半导体装置及制造方法、使用该半导体装置的电力变换装置的制作方法

文档序号:6842982阅读:95来源:国知局
专利名称:半导体装置及制造方法、使用该半导体装置的电力变换装置的制作方法
技术领域
本发明涉及可控制电流(通电时可以进行开/关控制的最大电流)较大的功率半导体装置及使用该功率半导体装置的电力变换装置。
背景技术
在处理高电压、大电流的电力装置中使用的功率半导体装置,要求电力损耗小、可控制电流大而且可靠性高。作为可控制电流大而且电力容量大的现有的功率半导体装置,可以列举使用硅(Si)的绝缘栅双极晶体管(IGBT)和自激型闸流管。所谓自激型闸流管是能够通过栅极控制信号进行开/关控制的闸流管。公知的有栅极可关断闸流管(GTO闸流管)和静电感应闸流管、MOS闸流管等。另外,作为其他的功率半导体装置,公知的有具有pn结的二极管,亦即pn结二极管和MPS(Merged pin/Schottky)二极管、SRD(Soft and RecoveryDiode)。
近年来,作为代替Si的半导体材料,碳化硅(SiC)等宽间隙半导体材料较为受人注目。SiC与Si相比,具有绝缘破坏电场强度特别大、在150℃及以上的高温下可以工作、同时能隙大等优良的物理特性。因此,作为适合于低损失耐高电压的功率半导体装置的材料,使用SiC的功率半导体装置的开发正在推进。作为用宽间隙半导体材料构成的自激型闸流管,在2001年的IEEEELECTRON DEVICE LETTERS,Vol,22,No.3,从127页到129页公开了SiC-GTO闸流管。在SiC-GTO闸流管中,因为栅极控制信号只要选择流过电流(开)或者关断电流(关)一者就可以进行电流值的控制,所以可控制电流比IGBT大。SiC-GTO闸流管的开关速度非常快,处于和Si的IGBT同等的水平,因此开关损失和Si的IGBT同程度小。
非专利文献12001 IEEE ELECTRON DEVICE LETTERS,Vol,22,No.3,p.127-p.129非专利文献2Proceedings of the 14thInternational Symposium on PowerSemiconductor Devices & Ics 2002年的p.40-p.41在IGBT等晶体管中,通电电流随着栅极控制信号的电平而变化,通电电流值由栅极控制信号的电平制约。但是,通电电流最终因为饱和,因而可控制电流小。闸流管等一旦导通后,因为通电电流不受栅极控制信号制约,所以可以使可控制电流变大。以下把栅极控制信号只选择通过电流还是关断电流其中的一者而不能进行电流值的控制称为“栅极控制信号不制约通电电流”。所谓“栅极控制信号制约通电电流”指栅极控制信号能够进行电流值的控制。
关于电力损失,IGBT等晶体管比闸流管小。一般,半导体装置的总电力损失(以下称为总损失)用下面的公式(1)表示。
总损失=(恒定损失)+(开关损失)={(内嵌电压(built-in voltage))+(导通电阻)×(通电电流)}×(通电电流)+(开关损失)…(1)Si的IGBT与Si的自激型闸流管相比,导通电阻稍微大一些。因此,恒定损失稍微大一些。但是,因为开关速度非常快,所以开关损失非常小,结果,总损失较小。SiC等宽间隙双极半导体装置的导通电阻比Si双极半导体装置小。但是SiC比Si能隙大。因此,SiC的半导体装置的内嵌电压与Si的半导体装置的内嵌电压相比非常大,大到从2.2倍到6.1倍。因此,由于SiC的半导体装置叵定损失非常大,因而总损失比Si的半导体装置大。如上所述,在现有技术中实现低损失而且可控制电流大的SiC的功率半导体装置很困难。

发明内容
本发明的目的在于提供一种低损失、可控制电流大、而且可靠性高的半导体装置及其制造方法以及电力变换装置。
本发明的半导体装置,具有使用宽间隙半导体的、在正向特性上具有内嵌电压的宽间隙双极半导体元件;以及容纳上述宽间隙双极半导体元件、具有用于把上述宽间隙双极半导体元件连接到外部装置上的电气连接部件的半导体封装。所述半导体封装具有用于把上述宽间隙双极半导体元件保持到比常温高的规定温度的发热部件。在以下的说明中简单地记为“温度”的,只要不特别指明,都指半导体装置的结温。
本发明的半导体装置具有使用宽间隙半导体的宽间隙双极发光半导体元件;面对上述宽间隙双极发光半导体元件进行设置使其接收上述宽间隙双极发光半导体元件发出的光的宽间隙光电二极管。上述宽间隙双极发光半导体元件以及宽间隙光电二极管被容纳在具有用于把上述宽间隙双极发光半导体元件以及宽间隙光电二极管连接到外部装置上的电气连接部件的封装内。在所述封装内具有用于把上述封装保持在比常温高的规定温度的发热部件。
本发明的半导体装置的制造方法具有在高杂质浓度的第一导电型SiC的阴极区域上形成低杂质浓度的第二导电型SiC的漂移层的工序;和在上述漂移层上形成第一导电型SiC的基极区域的工序。上述制造方法进而具有在上述基极区域上形成上述第二导电型SiC的阳极区域的工序;以及在上述阴极区域、漂移区域、基极区域和阳极区域上用规定的电子密度照射规定照射能的电子束的工序。
