薄膜稀土族永久磁铁及其制造方法

文档序号:6898954阅读:142来源:国知局
专利名称:薄膜稀土族永久磁铁及其制造方法
技术领域
本发明涉及一种薄膜稀土族永久磁铁及其制造方法,所涉及的薄膜稀土族永久磁铁的构成是,具有1个以上原子层叠体单元,该单元在单结晶硅片那样良好的表面粗糙度、平坦度的非磁性材料基片上,设置稀土族元素的单原子层后,层叠了多层过渡金属元素的单原子层,从而获得在层叠方向具有易磁化轴,并具有高磁特性的薄膜磁铁。
作为提高磁特性的对策,特开平6-151226公开了一种按规定厚度重复层叠Nd-Fe-B系磁铁层和过渡金属层的方法。该方法存在的问题是,Nd-Fe-B的易磁化轴,即C轴的生长方向因基底的过渡金属层的结晶方向而发生变化,所以在层叠方向上全部对齐是非常困难的。
另外的其他提案(特开昭61-108112号)是,将从Gd、Tb、Dy中选择的至少1种稀土族金属膜和从Fe、Co、Ni、Cr、Cu中选择的至少1种过渡金属膜至少在整体上交替层叠2层以上形成的垂直磁化膜。
该垂直磁化膜通过在基片上按过渡金属膜、稀土族金属膜的顺序进行层叠,以提高磁特性。但是,上述垂直磁化膜是以使用磁介质为前提的,所以矫顽力非常低(1kOe左右),不能用作永久磁铁。
以往,曾有利用溅射法、蒸镀法、离子喷镀法等制造薄膜永久磁铁的各种提案,但无论用哪种方法制造的磁铁,所得到的磁特性都大幅度地低于各向异性的烧结永久磁铁。
发明者们对薄膜稀土族永久磁铁的高磁铁特性进行了各种研究,结果得到以下见解,即,通过在非磁性材料基片上,层叠稀土族元素的单原子层后,层叠1个或多个层叠了多层过渡金属元素的单原子层的原子层叠体单元,使该层叠单元体在层叠方向具有易磁化轴,而且提高过渡金属元素对稀土族元素的含有比率,使残余磁通密度得到飞越性提高。
此外,发明者们还得到下述见解,并完成了本发明,即,在原子层叠体单元的层叠结束后,通过在最上层的过渡金属元素的单原子层上形成1层以上的稀土族元素的单原子层,可以抑制抗磁区的产生和防止氧化,同时可以在900K以下的温度下进行热处理,通过该热处理使磁特性,特别是矫顽力有了飞越性提高,能制作出磁特性良好的薄膜稀土族永久磁铁。
即,本发明的薄膜稀土族永久磁铁的特征是,在由表面粗糙度(算术平均粗糙度Ra)为1.0μm以下的非磁性材料组成的基片上,具有1个或多个由在稀土族元素的单原子层上层叠了多层过渡金属元素的单原子层的原子层叠体单元,并且在最上层的过渡金属元素的单原子层上具有1层以上的稀土族元素的单原子层。
另外,发明者们还对上述薄膜稀土族永久磁铁的构成提案如下由非磁性材料组成的基片的构成是单结晶硅片、具有RB2C2(R稀土族元素)的解理面的硅片;稀土族元素的构成是从Nd、Tb、Dy中选择的至少1种,过渡金属元素的构成是从Ti、V、Cr、Mn、Fe、Co、Ni、Cu中选择的至少1种;在层叠体整体上形成有保护膜的构成。
发明者们提案的薄膜稀土族永久磁铁的制造方法的特征是,包含有以下工序在由非磁性材料组成的基片上,形成稀土族元素的单原子层的A工序;重复多次进行在稀土族元素的单原子层上形成过渡金属元素的单原子层的工序的B工序;重复进行1次以上所述A工序和B工序的工序;在最上层的过渡金属元素的单原子层上形成1层以上的稀土族元素的单原子层的工序;或者包含进一步在真空中或惰性气体氛围中对薄膜稀土族永久磁铁实施600~900K的热处理的工序。
最佳实施方式发明者们发现的使由稀土族元素和过渡金属元素组成的薄膜在层叠方向上各向异性化,提高薄膜稀土族永久磁铁的磁特性的方法,是经过以下过程完成的。在以下说明中,稀土族元素是以Nd为例,过渡金属元素是以Fe为例。
