终点时所实施的操作方法。步骤402中,利用第一宽频带光束照射晶片表面的第一部分。步骤404中,接收第一反射光谱数据(即第一触发)。该第一触发对应于从晶片表面的第一照射部分反射的第一组光谱的光。在一个实施例中,第一触发包括对应于在相应的第一光谱中的各个波长的强度级别。在一个实施例中,第一反射光谱波长范围为约200nm至约720nm。可检测到的独立波长数目只受到光学探测器260性能的限制。在一个实施例中,检测了512个独立波长,然而,也可以检测更多或更少数量的独立波长。
在步骤406中,利用第二宽频带光束照射晶片表面的第二部分。在步骤408中,接收第二反射光谱数据(即第二触发)。该第二触发对应于从晶片表面的第二照射部分反射的第二组光谱的光。
图5A表示了根据本发明一个实施例的一个接收到的反射光谱数据(即触发),例如,在上述图4A的步骤404中接收到的第一触发。沿横轴大约表示了512个独立波长。纵轴表示强度。
再参照图4A,在步骤410与412中,分别将第一触发和第二触发标准化。根据一个实施例,将第一触发和第二触发标准化包括从这些触发中基本去除强度特征。在一个实施例中,通过调整检测到的各个波长的强度使得所有检测到的波长的总强度的和等于零,并且所有检测到的波长的总强度的平方和等于1来基本去除强度。
图5B表示了根据本发明一个实施例的一个标准化的反射光谱数据(即标准化触发),例如在上述图4A的步骤410中确定的标准化第一触发。沿横轴大约表示了512个独立波长。纵轴表示强度。所有检测到的波长的总强度和等于0并且所有检测到的波长的总强度的平方和等于1。以下将更详细地描述使一个触发标准化的操作方法。
再参照图4A,在步骤414中,确定标准化第一触发与标准化第二触发的差别,并将其用于确定CMP制程的终点。在一个实施例中,确定标准化第一触发与标准化第二触发的差别包括确定第一与第二光谱中至少一部分波长的强度比例的变化。
图4B是根据本发明一个实施例,计算第一和第二光谱中的至少一部分波长的比例变化的操作方法450的流程图。在步骤452中,将标准化第一光谱转变为第一向量。在步骤454中,将标准化第二光谱转变为第二向量。在步骤456中,计算第一向量与第二向量之间的距离。在步骤458中,将第一向量与第二向量之间的距离与阈值距离进行比较,以确定第一向量与第二向量之间的距离是否大于或等于阈值距离。如果第一向量与第二向量之间的距离大于或等于极限距离,那么就在步骤460中识别出第一与第二光谱中至少一部分波长的强度比例的变化,此时该操作方法结束。
图5C是立体图,表示了根据本发明的一个实施例的几个未标准化的触发。波长以nm为单位,范围从Z轴原点处的约200nm至约800nm。Y轴表示强度。X轴表示触发的数目,大约表示了13个触发(触发3-15)。所示的触发的数目可对应于CMP处理的时间(即抛光时间)。在一个实施例中,取样速率是抛光带速率和抛光带中的终点检测窗口数量的函数。沿X轴上画出的线将第一触发中某一给定波长的强度与后面的触发中相同波长的强度相连。例如,指针551标出在触发3中约310nm的强度级别(触发1-2未示出)。指针552标出在触发4中相同的310nm波长的对应强度级别。触发与触发之间多个检测到的波长的强度变化,但该变化基本上是成比例的,即所有波长的强度同时都向上或向下移动。这表示了强度尺度上的噪声,并不表示实际表面材料反射该触发的变化。
如图所示,在第13个触发时(指针555),对于其后的触发14和15来讲,所有波长的强度开始了明显的下降趋势。指针555表示的下降趋势标记出反射该触发的材料的变化。
图6与7是根据本发明一个实施例的以上图5C所示的数据的图。在图6中,反射数据包括不需要的信息,例如,导致所示的各个触发的反射光强度大幅度变化的绝对强度变化。
相反地,图7表示已经标准化成相对强度的相同反射数据。标准化使所示的各个触发的反射光强度变化幅度变小。
通过分析反射系数变化而不是分析绝对强度值可以提高反射数据的分辨率,。反射系数变化可利用以下公式2产生公式2 反射系数的变化可以表示终点(即需要除去的层已完全除去的时刻)。