本发明的半导体装置的制造方法具有在高杂质浓度的第一导电型的SiC的阴极区域上形成低杂质浓度的第一导电型的SiC漂移层的工序;和在上述漂移层上形成第二导电型的SiC的阳极区域的工序。上述制造方法进而具有在上述阳极区域上设置阳极电极的工序;在上述阴极区域上设置阴极电极的工序;以及在上述阳极电极和阴极电极之间在规定的时间流过规定的正向电流,并在上述漂移层及阳极区域生成叠层缺陷的工序。
本发明的电力变换装置具有使用宽间隙半导体的GTO闸流管元件以及与上述GTO闸流管元件反并联连接的、使用宽间隙半导体的二极管元件。上述GTO闸流管元件以及上述二极管元件被容纳在一个封装内,该封装反并联连接上述GTO闸流管元件以及上述二极管元件,具有用于把上述反并联连接的GTO闸流管元件和二极管元件连接到外部装置的电气连接部件。在上述封装中设置有开关电路,该开关电路为在直流电源的正极和负极之间并联连接了3个至少串联连接了两个开关模块的串联连接体,所述开关模块具有把所述封装内的上述GTO闸流管元件以及二极管元件保持在比常温高的规定温度的发热部件。在所述各开关模块的每一个上设置控制电路,它用上述发热部件加热各开关模块,在各开关模块达到规定的温度后进行控制使上述开关电路动作。
下面说明本发明的宽间隙双极半导体装置。以下把栅极控制信号只选择流过或切断电流而不能进行电流值的控制称为“栅极控制信号不制约通电电流”。所谓“栅极控制信号制约通电电流”是指栅极控制信号能够进行电流值的控制。在以下的说明中,为容易理解本发明的半导体装置的特征,随时与属于现有技术的Si半导体装置等对比进行说明。
首先,关于可控制电流进行说明。在使用宽间隙半导体的本发明的pn结二极管或自激型闸流管等宽间隙双极半导体装置中,不能用栅极控制信号制约通电电流。因此,本发明的这些宽间隙双极半导体装置与IGBT等的、用栅极控制信号制约通电电流的双极半导体装置或宽间隙半导体相比,可控制电流大。特别是在超过现有的Si的双极半导体装置的动作界限结温(从125℃到150℃左右)的高温中,本发明的宽间隙双极半导体装置的可控制电流也较大。
下面说明总损失。一般地,当温度上升时,半导体装置的内嵌电压降低,而导通电阻增大。如现有的Si的pn结二极管和自激型闸流管等那样,在正向特性中具有规定内嵌电压的Si的双极半导体装置中,如果使双极元件的温度上升,则总损失变大。现有的Si半导体装置的情形,一旦温度上升,则内嵌电压减小,但是导通电阻和载流子的寿命显著增大。由于该导通电阻的显著增大,恒定损失显著增大。因为该恒定损失的增大数量超过由于内嵌电压的减小所引起的恒定损失的减少数量,所以总的恒定损失增大。另外,由于载流子寿命的显著增大,关断时的开关时间显著增大,所以开关损失显著增大。结果从公式(1)可知,总损失变大。
发明人从各种实验结果发现了下面的事实。
比较具有相同耐电压的宽间隙双极半导体装置和Si双极半导体装置的温度依赖性的结果,关于定量的温度依赖性发现以下两个事实。
第一事实是,当宽间隙双极半导体装置的温度上升时,在实用水平的通电电流密度的范围(例如电流密度为1A~700A/cm2)内,与由于导通电阻增大而引起的恒定损失的增大数量相比,由于内嵌电压的降低所引起的恒定损失的减小数量较大。
一般,如果温度上升,则半导体装置关断时的开关时间变长,所以开关损失增大。第二事实是,在耐电压相同的情况下,宽间隙双极半导体装置比Si的IGBT等双极半导体装置因温度上升所引起的开关时间的增大要小,因此开关损失的增大较小。
第一事实的原因如下在常温下,宽间隙双极半导体装置的导通电阻比Si的双极半导体装置小很多。因此,即使由于温度上升宽间隙双极半导体装置的导通电阻增大,其增大数量也较小。
第二事实的原因如下宽间隙双极半导体装置的载流子寿命比Si双极半导体装置小很多。因此,即使由于温度上升宽间隙双极半导体装置的载流子寿命增大,其增大数量也较小。
本发明利用上述第一和第二事实,其特征在于,把宽间隙双极半导体装置的温度通过升高温度的部件保持在比常温高的温度下并使之动作。亦即,通过升高温度的部件使pn结二极管或者白激型闸流管等宽间隙双极半导体装置元件的温度升高。由此,可以使由于内嵌电压的降低而引起的恒定损失的减少比由于导通电阻的增大所引起的恒定损失的增大要大。其结果,可以降低总的恒定损失。另一方面,因为开关损失的温度上升所引起的增量比较小,所以可以减少总损失。
在宽间隙双极半导体装置中,结晶的质量尚不十分良好,存在很多载流子的各种陷阱。因此,在宽间隙双极半导体装置中,关断时的尾电流比Si显著大。如果宽间隙双极半导体装置的温度升高,则该尾电流进一步增大,导致开关损失显著增大。通常认为,这是由于被俘获的载流子在高温下多数被释放的缘故。