以往众所周知的Nd-Fe-B系永久磁铁的磁性各向异性是从4f侧和4g侧的Nd原子的磁各向异性产生的。形成该磁铁的主相的Nd2Fe14B结晶结构中,Nd的4f侧的最邻接原子由2个Nd、2个B、2个Fe组成,Nd的4g侧的最邻接原子由3个Nd、1个B、2个Fe组成,虽然Fe的电荷符号不明,但是至少Nd和B均带正电荷。
Nd的4f不成对电子的波动函数具有unpan型(oblate型、偏球型)扩散,而且因轨道角动量产生的磁矩垂直于波动函数的扩散,所以具有unpan型扩散的波动函数受通过周围离子产生的结晶场的影响,而向c面内扩散,能够获得c轴方向的大的磁各向异性。
发明者们认为,如果把该磁各向异性原理适用到薄膜稀土族磁铁,可以使薄膜稀土族永久磁铁做到高特性化。即,在非磁性材料的基片1上首先形成稀土族元素即Nd的单原子层2(参照

图1A)。
在同一平面上并列形成Nd原子时,和Nd2Fe14B相同,因Nd的4f电子产生的磁矩在与面垂直的方向具有易磁化轴,但磁矩的磁结构如何是由磁矩间的相互作用决定的,所以在该阶段不能下任何结论。
这里,如果在该Nd的单原子层2上设置层叠了几层Fe的单原子层3的Fe原子层叠体4,由于Fe-Fe间和Fe-Nd间的强烈的强磁性相互作用,使前述Nd的磁矩和Fe的磁矩平行。但是,在该状态下,最上层的单原子层3n的磁矩是弱磁场,容易产生抗磁区,所以矫顽力也弱,不会形成永久磁铁。
然后,如果在该Fe的最上层的单原子层3n上再形成Nd的单原子层2,可以抑制该抗磁区的产生,产生强矫顽力,具有恰似Nd2Fe14B的结晶结构的层叠结构,所以能形成强永久磁铁。
以在Nd的单原子层2上设置了Fe的原子层叠体4的原子层叠体单元5为基础,重复设置原子层叠体单元5,即,通过重复进行在上述Nd的单原子层2上设置层叠了几层Fe的的单原子层3的Fe的原子层叠体4,可以获得具有更好磁特性的薄膜稀土族永久磁铁。
本发明的薄膜稀土族永久磁铁,是以由Nd的单原子层2和在其上面层叠了多层Fe的的单原子层3的Fe的原子层叠体4组成的原子层叠体单元5为基础,并在基片1上形成1个或多个原子层叠体单元而构成的。
总之,本发明的上述原子层叠体单元的构成是通过以下发现完成的,通过Fe-Fe间和Fe-Nd间的强磁性相互作用,即使Fe的原子层叠体4在单原子层3的层叠方向具有易磁化轴,并且抑制被Nd的单原子层2,2夹着的抗磁区的产生,使产生强矫顽力,而且提高过渡金属元素对稀土族元素的含有比率,使得残余磁通密度有了飞越性提高,实现了高磁特性。
上述的原子层叠体单元中的稀土族元素必须是单原子层,而且过渡金属元素需要层叠多层该单原子层。此外,通过在该单元的最上层即过渡金属元素的单原子层上设置1层以上的稀土族元素的单原子层,可以抑制抗磁区的产生和防止氧化,并且可以在真空中或惰性气体氛围中在900K以下的温度下进行热处理,能够进一步提高矫顽力。
在本发明中,稀土族元素优选Nd、Tb、Dy中的至少1种,过渡金属元素优选由Ti、V、Cr、Mn、Fe、Co、Ni、Cu中的至少1种组成。使用原料为纯度99%以上的稀土族元素和过渡金属元素的锭块,特别优选氧含量在0.05wt%以下、碳含量0.01wt%以下的。如果含有这些氧、碳元素,会明显降低矫顽力。
在本发明中,作为薄膜制造方法、薄膜制造装置,有溅射法、蒸镀法、离子镀法、分子束外延(MBE)法、等离子区法等,但在层叠类似由单原子层~多个单原子层组成的原子层叠体的超薄膜时,分子束外延(MBE)法、等离子区法较好。
基片优选非磁性材料且平面平滑性良好的材料。基片的表面粗糙度以JIS B 0601或ISO 468定义的算术平均粗糙度Ra在1.0μm以下的为好,更好的是0.5μm以下,最好的是0.1μm以下。另外,基片平坦度优选最平坦的,但是根据测试的基片面积,定义发生变化,所以不作特别规定。