图8与9表示了根据本发明一个实施例的已经增强的以上图5C所示的数据的二维图。图8表示了反射系数的绝对值随波长和时间的变化。图9表示了各波长的反射系数随时间的变化。该步骤提供了膜(反射光的材料)的特征识别标志,其取决于干涉效应。透明膜(即两表面相遇处)的特性会反射光。对于铜处理过程中,反射数据的变化包括从对可见光谱不透明的铜变成铜层下方的透明膜层。在以上述定性方式获得的反射数据之后,可以基于这种变化处理该数据,从而建立终点检测。
图10表示根据本发明一个实施例的反射数据图,该数据是未相对于强度标准化的不同时间下反射系数随波长的变化标准化。图11表示了根据本发明的一个实施例的反射数据图,该数据具有强度标准化的反射系数变化。图11证明了检测值由具有某些高频振荡的直线1102、1104变成明确的与正弦干涉有关的振荡1106、1108、1110、1112,以及具有过渡状态的线1114、1116。
透明膜的第二特性以及厚度与折射率的函数(未示出)也可影响反射数据。例如,不同频率的正弦函数与从一个膜到另一个的转变有关。
图12是根据本发明一个实施例的用于确定终点的操作方法1200的流程图。在步骤1210中,第一触发的晶片反射系数是根据以下公式3计算而得的公式3Ri(λj)=Iwi(λj)/ILi(λj),j=1,...,512。
在步骤1215中,反射系数被标准化,并且根据以下公式4,以相对强度单位表示公式4Ri′(λj)=Ri(λj)/S,]]>其中S=Σj=1512Ri2(λj),j=1,...,512.]]>在步骤1220中,标准化反射系数的变化(即材料变化)是根据以下公式5计算而得的公式5 在步骤1225中,当前的R’i与预选方式的基准值R’k之间的向量距离平方(VD)是根据以下公式6计算而得的
公式6VD=Σj=1512{R→i′(λj)-R→k′(λj)}2,j=1,...,512]]>在步骤1230中,将计算得到的向量距离与阈值向量距离进行比较。在一个实施例中,该阈值VD可以是一种已知的向量距离的变化,该变化是根据除去需要除去的层从而使下面的层暴露出来的以前的经验确定的。或者,该阈值VD可以是预先选择的数量,其表示变化的方向(例如,标准化反射系数的向上或向下趋势)。如果计算得到的VD不大于该阈值VD,那么将Iwi(λ)与ILi(λ)输入到上述步骤1210,并且重复操作步骤1210-1230。然而,在步骤1230中,如果计算得到的VD大于或等于该阈值VD,那么已经确定了终点,CMP制程可以立刻终止。
图13是根据本发明一个实施例的材料除去制程的向量距离平方(VD)图。y轴表示VD。x轴表示时间或更精确地表示触发数目。从原点到大约第12个触发,该图表示了VD大约保持恒定值。如图所示,第12个触发与第13个触发之间的VD大得多。在第12个触发处所示的VD变化表示已经检测到了终点。
尽管以上已经描述了涉及当除去铜层时确定终点的本发明的多个方面和实施例,但是应当理解本文中所述的方法和系统可以类似地用于其它任何材料的除去制程。本文中所述的方法及系统也可以类似地用于除去覆盖不同的不透明或透明材料的其他不透明或透明材料。通过举例,本文中所述的方法及系统可用于确定除去铜层(不透明层)上的氧化层(透明层)的除去制程的终点。类似地,可用于确定除去另一透明材料层上的氧化层(透明层)的终点。
尽管以上已经描述了涉及利用沿着反射宽频带光(例如,方程式6,其中j=1-512)的光谱的512个独立数据点(例如波长)来确定终点的本发明的多个方面和实施例。然而,本发明不限于只有512独立的数据点,可使用任何数目的数据点。使用的数据点数目相当于所接收的数据个数。为了使数据的分辨率更高,必须收集并使用更多的独立数据点。然而,收集更多的独立数据点,同时增加了计算负担。512个独立数据点用于表示过程数目的一个级别。也可使用例如约200或更少的数据点。或者,还可使用另外的波长,例如多于约520个数据点。