进行种种实验的结果,发明人发现了如果在宽间隙双极半导体装置中施加电子束或带电粒子束的照射,则可以降低该尾电流的第三事实。通常认为,这是因为通过照射电子束或带电粒子束,在宽间隙双极半导体装置的SiC半导体层内新形成的陷阱相对于原有的陷阱占优势,通过这些陷阱决定载流子的寿命的缘故。但是,如果过度照射,就会导致导通电压增大、恒定损失增大。例如,作为电子束的照射条件,取照射能为0.1MeV~20MeV,作为照射量,在5×1011/cm2~5*1014/cm2的各范围内选择每单位面积的电子数进行照射,并实行退火。通过上述照射条件的电子束的照射,可以把载流子的寿命调节到约从0.01微秒到20微秒的范围内。由此,因为不会引起导通电压的显著增大,所以可以减少尾电流,其结果是,可以显著降低开关损失。如上所述,用温度上升部件使元件温度升高,在作为其结果的由于内嵌电压的降低所引起的恒定损失成分降低的效果上又增加了由于该电子束照射产生的开关损失降低的效果。由此,可以在保持良好的控制性的同时降低整个半导体装置的损失,能够更有效地实现本发明的目的。
另外,在宽间隙双极半导体装置的场合,尽管半导体元件的温度上升并且总损失比Si双极半导体装置变小,然而宽间隙双极半导体装置的能隙还是大于等于Si的能隙,并且存在相当的裕度。因此,即使半导体元件的温度上升到上述程度,也难于引起热击穿或热破坏,可以确保相对于温度的较高可靠性。另外,为获得高耐电压,设定电场缓和区域的宽度使之比理论界限值大,可以降低电场缓和区域中的电场。即使这样处理,因为宽间隙双极半导体元件的导通电阻非常低,通过使电场缓和区域的宽度变大引起的导通电阻的增大量比Si双极半导体元件小。亦即,可以不损害低损失的特性就能够确保较高的可靠性。如上所述,根据本发明,可以实现在低损失下可控制电流大、且具有较高可靠性的半导体装置。
根据宽间隙半导体元件的导通电压的温度依赖性,导通电压在低温时较高,随着温度升高而逐渐降低。但是导通电压具有在某上限温度(在Si的情况下,在350~600℃的范围内由元件结构决定)下最低、在超过上述上限温度的温度下反而变高的倾向。这意味着元件的恒定损失的温度依赖性也表示同样的倾向。因此,不希望使半导体元件的温度上升到上述上限温度以上。该上限温度依赖于通电电流密度,通电电流密度越高,则其越低。例如,在SiC双极半导体装置的场合,电流密度为700A/cm2下约为300℃,在5A/cm2下约为750℃。为了有效地实现使可控制电流变大的本发明的目的,SiC双极半导体装置的电流密度,在其值比相当于同样额定值的Si双极半导体元件的额定电流的电流密度(25~40A/cm2)高的情况下使用。处于该较高的电流密度中的SiC双极半导体装置的上限温度是600℃左右。驱动SiC双极半导体装置的希望的温度范围比常温高而小于等于上述上限温度。把该温度范围称为“适宜温度范围”。适宜温度范围例如为200℃~450℃。在该适宜温度范围内,为了使SiC双极半导体装置动作,也可以在室温下开始动作,由恒定损失所产生的自发热使SiC双极半导体装置的温度上升并变成适宜温度范围。但是,希望把该SiC双极半导体装置预先加热使其温度变为上述适宜温度范围后开始动作,则温度会迅速稳定。亦即,在使用宽间隙半导体元件构成电力电路变换装置并以规定的恒定电源驱动负载时,使用发热部件使元件变成高温后开始驱动。如果这样做,则不仅叵定损失小,而且因为可以迅速使负载进入稳定操作,所以可以提高电力变换装置的可靠性。
在宽间隙双极半导体装置中存在依赖于结晶面方向的特有的结晶缺陷,该结晶缺陷有时会损害元件的可靠性。例如,在作为典型的宽间隙双极半导体元件的4层6方晶形的SiC的pn二极管中,为容易得到单一结晶,对于(0001)结晶面在从3到8度倾斜的结晶面上通过外延生长(0027,5)形成n型半导体区域。接着在该n型半导体区域上通过外延生长或者离子注入形成p型半导体区域。在形成上述n型以及p型半导体区域时,在两半导体区域上生成称为基面位错(basal plabe dislocation)的结晶缺陷。公知的是,如果对具有基面位错的pn二极管通电,则该基面位错形成“叠层缺陷”。
叠层缺陷被认为是由例如从p型半导体区域向n型半导体区域注入的少数载流子与结晶的晶格点冲突时的冲击能形成的。通过通电形成的叠层缺陷随通电电流增大而形成得越多。该叠层缺陷因为俘获注入的少数载流子进行再结合而消失,所以少数载流子的寿命变短。叠层缺陷的增加是半导体区域的恶化现象,其结果是,导通电压升高。如果导通电压升高,则通电时的电力损失变大,同时,随情况不同有可能由于热而破坏pn二极管元件。
进行各种实验的结果,发明人发现,如果使pn二极管元件的温度上升,则可以降低由于上述叠层缺陷引起的少数载流子的俘获作用,防止由于再结合引起的少数载流子的消失。即使叠层缺陷增大,如果保持pn二极管元件的温度较高,则也可以抑制导通电压增大的现象发生。具体说,少数载流子的俘获作用,如果使pn二极管元件的温度大于等于50℃,则开始降低,大于等于250℃时几乎消失,发生导通电压增大的现象变得非常小。其结果,在可以防止电力损失增大的同时,亦可以实现较高的可靠性。
因为一次形成的叠层缺陷即使元件温度降低也不能消失,所以,如果在元件温度低的状态下通电,则由于叠层缺陷的作用,可能会发生较大的电力损失而破坏元件。因此,在通电开始前预先使元件的温度上升到大于等于125℃。若在该温度下开始通电,由于自发热而使温度急速上升,在短时间内达到大于等于250℃。因此,即使叠层缺陷存在也可以避免其影响,可以不使导通电压升高而给元件通电。