从工业方面讲,半导体器件制作用单结晶硅片的表面粗糙度、平坦度极好,例如,相当于(社)日本电子工业振兴协会(JAIDA)标准的200mm单结晶硅片是TTV0.8μm以下、LTV0.5μm以下、Ra0.1μm以下,平坦度SFQR(max)大约0.2μm以下/25×25mm,这些都是可以利用的。
即,本发明的磁铁,如前所述,Fe的原子层叠体在单原子层的层叠方向具有易磁化轴,且可以抑制被Nd的单原子层夹着的抗磁区的产生,使其产生强矫顽力,其特征是过渡金属元素的原子层和稀土族元素的原子层在接合界面定向排列,如果该排列被打乱,会降低矫顽力,所以基片的表面粗糙度、平坦度特别重要。
作为基片,除表面粗糙度、平坦度、结晶性良好的前述单结晶硅片外,还优选多结晶硅片、或稀土族元素在结晶时被配置在同一平面内的RB2C2(R稀土族元素)的解理面。RB2C2的特征是在稀土族原子面和B-C面容易劈开。
下面说明层叠事例,如图1B所示,在基片1上形成稀土族元素的单原子层10后,制作层叠了多层过渡金属元素的单原子层11的过渡金属元素的原子层叠体12。
将由该稀土族元素的单原子层10和渡金属元素的单原子层11的层叠体12组成的原子层叠体13作为1个单元,重复层叠多个该单元的操作。图1B是设置了3个单元,在最上层的过渡金属元素的单原子层11上设置1层以上稀土族元素的单原子层14,最终制作膜厚为几百~几μm的薄膜永久磁铁。
上述构成中重要的是,稀土族元素(最上层除外)是单原子层,过渡金属元素是层叠了多层单原子层得到的。例如,层叠多层稀土族元素的单原子层,将过渡金属元素只作成单原子层时,不能得到高磁特性。
另外,上述构成为了层叠多层过渡金属元素的单原子层,最好实施将形成单原子层的工序重复进行多次的工序。即,不是连续地成膜进行层叠,而是通过边重复成膜操作的进行、停止,边重复多次各单原子层的成膜来进行层叠,可以进一步减少各单原子层内的缺陷,提高矫顽力。当然,选定条件连续地成膜进行层叠也是可行的。
本发明中,原子层叠体单元的残余磁通密度主要由过渡金属元素(例如Fe)对稀土族元素(例如Nd)的含有比率(Nd∶Fe=1∶X)决定,例如,比率X超过7时,会高于作为R-Fe-B系烧结磁铁主相的R2Fe14B相。另外,残余磁通密度由于抗磁场效果,会因原子层叠体单元的层叠数而发生变化。因此,为获得高磁特性,最好要适宜选定最佳含有比率和单元层叠数。
本发明中,层叠了多层单原子层的膜在接合部容易产生点缺陷和晶格畸变,如果残留有这些缺陷,会成为降低矫顽力的原因,并大幅度降低磁特性。
所以,通过在真空中或惰性气体氛围中对该原子层叠体单元膜进行热处理,清除这些缺陷和畸变,来提高矫顽力,并大幅度提高磁特性。
上述热处理的温度随组成和膜厚而不同,但优选600K~900K,在低温下进行长时间热处理,可以抑制稀土族元素和过渡金属元素的相互扩散,结果容易获得磁特性高的材料。热处理温度若超过900K,容易产生稀土族元素和过渡金属元素的相互扩散,而如果低于600K,缺陷和畸变的修复不充分,不能提高磁特性。
根据本发明的薄膜稀土族永久磁铁为防止氧化,表面用稀土族元素覆盖,为进一步防止在大气中的氧化,最好进行表面处理,在该表面形成保护膜。保护膜除耐蚀性和强度良好的后述金属膜外,树脂膜也可以,还可采用聚酰亚氨膜等。
作为表面处理方法,优选通过气相生长形成的Al涂层和采用公知的电镀法的Ni电镀等,为不降低体积磁特性,保护膜优选较薄的被膜。表面处理是在加工成最终产品前进行,还是在加工后进行,可以根据产品形状、用途来选定。