如上所述,对于相同的宽频带光使用了两种不同的尺度。第一种尺度是宽频带光的光谱中包含的波长。在一个实施例中,该宽频带光的光谱范围是约300nm到约720nm。然而,所使用的该宽频带光的光谱可扩充至包含更短或更长波长的光。在一个实施例中,选择该宽频带光的光谱以对应CMP制程中所处理的材料。在一个实施例中,更宽的光谱可用于更多种材料。
用于描述宽频带光检测的第二种尺度是分布在宽频带光的光谱上的数据点数目。在一个实施例中,如果有512个数据点并且光谱范围是约300nm至约720nm,则第一数据点对应于约298.6nm的波长,第512个数据点对应于约719.3nm的波长。宽频带光谱上的数据点数目与分布取决于该光学探测器的特定制造商。典型的是该数据点均匀分布在光谱上。这些数据点也可以称作像素。
知晓了上述的实施例,就应当理解本发明可采用多种计算机实现的操作,包括储存在计算机系统中的数据。这些操作需要对物理量的物理操作。通常,但不一定必需,这些量表现为电或磁信号的形式,其可以被储存、传输、组合、比较、或作其它处理。更进一步,所执行的操作通常是指例如产生、识别、确定、或比较。
本文中所述的构成本发明的任何操作都是有效的机器操作。本发明还涉及用于执行这些操作的装置或设备。该装置可为特定目的而特别构造,或其可以为一般用途的计算机,通过储存在该计算机上的计算机程序来选择性地激活或配置该计算机。具体地,可以将多种一般用途的机器与根据本文中的指导而写的计算机程序结合使用,或者更方便地,可以构造用于执行需要操作的更为特殊的装置。
本发明也可体现为计算机可读取媒质上的计算机可读编码。该计算机可读的媒质是可储存计算机系统可读数据的任何数据储存设备。计算机可读的媒质的实例包括硬盘驱动器、网络连接储存装置(NAS)、只读存储器、随机存取存储器、CD-ROM、CD-R、CD-RW、磁带、或其他光学、非光学数据储存设备。该计算机可读媒体也可以分布在相连在网络上计算机系统上,从而以分布的方式储存并执行该计算机可读编码。
更进一步,将会理解本发明图4A、4B、以及12中的操作所代表的指令,无需依所说明的顺序执行,实施本发明时,也不必执行所有由这些操作代表的进程。此外,图4A、4B、以及12中所述的制程也可以在储存于任一计算机可读媒质或其组合的软件中实现。
虽然为了清楚地理解本发明,前面进行了详细具体的叙述,但是很明显,可在所附的权利要求书的范围内对本发明进行某些变化及修改。相应地,这些实施例应被视为说明性的而不应被认为是限制性的,本发明不限于上述具体情况,而可以在所附权利要求书的范围和等价物内进行修改。
权利要求
1.一种用于在化学机械抛光制程中检测终点的方法,包括利用第一宽频带光束,照射晶片表面的第一部分;接收第一反射光谱数据,该数据对应于自晶片表面的第一照射部分反射的第一多个光谱的光;利用第二宽频带光束,照射晶片表面的第二部分;接收第二反射光谱数据,该数据对应于自晶片表面的第二照射部分反射的第二多个光谱的光;将该第一反射光谱数据标准化;将该第二反射光谱数据标准化;以及基于标准化的第一光谱数据与标准化的第二光谱数据的差别,确定终点。
2.如权利要求1所述的方法,其中,该第一光谱数据包括与相应第一光谱中多个波长中的每个波长相对应的强度级别。
3.如权利要求2所述的方法,其中,相应第一光谱中的多个波长包括约300nm至约720nm的范围。
4.如权利要求3所述的方法,其中,相应第一光谱中的多个波长包括约200至约520个独立数据点。
5.如权利要求1所述的方法,其中,将第一光谱数据标准化包括基本上排除对应的强度值。
6.如权利要求5所述的方法,其中,基本上排除对应的强度值包括调整多个波长中每个波长的强度值,使得多个波长中每个波长的强度值的总和等于0,并且多个波长中每个波长的强度值的平方和等于1。
7.如权利要求1所述的方法,其中,基于标准化的第一光谱数据与第二光谱数据的差别来确定终点包括确定第一与第二光谱中多个波长的至少一部分的强度比例变化。