作为使宽间隙双极半导体元件的温度上升的一个手段,设置加热部件来加热宽间隙双极半导体元件。另外,作为使宽间隙双极半导体元件的温度上升的另一个手段,也可以利用给宽间隙双极半导体元件的构成要素的一部分或者全部通电时的自发热而使温度上升。也可以采用通过加热部件的加热和自发热两者。在利用自发热时,通过适当设定设置于宽间隙双极半导体元件上的散热器的大小、材质、形状,从而可以使宽间隙双极半导体元件的温度上升到希望的值。如果使散热器小型化,并使用比热小的材料,则可以加快宽间隙双极半导体元件的温度的上升速度,同时可以升高温度。另外根据需要也可以设置用于送风冷却的风扇。通过调节风扇的转动速度,可以使宽间隙双极半导体元件的温度变为期望的值。在利用自发热的场合,因为不需要加热部件,所以可以使宽间隙双极半导体元件的结构变得简单。
本发明的半导体装置,在正向特性上具有内嵌电压,使通过控制信号控制电流的通电和关断的宽间隙双极半导体元件预先上升到规定的温度后开始动作。由此,可以实现可控制电流大而且低损失、可靠性较高的半导体装置。


图1是本发明的第一实施例的宽间隙pn二极管装置的剖面图。
图2是本发明的第二实施例的宽间隙GTO闸流管装置的剖面图。
图3是本发明的第二实施例的宽间隙GTO闸流管装置中使用的GTO闸流管元件与图2的纸面正交的面的剖面图。
图4是本发明的第三实施例的光耦合宽间隙半导体装置的剖面图。
图5是本发明的第四实施例的SiC-pn二极管装置的剖面图。
图6是本发明的第五实施例的、使用上述各实施例的宽间隙半导体装置构成的3相逆变器装置的电路图。
图7是本发明的第五实施例的逆变器装置中使用的开关模块的剖面图。
具体实施例方式
下面参照图1到图7说明本发明的优选实施例。在各图中,为易于观看,图示的各要素的尺寸不对应实际的尺寸。在以下的说明中,单记为“温度”的,只要不特别指出,均指半导体装置的结温。
第一实施例本发明第一实施例的半导体装置,是耐电压为8.5kV的SiC(碳化硅)pn二极管装置19,下面参照图1说明。
图1是本发明第一实施例的SiC-pn二极管装置19的剖面图。在图1中,SiC的pn二极管元件13是4层6方晶形的元件,在厚度约300μm的高杂质浓度的n型SiC的阴极区域1上形成厚度约95μm的低杂质浓度的n型SiC的漂移层2。阴极区域1的下面形成阴极金属电极7。在漂移层2的中央区域形成构成和漂移层2主结合的p型SiC的阳极区域3。在阳极区域3的周围形成p型SiC的电场缓和区域4。在阳极区域3上形成阳极金属电极6。在除去阳极金属电极6的元件的表面上形成表面保护膜5。
阳极金属电极6通过金引线8连接到作为电气连接部件的金属引线管脚(lead pin)9的连接端9a。阴极金属电极7粘接在金属支撑体10的上面使之保持电气连接。在支撑体10的下面中央部,连接有电气连接部件的金属引线管脚11。该SiC-pn二极管装置19通过引线管脚9和11与外部布线连接。引线管脚9贯通支撑体10,在贯通部由高熔点绝缘玻璃12密封、粘合。包含pn二极管元件13以及引线管脚9的连接端9a的支撑体10的上面由金属罩14覆盖,其内部空间封入氮气。
在支撑体10的下面,作为使pn二极管元件13的温度上升的发热部件,安装有把镍铬合金线15a埋入到硅胶等耐热性橡胶薄片内的薄片状加热器15。加热器15具有用于给内部的镍铬合金线15a通电的、分别用绝缘物17a、17b覆盖的端子16a、16b。
详细说明本实施例的SiC-pn二极管装置19的制作方法的一例。SiC-pn二极管元件13的阴极金属电极7使用金硅高温焊锡焊接在支撑体10上。金引线8使用引线键合装置连接阳极电极6和金属引线管脚9的端部9a之间。在图1中只表示出1根引线8,但是,在实际的元件中,根据流过的电流值而并联多根引线。在如上述构成的支撑体10上,在氮气中安装金属罩14,将周围焊接并密封,形成封装。由此,在金属罩14内的空间44封入氮气。最后在支撑体10的下面粘贴加热器15,同时在金属罩14的外面安装温度传感器18,完成SiC-pn二极管装置19。温度传感器18的连接线18a连接在温度控制部140。温度控制部140根据温度传感器18的检测输出,经由连接线142、143给加热器15供给电源141的电力,把pn二极管元件13的温度控制在规定值。
下面说明本实施例的SiC-pn二极管装置19的动作的一例。在使pn二极管装置19动作前给加热器15通电,并加热支撑体10,保持pn二极管元件13的温度为250℃左右。pn二极管元件13的温度检测采用在以下示出的利用元件的温度上升导通电压就上升这一特性的方法来进行。把安装了罩14后形成封装的SiC-pn二极管装置19放入到温度可变的加热室中,使加热室的温度从室温慢慢上升。给加热中的pn二极管元件13流过例如时间宽度为200μs的、额定电流的200分之一左右的正方向的脉冲电流。测定流过上述脉冲电流时的、大体等于加热室温度的pn二极管元件13的温度和导通电压,制作表示两者关系的校正曲线(图表)。以后使用该图表测定温度。亦即在pn二极管元件13的加热过程中施加上述脉冲电流来测定导通电压。通过参照所述图表可以从导通电压的测定值获知pn二极管元件13的温度。在pn二极管元件13的温度达到规定值例如250℃以后,停止脉冲电流的施加,参照温度传感器18的检测值,通过温度控制部140控制加热器15的通电,把pn二极管元件13的温度保持在上述规定值。
