固体氧化物燃料电池三合一电极的制作方法

文档序号:6784776阅读:233来源:国知局
专利名称:固体氧化物燃料电池三合一电极的制作方法
技术领域
本发明属于固体氧化物燃料电池电极的制作方法。
背景技术
熔射(热喷涂)法制作涂层具有快速、低成本等特点。然而,该方法的缺点是涂层中或多或少地存在孔隙,难以得到高致密度的涂层,特别是熔射高熔点材料如陶瓷材料时尤其如此。在制作固体氧化物燃料电池SOFC(SolidOxide Fuel Cell)电极方面,目前有采用普通的大气等离子熔射的方法,制备阳极、阴极和连接极的报道,见衣宝廉。燃料电池—高效、环境友好的发电方式[M]。北京化学工业出版社,2000,5-8;又见OKUMURAK,AIHARAY,ITO S,et al.Development of thermal spraying-sintering Technology for solidfuel cells[J].Journal of Thermal Spray Technology,2000,9354-359。由于燃料电池的电解质层是陶瓷材料且要求高度致密,即使采用大功率的大气等离子熔射方法也不可避免地存在孔隙,难以达到对电解质层的致密度要求。
为此,出现采用低压等离子熔射的方法制备电解质层的方法,见WILL J,MITTERDORFER A,KLEINLOGEL C,et al.Fabrication of thin electrolytes forsecond-generation solid oxide fuel cells[J].Solid State Ionics,2000,131,79-96;又见RAMBERT S,MCEVOY AJ,BARTHEL K.Composite ceramic fuel cellfabricated by vacuum plasma spraying [J].Journal of the European CeramicSociety,1999,19921-923;或在大气等离子熔射制备电解质层后,对该层进行1400℃以上高温烧结后处理,以提高电解质层的致密度;见KASUGA Y,NAGATA S,Hayashi K.Thermal spraying for solid oxide fuel cell [A].Proceedings of ATTAC’88[C].Osaka1988,247-252;又见BARTHEL K,RAMBERT S,SIEGMANN S.Microstructure and polarization resistance ofthermally sprayed composite cathodes for solid oxide fuel cell use [J].Journal ofThermal Spray Technology,2000,9(3)33-347。然而,前者需在低压工作室里进行,批量生产性不好,成本较高;后者存在高温烧结时间长、工艺复杂、会对其它结构层产生影响等问题,因此两者尚不适于SOFC电极的低成本、批量制造。最近有在大气等离子熔射后采用金属无机盐溶液对电解层进行浸渗致密化热处理,提高电解质层致密度的研究报道,见李成新,宁先进,李长久。等离子喷涂结合致密化工艺制备SOFC电解质层,电源技术,2004,28(9)565-568。然而,该方法因需要反复十多次地进行浸渗热处理,时间长,工艺繁烦,尚不适合快速、批量制造SOFC电极的要求。

发明内容
本发明提供一种固体氧化物燃料电池三合一电极的制作方法,其目的是既保留熔射法快速、低成本的优点,又能高质量地制作高致密度电解质层和调整其它各层致密度。
本发明的一种固体氧化物燃料电池三合一电极的制作方法,依序包括下述步骤(1)在基体上用阳极材料熔射形成阳极;(2)采用电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;(3)对电解质层采用激光进行重熔或烧结处理;(4)采用阴极材料,在经过处理的电解质层上继续熔射形成阴极,成为阳极、电解质层、阴极三合一的电极。
所述固体氧化物燃料电池三合一电极的制作方法,根据对各层致密度的要求,可以在熔射形成阳极后,采用激光对阳极进行重熔或烧结处理;还可以在熔射形成阴极后,采用激光对阴极进行重熔或烧结处理;或者分别对阳极和阴极都采用激光进行重熔或烧结处理。
所述固体氧化物燃料电池三合一电极的制作方法,所述基体可以是可分离亦带孔隙的基体;也可以是在前工序已形成涂层的基体。
本发明制作固体氧化物燃料电池三合一电极的优点为(1)采用激光扫描重熔或烧结处理使电解质涂层致密化。
(2)根据需要也可调节激光烧结工艺参数对阳极、阴极各层进行适当的激光处理,达到所需的密度。
(3)可在大气环境下连续、快速、高质量地在需分离或不需分离的基体、或在已形成涂层的基体上,形成阳极、电解质层、阴极三合一电极。