表2表示可以获得的薄膜稀土族永久磁铁的各膜厚和层叠数。将所得到的层叠膜的一部分在真空中进行表2所示温度下的热处理后,用试料振动型磁力测试装置测试它们的磁特性,其结果如表2所示。比较例1使用表1所示原料制作了表3所示组成的Nd-Fe-B溶解锭块,以其为靶材,利用实施例1的溅射装置,在硅片基片上制作了表4所示膜厚的Nd-Fe-B薄膜,用和实施例1相同的装置测试了所得薄膜的磁特性,其结果如表4所示。
表1
表2
表3
表4
发明效果根据本发明,提高了过渡金属元素对稀土族元素的含有比率的、层叠了多个由利用气相生长形成的稀土族元素和过渡金属元素的单原子层组成的原子层叠体单元的薄膜,可以在层叠方向具有易磁化轴,并在层叠方向上各向异性化,而且能在900K以下温度下进行热处理,所以能够提供实施例所明示的发现高磁特性的各向异性薄膜稀土族永久磁铁。
权利要求
1.一种薄膜稀土族永久磁铁,在由表面粗糙度为1.0μm以下的非磁性材料组成的基片上,具有1个或多个由在稀土族元素的单原子层上层叠了多层过渡金属元素的单原子层所构成的原子层叠体单元,并且在最上层的过渡金属元素的单原子层上具有1层以上的稀土族元素的单原子层。
2.根据权利要求1所述的薄膜稀土族永久磁铁,由非磁性材料组成的基片是硅片和具有RB2C2(R稀土族元素)解理面的硅片中的任一个。
3.根据权利要求1所述的薄膜稀土族永久磁铁,稀土族元素由Nd、Tb、Dy中的至少1种组成,过渡金属元素由Ti、V、Cr、Mn、Fe、Co、Ni、Cu中的至少1种组成。
4.根据权利要求1所述的薄膜稀土族永久磁铁,在层叠体整体上形成有保护膜。
5.一种薄膜稀土族永久磁铁的制造方法,包含有以下工序在由非磁性材料组成的基片上,形成稀土族元素的单原子层的A工序;重复多次进行在稀土族元素的单原子层上形成过渡金属元素的工序的B工序;重复进行1次以上所述A工序和B工序的工序;在最上层的过渡金属元素的单原子层上形成1层以上的稀土族元素的单原子层的工序;以及对基片上的层叠体实施热处理的工序。
6.根据权利要求5所述的薄膜稀土族永久磁铁的制造方法,由非磁性材料组成的基片是表面粗糙度为1.0μm以下的非磁性材料。
7.根据权利要求5所述的薄膜稀土族永久磁铁的制造方法,由非磁性材料组成的基片是硅片和具有RB2C2(R稀土族元素)解理面的硅片中的任一个。
8.根据权利要求5所述的薄膜稀土族永久磁铁的制造方法,稀土族元素由Nd、Tb、Dy中的至少1种组成,过渡金属元素由Ti、V、Cr、Mn、Fe、Co、Ni、Cu中的至少1种组成。
9.根据权利要求5所述的薄膜稀土族永久磁铁的制造方法,热处理条件是在真空中或惰性气体氛围中保持在600~900K的温度下进行热处理。
全文摘要
本发明之目的在于,提供一种可以使利用气相生长形成的薄膜在层叠方向上各向异性化的薄膜稀土族永久磁铁及其制造方法,通过在具有平面平滑性的非磁性材料的基片1上层叠稀土族元素的单原子层10后,多次重复原子层叠体单元13的形成操作,层叠多个构成特性的原子层叠体单元13,其中,该单元13是通过层叠设置层叠了多层过渡金属元素的单原子层11的过渡金属元素的原子层叠体12形成的,从而使各原子层叠体12在单原子层11的层叠方向上具有易磁化轴,并且抑制被稀土族元素的单原子层10,10夹着的抗磁区的产生,使产生强矫顽力,而且通过提高过渡金属元素对稀土族元素的含有比率,使残余磁通密度有了飞越性提高。
文档编号H01F10/32GK1443357SQ01813148
公开日2003年9月17日 申请日期2001年7月30日 优先权日2000年8月2日
发明者山下治, 槙田显 申请人:住友特殊金属株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1