接着,在引线管脚9和11之间施加反向电压并测定耐电压使引线管脚11的电位比引线管脚9的电位高。本实施例的pn二极管装置19的耐电压是8.5kV。反向电压为8kV时的漏电流密度小于等于2×10-3A/cm2,在250℃的高温下可得到希望的特性。可控制电流为200A,并在360A/cm2的较高电流密度、电流200A、重复频率5kHz下通电。在电流密度360A/cm2下通电时的导通电压为2.5V,反向恢复电荷为11μC,恒定损失约280W,开关损失约为33W。此时pn二极管元件13的结温在3秒或3秒以下的短时间内约变为340℃。
在耐电压为8.5kV的现有的Si-pn二极管的场合,如在下面的文献“Proceedings of the 14thinternational Symposium on Power Semiconductor Device& Ics 2002的p.41-p.44”中所公开的那样,在结温125℃下用150A的通电电流(电流密度约为50A/cm2)通电时的导通电压为3.5V,反向恢复电荷约为125μC。与上述现有的Si-pn二极管相比,在本实施例的SiC-pn二极管装置19中,恒定损失大约为95%。另外,因为本实施例的pn二极管装置的反向恢复电荷约小1位,所以开关损失也约小1位。SiC-pn二极管装置19的总损失为Si-pn二极管的50%左右,可以大幅度降低。在SiC-pn二极管装置19中,结温为340℃时的导通电阻也比结温为125℃时的Si-pn二极管的导通电阻大幅度减小,其结果,总损失变小。温度为340℃时的SiC半导体到失去半导体性质而成为金属状态还剩余约1.66eV的能隙。该1.66eV的能隙,因为比温度为125℃时的能隙1.1eV大,所以可以确保相对于温度的较高可靠性。
本实施例的pn二极管元件13的n型漂移层2的厚度约为95μm。因为在pn二极管元件13上施加8.5kV的反向电压时的空乏层的厚度约为85μm,所以具有约10μm左右的裕度。本实施例的pn二极管元件13通过具有该厚度的裕度,可以确保相对于耐电压的高可靠性。
通过使用加热器15预先把pn二极管元件13的温度升高到约250℃的高温后运行,因此,叠层缺陷对导通电压的上升所产生的影响变得极小,可以防止运行中导通电压上升。因此可以把pn二极管元件13中产生的损失保持在一定值,从这一点也可以确保较高的可靠性。
如上所述,根据本实施例,可以实现低损失下可控制电流较大、而且可靠性高的SiC-pn二极管装置19。
第二实施例本发明的第二实施例的半导体装置,是耐电压为5kV的SiC-GTO闸流管(Gate Turn-Off Thyristor)装置49,图2表示其剖面图。图3是表示将图2中的GTO闸流管元件20采用与纸面垂直的面切断后所得到的单元的一个剖面图。在实际的元件中,图3所示的单元在图的左右方向上连接了多个。另外,在图2中,图3所示的单元在垂直于图的纸面的方向上连接了多个。在图2以及图3中,在厚度约为320μm的高杂质浓度的n型SiC的阴极区域21上设置了厚度约3μm的p型SiC的缓冲层22。在阴极区域21的下面设置有阴极电极32。在缓冲层22的上面设置了厚度约60μm的低杂质浓度的p型SiC的基极层23。在基极层23的中央部顺序形成各自厚度约为2μm的n型SiC的基极区域24和p型SiC的阳极区域25。在基极区域24的周围形成n型SiC的电场缓和区域26。在如上构成的GTO闸流管元件20的表面上形成二氧化硅层、氮化硅层以及二氧化硅层三层结构的保护膜27。在阳极区域25上形成阳极电极28。在该阳极电极28上的左侧区域形成第2层的阳极电极29,在右侧区域上通过绝缘膜30形成栅极电极31。如图3所示,在n型的基极区域24上形成第一层的栅极电极33,栅极电极33通过图中未示出的连接部连接在图2所示的栅极电极31上。
对上述结构的GTO闸流管元件20以约7×1012/cm2的电子密度照射照射能约为4MeV的电子束,并在700℃的温度下退火8小时。把进行过这一处理的GTO闸流管元件20使用金硅高温焊锡焊接在支撑体38的上面。引线34、36是直径为80μm的金线,使用引线键合装置分别连接阳极电极29和阳极端子35的端部35a之间、以及栅极电极31和栅极端子37的端部37a之间。在图2中,引线34、36分别各表示出1根,但是实际上,引线34、36并联连接了多根引线。阴极电极32安装在具有阴极端子39的金属支撑体38上。引线34、36以及阳极端子35、栅极端子37以及阴极端子39是电气连接部件。阳极端子35及栅极端子37,用各自的高熔点绝缘玻璃40及41保持和支撑体38之间的绝缘,同时贯通支撑体38并固定。
