一种基于深度置信网络的铝熔炼过程炉膛温度预测方法与流程

文档序号:16086199发布日期:2018-11-27 22:27阅读:385来源:国知局

本发明涉及铝熔炼技术领域,特别涉及一种基于深度置信网络的铝熔炼过程炉膛温度预测方法。



背景技术:

铝熔炼过程是整个铝合金加工工艺的第一道生产工序,这一工艺直接影响后续保温、铸造和加工等步骤,最终对产品的质量和性能有很大的影响。在铝熔炼过程中,温度的精确控制对铝铸锭起着至关重要的作用。在铝熔炼过程中物理变化和化学反应过程都与温度密切相关,熔炼温度过低,不利于合金元素的溶解及气体、夹杂物的排出,增加形成偏析、欠铸的倾向;熔炼温度过高不仅浪费能源,更严重的是因为温度越高,吸氢越多,铝的氧化越严重,从而导致合金的机械性能的下降,直接影响铝熔炼效率。另外,铝熔炼的过程中温度的变化是一个大滞后的环节,因此温度控制是铝加工工艺的关键。

传统铝熔炼炉温度控制系统主要采取两种控温方式:炉膛温度定温控制和铝液温度串级控制,采用炉膛温度定温控制方式进行升温,串级控制方式进行铝液金属的保温。然而要实现对温度的精准控制,需要对温度的变化趋势了解,传统的热电偶检测炉膛温度的方法尽管可以得到温度的趋势,但由于熔炼过程中炉膛内的温度很高且腐蚀性大,传感器等元器件易损坏,需要时常更换,经济效益不高。

公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。



技术实现要素:

本发明的目的在于提供一种基于深度置信网络的铝熔炼过程炉膛温度预测方法,从而克服现有的采用热电偶检测炉膛温度来得到温度的趋势的方法的传感器等元器件易损坏,经济效益不高的缺点。

为实现上述目的,本发明提供了一种基于深度置信网络的铝熔炼过程炉膛温度预测方法,其中,包括如下步骤:步骤一,从现场设备上采集若干组原始数据,每组原始数据包括铝熔炼过程中的炉膛温度、每个排烟口的排烟温度以及每个烧嘴的助燃空气流量、助燃空气温度、助燃空气压差、助燃空气阀门开度、燃气流量、燃气压差和燃气阀门开度这些指标的现场检测数据;步骤二,对步骤一中采集到的每个指标的所有原始数据进行剔除异常数据和去除噪声,以得到正常数据;步骤三,对步骤二中得到的每个指标的所有的正常数据利用深度置信网络进行特征提取,以得到特征向量;步骤四,把经步骤三特征提取后得到的各组特征向量划分为训练集和测试集,并建立预测模型;通过训练集中各组特征向量来不断训练预测模型,每组特征向量对预测模型的训练过程是把这组特征向量内除了炉膛温度之外的其他指标作为预测模型的输入,预测模型输出的炉膛温度再与这组特征向量内的炉膛温度进行对比和拟合,直到预测模型输出的炉膛温度与特征向量内的炉膛温度一致,便能得到训练好的预测模型;以及步骤五,对经步骤四训练好的预测模型进行评估,把步骤四划分得到的测试集中的每组特征向量内除了炉膛温度之外的其他指标输入到训练好的预测模型中,并将训练好的预测模型得到的预测的炉膛温度的结果与这组特征向量内的炉膛温度进行对比,如果对比结果满足要求,则表示测试的稳定性好,利用步骤四训练好的预测模型便可直接用于预测炉膛温度;如果对比结果不满足要求,则返回步骤三。

优选地,上述技术方案中,所述步骤二中,采用SPSS软件中的绘制直方图、箱线图和数据标准化三者中的至少一种方式来进行异常数据的剔除。

优选地,上述技术方案中,所述步骤二中,采用滑动平均法来进行噪声的去除。

优选地,上述技术方案中,所述步骤四中,采用极限学习机、BP网络或逻辑回归建立预测模型。

优选地,上述技术方案中,还包括步骤六,在步骤五测试出训练好的预测模型稳定性好之后,重复若干次步骤四至五,且每次重复时,在步骤四中被划分为测试集的各组特征向量在之前的过程中从没被划分过为测试集。

优选地,上述技术方案中,所述步骤一中,每组原始数据还包括空燃比这个指标的现场检测数据,从而能够在所述步骤二中,通过空燃比的数值与燃气流量和助燃空气流量之间的比值进行对比,便可直接去掉燃气流量和助燃空气流量中的异常数据和噪声。

与现有技术相比,本发明具有如下有益效果:

本发明主要应用于铝熔炼过程中工艺参数的控制及优化,其依据数据驱动建模的思想,并结合深度置信网络对铝熔炼过程炉膛温度建立预测模型,能够准确地对炉膛温度进行预测,其通过对其他指标进行检测来预测炉膛温度,检测元器件的工作环境不再是位于温度高且腐蚀性大的炉膛内,从而不易损坏,经济效益好。另外,本发明利用深度置信网络能够减少手工设计特征的巨大工作量,其不仅效果更好,而且使用起来也有很多方便之处,与实际数据拟合性较好,从而便于对铝熔炼过程有一个更全面的认知,并更加有益于铝熔炼过程参数优化的调整。