8.如权利要求7所述的方法,其中,确定第一与第二光谱中多个波长的至少一部分的强度比例变化包括将标准化的第一光谱数据转变为第一向量;将标准化的第二光谱数据转变为第二向量;计算出第一向量与第二向量之间的距离;确定第一向量与第二向量间的距离是否大于或等于阈值距离;如果第一向量与第二向量间的距离大于或等于阈值距离,则确认发生了第一与第二光谱中多个波长的至少一部分的强度比例变化。
9.如权利要求8所述的方法,其中第二向量小于第一向量。
10.如权利要求1所述的方法,其中,将第一反射光谱数据标准化包括基本上消除与相应第一光谱中多个波长中的每个波长相对应的强度级别的噪声部分。
11.一种终点检测系统,包含宽频带光源,用于照射晶片表面的一部分;光学探测器,用于接收多个触发中的每一个的反射光谱数据,该反射光谱数据对应于自晶片表面的照射部分反射的多个光谱的光;用于将对应于第一触发的第一反射光谱数据标准化的逻辑电路;用于将对应于第二触发的第二反射光谱数据标准化的逻辑电路;以及用于基于标准化的第一光谱数据与标准化的第二光谱数据的差别来确定终点的逻辑电路。
12.如权利要求11所述的系统,其中,用于基于标准化的第一光谱数据与标准化的第二光谱数据的差别来确定终点的逻辑电路包括用于确定第一与第二光谱中多个波长的至少一部分的强度比例变化的逻辑电路。
13.如权利要求12所述的系统,其中,确定第一与第二光谱中多个波长的至少一部分的强度比例变化,包括用于将标准化的第一光谱数据转变为第一向量的逻辑电路;用于将标准化的第二光谱数据转变为第二向量的逻辑电路;用于计算第一向量与第二向量之间的距离的逻辑电路;用于确定第一向量与第二向量之间的距离是否大于或等于阈值距离的逻辑电路;以及在第一向量与第二向量之间的距离大于或等于该阈值距离时用于确认发生了第一与第二光谱中多个波长的至少一部分的强度比例变化的逻辑电路。
14.如权利要求11所述的系统,其中,该第一光谱数据包括与相应第一光谱中多个波长中的每个波长相对应的强度级别。
15.如权利要求14所述的系统,其中,相应第一光谱中的多个波长包括约300nm至约720nm的范围。
16.如权利要求15所述的系统,其中,相应第一光谱中的多个波长包括约200至约520个独立数据点。
17.如权利要求11所述的系统,其中,用于将该第一光谱数据标准化的逻辑电路包括基本去除对应的强度值的逻辑电路。
18.如权利要求17所述的系统,其中,用于基本去除对应的强度值的逻辑电路包括用于调整多个波长中每一个波长的强度值、使得多个波长中每一个波长的强度值的总和等于0并且多个波长中每一个波长的强度值的平方和等于1的逻辑电路。
19.如权利要求11所述的系统,其中,用于将第一反射光谱数据标准化的逻辑电路包括基本上消除与相应第一光谱中多个波长中的每个波长相对应的强度级别的噪声部分。
20.如权利要求11所述的系统,进一步包括CMP制程工具,包括抛光垫,其包括垫狭槽;以及平台,包括平台狭槽,在化学机械抛光制程的特定点期间,该平台狭槽能够与垫狭槽相对准,使该宽频带光源定向,从而通过平台狭槽和垫狭槽照射晶片部分。
全文摘要
公开了一种用于在化学机械抛光制程中检测终点的系统与方法,包括利用第一宽频带光束(132)照射晶片(300)表面的第一部分。接收第一反射光谱数据。第一反射光谱数据(308)对应于从晶片表面的第一照射部分反射的第一光谱的光。利用第二宽频带光束照射晶片表面的第二部分。第二反射光谱数据对应于从晶片表面的第二照射部分反射的第二光谱的光。将第一反射光谱数据和第二反射光谱数据标准化,基于标准化的第一光谱数据与第二光谱数据之间的差别来确定终点。
文档编号G01N21/27GK1643662SQ03807422
公开日2005年7月20日 申请日期2003年3月26日 优先权日2002年3月29日
发明者V·卡茨, B·米切尔 申请人:兰姆研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1