涂敷耐高热的合成高分子化合物的覆盖体42使之覆盖GTO闸流管元件20的整个面、以及引线34和36与GTO闸流管元件20的连接部附近。最后,通过在氮气环境中在支撑体38上安装金属罩43后进行焊接,从而完成在空间44中封入氮气的SiC-GTO闸流管装置49。在金属罩43的侧面上设置有温度传感器18。
在金属罩43的外侧上面,粘贴有作为在耐热橡胶中埋入镍铬合金线46a的发热部件的加热器46。通过使用加热器46的、分别用绝缘物48a、48b覆盖的端子47a、47b在加热器46上流过直流或者交流电流,从而可以把罩43加热。加热器46是用于使GTO闸流管元件20的温度上升的部件,通过加热罩43,使GTO闸流管元件20的温度上升。在本实施例中,也有和图1所示的第一实施例同样的温度控制部140以及电源141,不过在图2中省略了图示。
在使本实施例的SiC-GTO闸流管装置49动作时,给加热器46通电,加热金属罩43,使GTO闸流管元件20的温度上升到约200℃。GTO闸流管元件20的温度检测方法和上述第一实施例的情形相同。在GTO闸流管元件20的温度达到约200℃后,在正方向上施加5kV的电压,使阳极端子35的电位成为比阴极端子39高的电位。使栅极端子37的电位变成和阳极端子35等电位后,SiC-GTO闸流管装置49维持无电流的关断状态,得到5kV的耐电压。
接着,在该关断状态下使栅极端子37的电位变成比阳极端子35低的电位,从阳极端子35向栅极端子37流过栅极电流。其结果,SiC-GTO闸流管装置49成为导通状态,在阳极端子35和阴极端子39之间流过电流。在导通状态下使栅极端子37的电位变成比阳极端子35高的电位后,在阳极端子35和阴极端子39之间流过的电流转换到栅极端子37和阴极端子39之间。其结果,切断在阳极端子35和阴极端子39之间流过的电流,SiC-GTO闸流管装置49成为关断状态。此时的阳极端子35和阴极端子39之间的电压为反向电压。
具体地说,在阴极端子39上施加负的电压,如果在栅极端子37上以阳极端子35为基准施加不低于内嵌电压的电压,则SiC-GTO闸流管装置49导通。因为此时从阴极区域22向漂移层23内注入电子,所以产生电导率调制,导通电阻大幅降低。在SiC-GTO闸流管装置49导通的状态下,如果使栅极端子37的电位高于阳极端子35的电位,则流过阳极端子35和阴极端子39之间的电流的一部分或者全部从栅极端子37引走,从而可以使GTO闸流管成为关断状态。
在本实施例的SiC-GTO闸流管装置49中,反向电压为5kV的漏电流密度在200℃的高温环境中为5×10-3A/cm2或其以下,反向电压特性良好。
本实施例的SiC-GTO闸流管装置49在具有3kV或3kV以上的耐高电压的现有的Si半导体装置中通电困难的、300A/cm2的高电流密度中可以实现可控制电流150A。GTO闸流管元件20的温度保持在170℃,在300A/cm2的高电流密度下,以重复频率2kHz通电150A的电流时的导通电压为3.4V。开关150A的电流时的导通时间为0.4μs,关断时间为1.4μs,恒定损失为255W,开关损失为103W。如果进行上述动作的话,则GTO闸流管元件20的结温在极短时间内变为约308℃左右。
在耐电压为5.0V的现有的Si-GTO闸流管的场合,温度在125℃下以100A的电流(电流密度约为60A/cm2)通电时的导通电压为5.3V,导通时间为8μs,关断时间为22μs。如果比较本实施例的SiC-GTO闸流管装置49与Si-GTO闸流管装置,则本实施例的SiC-GTO闸流管装置49的导通电压约低1V,恒定损失是Si-GTO闸流管的大约96%。SiC-GTO闸流管装置49的导通时间和关断时间分别短到Si-GTO闸流管的约1/20以及约1/16。因此,SiC-GTO闸流管装置49的开关损失为Si-GTO闸流管的约1/18或其以下。SiC-GTO闸流管装置49的总损失为Si-GTO闸流管装置总损失的大约17%左右,可以显著降低。
在SiC-GTO闸流管装置49的结温308℃下的导通电阻比在Si-GTO闸流管装置的结温125℃下的导通电阻小。因此,总损失也是SiC-GTO闸流管装置49比Si-GTO闸流管装置小。另外,达到SiC失去半导体性质而成为金属状态,还剩余比Si的能隙大到约为1.75eV的能隙。从这点也可以确保相对于温度的高可靠性。低杂质浓度的p型SiC基极层23的厚度约为60μm。因为在5kV的反向电压中基极层23的空乏层的厚度约为50μm,所以具有约10μm左右的充分的裕度。由于这一裕度,可以确保相对于上述耐电压的高可靠性。
因为在本实施例中通过加热器46加热SiC-GTO闸流管元件20,将其温度保持在200℃的高温下使SiC-GTO闸流管装置49动作,所以叠层缺陷的影响变得极小。其结果,因为在动作时导通电压不上升,所以可以确保高可靠性。如上所述,根据本实施例,可以实现可控制电流增大到150A左右、低损失而且可靠性较高的SiC-GTO闸流管装置49。