附图说明

图1是根据本发明基于深度置信网络的铝熔炼过程炉膛温度预测方法的步骤示意图。

图2是根据本发明的指标数据特征提取流程图。

图3是根据本发明的DBN训练过程图。

图4是根据本发明的DBN对数据特征提取过程示意图。

图5是根据本发明的DBN训练前后特征值变化趋势图。

具体实施方式

下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。

除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。

图1至图5显示了根据本发明优选实施方式的一种基于深度置信网络的铝熔炼过程炉膛温度预测方法的结构示意图,该基于深度置信网络的铝熔炼过程炉膛温度预测方法包括如下步骤:

步骤一,从现场设备上采集若干组原始数据,每组原始数据包括铝熔炼过程中的炉膛温度、每个排烟口的排烟温度以及每个烧嘴的助燃空气流量、助燃空气温度、助燃空气压差、助燃空气阀门开度、燃气流量、燃气压差和燃气阀门开度这些指标的现场检测数据。可以是通过在现场设备上安装的检测设备,从监控组态WINCC上采集铝熔炼过程的现场实时数据,采集频率为5min/次,总共250组数据,每组数据中包括所有的指标的一个原始数据。例如,炉膛有四个排烟口和两对烧嘴,则每组原始数据就包括1个炉膛温度,4个排烟温度和2个助燃空气流量、2个助燃空气温度、2个助燃空气压差、2个助燃空气阀门开度、2个燃气流量、2个燃气压差和2个燃气阀门开度,共19个原始数据,不同的排烟口和不同的烧嘴的指标数据要进行不同的编号来进行区分。

步骤二,对步骤一中采集到的每个指标的所有原始数据进行剔除异常数据和去除噪声,以得到正常数据。由于现场环境的复杂性和多变性,采集的数据中会包含噪声和异常点,不利于后续模型的建立,需要剔除异常点和去除噪声。

本发明优选地,在步骤二中,采用SPSS软件中的绘制直方图、箱线图和数据标准化三者中的至少一种方式来进行异常数据的剔除。可以是同时采用这三种方式对数据进行分析,分别绘制直方图、箱线图和数据标准化,从而能够综合判断出数据中的异常点。运用SPSS此类社会科学统计学软件用于对原始数据进行剔除异常数据处理,此软件功能强大且操作简单,分析结果清晰、直观、易学易用。

本发明还优选地,在步骤二中,采用滑动平均法来进行噪声的去除。把需要去噪的每个指标的所有原始数据分别表示为yi=fi+ei,其中yi为单个原始数据,fi为确定成分,ei为随机误差;当ei大于一定值时,这个原始数据fi便为噪音,降低随机误差ei的影响即可对数据进行去噪。具体就是对于波动的原始数据yi,在一定的小区间上可以近似为平稳处理,然后计算该区间上的平均值,这就可以降低误差ei造成的不确定性误差。滑动平均法的具体过程为:

把每个指标的所有原始数据分成若干个区间,每个区间利用以下的公式进行局部平均:

其中fk和yk为区间平均值,用得到的区间平均值来替代这个区间所有的数据,以过滤掉由于波动造成的误差。

去除异常点和噪声之后,为了减少数据的差值,使分布更加均匀,去除数据量纲,对若干个区间的平均值,还可以进行归一化处理,以将所有数据转化到[0,1]之间,从而提高模型训练速度。归一化公式为:

其中:xnorm为归一化后的值,x为区间平均值,xmax为最大的区间平均值,xmin为最小的区间平均值。

本发明优选地,在步骤一中,每组原始数据还包括空燃比这个指标的现场检测数据,空燃比是燃气流量和助燃空气流量之间的比值,从而能够在步骤二中,通过检测到的空燃比的数值与检测到的燃气流量和助燃空气流量之间的比值进行对比,如果对比结果相差较大,则这组数据的燃气流量和助燃空气流量异常,如果对比结果相同或相差较小((差值小于测得的空燃比的5%)),则这组数据的燃气流量和助燃空气流量为正常数据,这样通过一次对比便可直接去掉燃气流量和助燃空气流量中的异常数据和噪声。

步骤三,对步骤二中最终得到的每个指标的所有的正常数据利用深度置信网络(DBN)进行特征提取,以得到特征向量。采集到的指标变量之间可能存在线性相关的关系,这对于模型的训练有很大的阻碍,信息的冗余会影响训练速度及准确性,因此对于数据进行特征提取很有必要。通过深度置信网络提取出来的特征向量不仅包含原始数据的全部信息,还能够很好的代表原始数据,使得原始数据的本质特征信息得到了尽可能的保留,而且各个特征之间都是线性无关,不会相互影响,更有利于模型的建立和训练。参考图2和图4,将指标数据作为训练样本输入DBN,采用逐层无监督贪婪学习的方法设置权值和阈值,对DBN内的每个RBM(受限波尔兹曼机)进行训练;再采用随机梯度下降算法对训练的深度置信网络模型进行微调,并一次选取若干个样本进行误差反向传播,设定学习率,调整各层权值和偏置,计算损失函数,迭代多次直至最优,记录此时的特征向量。本发明利用DBN对数据进行特征提取的过程为:

1)初始化参数:DBN包括输入层、输出层和4层网络结构RBM,设定训练周期为10,学习率为0.1,迭代次数为100,各层神经元个数为18-100-100-100-100-18,两个18分别为输入层和输出层的神经元个数,100为各层RBM的神经元个数。

2)将4个RBM与输入层和输出层串联起来后则构成了一个DBN,其中,上一个RBM的隐层即为下一个RBM的显层,上一个RBM的输出即为下一个RBM的输入。经步骤二处理之后的数据中,每个指标的正常的数据均作为DBN的输入X,从而通过DBN进行训练。训练过程中,需要充分训练上一层的RBM后才能训练当前层的RBM,直至最后一层。各层RBM训练过程:

i)对于一个样本数据X,采用对比散列算法(CD)对其进行训练,将X赋给第一个RBM的显示层v1,利用公式计算出隐藏层中每个神经元被激活的概率p(h1|v1);

ii)用h1重构显示层,即通过隐藏层反推显示层,利用公式计算显示层中每个神经元被激活的概率p(v2|h1);

iii)同样地,从计算的概率分布中采取吉布斯抽样(Gibbs)抽取一个样本v2~p(v2|h1)

iv)通过v2再次计算隐藏层中每个神经元被激活的概率,得到概率分布p(v2|h1);

v)更新权值:

W←W+γ[P(h(0)=1|v(0))v(0)T-P(h(1)=1|v(1))v(1)T]

a←a+γ[v(0)-v(1)]

b←b+λ[P(h(0)=1|v(0))-P(h(1)=1|v(1))]

若干次训练后,隐层不仅能较为精准地表示显层数据之间的特征,同时还能够还原显层,这里为了保持数据的完整性,第一层和最后一层神经元个数相同。特征提取结果明显可以得出各个特征对于炉膛温度的影响程度,便于后续预测模型的搭建。参考图5,a图为刚开始输入预测模型的数据分布情况,b,c,d图是训练过程中数据的分布情况,e图为最终得到的特征向量的数据分布情况,这样原来杂乱的原始数据,经训练后得到分布情况比较整齐,更能代表原始数据信息的特征向量。

步骤四,把经步骤三特征提取后得到的各组特征向量划分为训练集和测试集,并建立预测模型;通过训练集中各组特征向量来不断训练预测模型,每组特征向量对预测模型的训练过程是把这组特征向量内除了炉膛温度之外的其他指标作为预测模型的输入,预测模型输出的炉膛温度再与这组特征向量内的炉膛温度进行对比和拟合,即计算预测炉膛温度与实际测得的炉膛温度之间的差值,如果相差较大,就继续训练,直到预测模型输出的炉膛温度与特征向量内的炉膛温度一致或相差很小,便能得到训练好的预测模型。优选地,在步骤四中,采用极限学习机、BP网络或逻辑回归来建立预测模型。

步骤五,对经步骤四训练好的预测模型进行评估,把步骤四划分得到的测试集中的每组特征向量内除了炉膛温度之外的其他指标输入到训练好的预测模型中,并将训练好的预测模型得到的预测的炉膛温度的结果与这组特征向量内的炉膛温度进行对比,如果对比结果满足要求(差值小于这组特征向量内的炉膛温度的5%),则表示测试的稳定性好,利用步骤四训练好的预测模型便可直接用于预测炉膛温度;如果对比结果不满足要求,则返回步骤三,以重新进行特征提取和预测模型的训练。优选地,优选地,还包括步骤六,在步骤五测试出训练好的预测模型稳定性好之后,重复若干次步骤四至五,且每次重复时,在步骤四中被划分为测试集的各组特征向量在之前的过程中从没被划分过为测试集,以进行交叉验证。这样可以避免随机性对模型稳定性评估造成良好的“假象”。采用上述的交叉验证的方法进行划分时,假如共有250组样本数据,便可以把50组样本作为验证模型的测试集,其余200个样本作为训练集,每次重复时划分为测试集的50组样本在之前从来没有被划分过为测试集,这样交叉验证重复若干次,最后计算若干次的结果的均值及若干次测试的箱线图来评估稳定性。

本发明主要应用于铝熔炼过程中工艺参数的控制及优化,其依据数据驱动建模的思想,并结合深度置信网络对铝熔炼过程炉膛温度建立预测模型,能够准确地对炉膛温度进行预测,其通过对其他指标进行检测来预测炉膛温度,检测元器件的工作环境不再是位于温度高且腐蚀性大的炉膛内,从而不易损坏,经济效益好。另外,本发明利用深度置信网络能够减少手工设计特征的巨大工作量,其不仅效果更好,而且使用起来也有很多方便之处,与实际数据拟合性较好,从而便于对铝熔炼过程有一个更全面的认知,并更加有益于铝熔炼过程参数优化的调整。

前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1