由于制作SOFC燃料电池的电极采用陶瓷或金属陶瓷复合材料,熔射方法适合所有材料涂层的成形,因此本发明燃料电池三合一电极的制作方法不受材料限制,可使粉末材料的成形与烧结一体化,尤其适合采用陶瓷材料涂层的SOFC电极等元器件的成形制造。
具体实施例方式
实施例1使用大气等离子熔射的方法,首先用氧化镍+氧化锆阳极材料,,在耐热镍基合金基体上熔射形成阳极;其次采用氧化锆作为电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;采用功率为300w的YAG固体激光器发出的激光,以300mm/min的和0.2mm的扫描间距对电解质层进行扫描重熔处理,提高电解质层的致密度;最后采用锰酸镧为阴极材料,在电解质层上继续熔射形成阴极,由此得到电解质层高度致密的三合一电极。
实施例2使用可得到陶瓷材料涂层的高速火焰熔射方法,首先采用例1中的阳极材料、在耐热不锈钢基体上熔射形成阳极;根据对阳极材料致密度的要求,采用功率为300w的YAG固体激光器发出的激光,以250mm/min的扫描速度和0.2mm的扫描间距对阳极层进行处理,得到该层所需的密度;采用氧化锆作为电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;采用300w的YAG固体激光器,以300mm/min的和0.2mm的扫描间距对激光对电解质层进行扫描重熔处理,提高电解质层的致密度;最后采用锰酸镧为阴极材料,在电解质层上继续熔射形成阴极,由此得到三合一电极。
实施例3使用可得到陶瓷材料涂层的高速火焰熔射方法,首先采用例1中的阳极材料、在耐热不锈钢基体上熔射形成阳极;根据对阳极材料致密度的要求,采用功率为300w的YAG固体激光器发出的激光,以250mm/min的扫描速度和0.2mm的扫描间距对阳极层进行处理,得到该层所需的密度;采用氧化锆作为电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;采用300w的YAG固体激光器,以300mm/min的扫描速度和0.2mm的扫描间距对电解质层进行扫描重熔处理,提高电解质层的致密度;最后采用锰酸镧为阴极材料,在电解质层上继续熔射形成阴极,根据对阴极密度的要求,调节YAG固体激光器激光烧结工艺参数,采用功率为300w的YAG固体激光器发出的激光,以200mm/min的扫描速度和0.2mm扫描间距对阴极层进行处理,得到该层所需的密度,由此得到三合一电极。
实施例4采用氧化铝陶瓷粉或金属铝粉与氧化铝陶瓷粉混合的粉末材料制作基体,该基体为可分离亦可带孔隙的基体,在此基体上使用等离子熔射的方法,首先采用例1所述的阳极材料熔射形成阳极;其次采用氧化锆作为电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;根据对电解质层致密度的要求,采用功率为300w的YAG固体激光器发出的激光,以300mm/min的扫描速度和0.2mm扫描间距对电解质层进行扫描重熔处理,提高电解质层的致密度;采用锰酸镧为阴极材料,在电解质层上继续熔射形成阴极;最后采用机械物理破坏的方法,将基体破坏后使其与电极分离,由此得到三合一电极。
权利要求
1.一种固体氧化物燃料电池三合一电极的制作方法,依序包括下述步骤(1)在基体上用阳极材料熔射形成阳极;(2)采用电解质材料,在已熔射成形的阳极上继续熔射形成电解质层;(3)对电解质层采用激光进行重熔或烧结处理;(4)采用阴极材料,在经过处理的电解质层上继续熔射形成阴极,成为阳极、电解质层、阴极三合一的电极。
2.如权力要求1所述固体氧化物燃料电池三合一电极的制作方法,其特征在于根据对各层致密度的要求,在熔射形成阳极后,采用激光对阳极进行重熔或烧结处理;或者在熔射形成阴极后,采用激光对阴极进行重熔或烧结处理;或者分别对阳极和阴极都采用激光进行重熔或烧结处理。
3.如权力要求1或2所述固体氧化物燃料电池三合一电极的制作方法,其特征在于所述基体是可分离亦带孔隙的基体或者在前工序已形成涂层的基体。
全文摘要
固体氧化物燃料电池三合一电极的制作方法,属于固体氧化物燃料电池电极的制作方法,目的是保留熔射法快速、低成本的优点,又高质量地制作高致密度电解质层和调整其它各层致密度。本发明依序包括步骤(1)在基体上熔射形成阳极;(2)在已熔射成形的阳极上继续熔射形成电解质层;(3)对电解质层采用激光进行重熔或烧结处理;(4)在经过处理的电解质层上继续熔射形成阴极;成为阳极、电解质层、阴极三合一的电极。还可根据致密度的要求,对阳极或者阴极进行激光重熔或烧结处理;或者分别对阳极和阴极都进行激光处理。本发明不受材料限制,可使粉末材料的成形与烧结一体化,尤其适合采用陶瓷材料涂层的SOFC电极等元器件的成形制造。
文档编号H01M4/88GK1619869SQ20041006127
公开日2005年5月25日 申请日期2004年12月6日 优先权日2004年12月6日
发明者张海鸥, 王桂兰 申请人:华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1