第三实施例本发明的第三实施例的半导体装置是光耦合宽间隙功率半导体装置,图4表示其剖面图。在图中,作为具有发光功能的主功率半导体元件,使用耐电压为3kV、电流容量为160A的GaN(镓氮化物)-GTO闸流管元件51。作为受光元件使用SiC光电二极管52。SiC光电二极管52面对GaN-GTO闸流管元件51设置在同一封装内。
在图4所示的GaN-GTO闸流管元件51中,在厚度约为250μm的高杂质浓度的n型GaN的阴极区域51a上面设置厚度约为35μm的低杂质浓度的p型GaN的p基极区域53。在p基极区域53的中央区域形成厚度约1.7μm的高杂质浓度的n型GaN的n基极区域54。在阴极区域52的下面设置阴极电极66。在n基极区域54周围的p基极区域53内形成n型SiC的电场缓和区域56。在n基极区域54的右端部上设置金属栅极电极58。在除栅极电极58以外的n基极区域54上设置n型SiC的厚度约为3μm的阳极区域55。在阳极区域55上面设置具有发光窗口60的金属阳极电极59。在p基极区域53以及电场缓和区域56的上面形成氮化硅层和二氧化硅层的2层结构的表面保护膜57。
栅极电极58通过金引线61连接在栅极端子62。阳极电极59通过金引线63、64连接在阳极端子65。阴极电极64安装在具有阴极端子68的金属支撑体67上。引线61、63、64、以及阳极端子65、栅极端子62、阴极端子68是电气连接部件。引线61、63、64,根据流过它们的电流值,也可以使用分别并联连接了多条线的引线。
SiC光电二极管52,因为除使用SiC这点之外其余均具有与现有的光电二极管同样的结构,因此省略详细的说明。SiC光电二极管52,通过氮化铝等绝缘板71粘接在罩70的内侧面,使其受光部80面对GaN-GTO闸流管元件51的发光窗口60。SiC光电二极管52的阳极电极72通过金引线73连接在金属阳极端子74。阴极电极75通过金引线76连接到阴极端子77。引线73、76以及阳极端子74、阴极端子77是电气连接部件,连接到各自的外部布线上。阳极端子74以及阴极端子77通过高熔点绝缘玻璃78、79固定在罩70的贯通孔中。设置透明的合成高分子化合物的覆盖体81使其覆盖GaN-GTO闸流管元件51、SiC光电二极管52、引线61、63、64、73、76以及基极端子62的端部及发射极端子65的端部。在支撑体67的下面,设置具有镍铬合金线85a的加热器85。加热器85是使本实施例的光耦合宽间隙功率半导体装置的温度上升的发热部件。加热器85有两个端子86a、86b,通过该两个端子86a、86b给镍铬合金线85a通电使加热器85发热。在罩70的外面设置温度传感器18。在本实施例中也有和图1所示的第一实施例同样的温度控制部140以及电源,不过在图4中省略图示。
下面说明本第三实施例的光耦合宽间隙功率半导体装置的制作方法的一例。使用金硅的高熔点焊锡把预制的GaN-GTO闸流管元件51焊接在支撑体67的规定位置上。使用引线键合装置并采用直径80μm的金引线63、64连接阳极电极59和阳极端子65。用金引线61连接栅极电极58和栅极端子62。厚厚地涂敷固化前的合成高分子化合物81的原料,使其覆盖GaN-GTO闸流管元件51。
使用金硅的高熔点焊锡把预制的SiC光电二极管52通过氮化铝绝缘板71焊接在金属罩70的内侧面。接着,使用引线键合装置并采用直径80μm的金引线73连接阳极电极72和阳极端子74。另外,采用金引线76把阴极电极75连接到阴极端子77上。接着,厚厚地涂敷固化前的合成高分子化合物81的原料使其覆盖SiC光电二极管52、引线73、76和SiC光电二极管52的连接部附近。最后组合金属罩70和支撑体67,使SiC光电二极管52的受光部80面对GaN-GTO闸流管元件51的发光窗口60,而且使覆盖两者的各合成高分子化合物的原料相接触,并在氮气环境中焊接。其后,在200℃的温度下加热7小时,使合成高分子化合物固化为具有某种程度柔软性的状态。
下面表示第三实施例的光耦合宽间隙功率半导体装置的动作的一例。首先,给加热器85通电,加热支撑体67,使封装内的GaN-GTO闸流管元件51的温度约为200℃。GaN-GTO闸流管元件51的温度测定方法和上述第一实施例的方法相同。使阴极端子68的电位成为比阳极端子65低的电位并处于正向偏置状态。然后,如果使栅极端子62的电位和阳极端子65的电位相同,则维持电流不流通的关断状态。可以在3kV下实现耐高电压。SiC光电二极管52的阳极端子74的电位比阴极端子77的电位低,成为反向偏置状态。
导通和截止驱动如下进行。使栅极端子62的电位成为比阳极端子65的电位低的电位,从阳极端子65向栅极端子62流过栅极电流。由此,GaN-GTO闸流管元件51成为导通状态,产生波长约为390~570nm之间的光50。该光50由SiC光电二极管52接收,在阳极端子74和阴极端子77之间流过其数量与光量对应的光电流。阳极端子74和阴极端子77之间的电流表示本实施例的光耦合宽间隙功率半导体装置的动作状态。该电流可以用于本实施例的光耦合宽间隙功率半导体装置的控制。
在GaN-GTO闸流管元件51处于导通状态时,使栅极端子62的电位比阳极端子68的电位高,则切断流过阴极电极66和阳极电极59之间的电流,停止发光。SiC光电二极管52,因为没有光,所以没有光电流,成为关断状态。
本实施例的GaN-GTO闸流管元件51的耐电压约为3.0kV,在该耐电压下,在220℃的高温中的漏电流密度小于等于3×104A/cm2,这是良好的值。GaN-GTO闸流管元件51和SiC光电二极管52之间的绝缘耐压大于等于5kV,在5kV下的漏电流密度小于等于1×10-5A/cm2。
把本实施例的GaN-GTO闸流管元件51加热到185℃,以重复频率3kHz并采用240A/cm2的高电流密度对160A的电流进行通电。此时的导通电压为3.6V,导通时间为0.3μs,关断时间为0.7μs,恒定损失约为288W,开关损失为68W。通过这一通电,GaN-GTO闸流管元件51的结温(结温度)在短时间内变为约410℃左右。
附带说一下,在现有的Si的耐电压大于等于3kV的GTO闸流管中,不能在240A/cm2的电流密度下流过160A的电流。在耐电压为3kV的Si的GTO闸流管的场合,在结温125℃下,电流120A(电流密度约为45A/cm2)通电时的导通电压为4.5V,导通时间为6μs,关断时间为17μs。
比较本实施例的GaN-GTO闸流管元件51和现有的Si的GTO闸流管,Si的GTO闸流管的可控制电流为120A,而GaN-GTO闸流管元件51的可控制电流较大,为160A。可控制电流为160A下的GaN-GTO闸流管元件51的导通电压是Si的GTO闸流管的可控制电流为120A下的导通电压的约80%,恒定损失约为80%。GaN-GTO闸流管元件51的导通时间和关断时间分别为Si的GTO闸流管的约1/20和1/24,大幅度缩短。其结果,GaN-GTO闸流管元件51的开关损失可以小到Si的GTO闸流管的1/22或其以下,总损失可以显著降低到约19%的程度。把本实施例的光耦合宽间隙功率半导体装置在185℃空气环境中连续通电运行500小时,运行后光传递效率并不降低。另外,分解研究了光耦合宽间隙功率半导体装置,在合成高分子的保护膜81上不产生裂缝、白浊(white turbidity)或变形。另外,正向电压和在3kV下的漏电流密度、开关时间也是测定误差范围内的值,几乎不变化。SiC光电二极管的特性也同样看不见有变化。
在GaN的GTO闸流管的场合,结温410℃下的导通电阻比结温125℃下的Si的GTO闸流管的导通电阻小,其结果,总损失也小。另外,到GaN失去半导体的性质而可以说成为金属状态还剩余约1.7eV的能隙。因此,即使在大于等于400℃的高温下也可以确保较高的可靠性。另外,因为GaN具有约为SiC的大约1.5倍的较高的绝缘破坏电场,所以作为漂移层作用的厚度为35μm的低杂质浓度的p型GaN的基极区域53是相对于3kV的耐电压中的空乏层具有充分裕度的值,从这点来看也可以确保相对于耐电压的高可靠性。
在本实施例中,使GaN-GTO闸流管元件51用加热器85预先加热到185℃后开始动作。因此,几乎看不到叠层缺陷的影响,可以确保动作时导通电压不上升的较高的可靠性。如上所述,根据本实施例,可以实现低损失且可控制电流较大、而且可靠性高的光耦合半导体装置。
第四实施例参照图5说明本发明的第四实施例的半导体装置。第四实施例的半导体装置是SiC-pn二极管装置19a,在图1所示的上述第一实施例的SiC-pn二极管装置19中,代替加热器15而设置有散热器88。其他的结构因为和上述第一实施例实质上相同,所以只说明不同的部分,省略重复的说明。
第四实施例的SiC-pn二极管装置19a具有耐电压为7kV的、4层6方晶形的SiC-pn二极管元件13a。pn二极管元件13a,除使低杂质浓度的n型SiC的漂移层2的厚度约为80μm(在第一实施例中约为95μm)这点之外,其余和上述第一实施例的pn二极管元件13相同。
本实施例的SiC-pn二极管装置19a在支撑体10的下部外面具有散热器88。在散热器88的附近设置送风冷却用的风扇98。在罩14的上部外面设置温度传感器18。其检测输出被输入到温度控制部140。温度控制部140根据温度传感器18的检测输出来控制风扇98的动作。
一旦给pn二极管元件13a通电,则pn二极管元件13a就对应其电流而发热。把该发热称为“自发热”。在本实施例中,使pn二极管元件13a的温度通过上述自发热上升。因此,设置比较小型的、例如采用铝制的散热器88。如果散热器较大而放出的热量过多,则1n二极管元件13a的温度并不上升,所以要考虑pn二极管元件13a的发热量和散热器的散热量的平衡而宁肯希望设置小型的散热器88。在pn二极管元件13a的温度超过希望值时,根据温度传感器18的检测输出使风扇98动作,强制冷却散热器。最好设定散热器88的结构,使进行强制冷却时的散热器88和空气之间的热阻约为1℃/W。
下面说明本实施例的SiC-pn二极管装置19a的动作。首先,在pn二极管元件13a中沿正方向上在规定时间流过规定的直流电流,使之形成叠层缺陷,并促进由于漂移层2和阳极区域3的叠层缺陷所引起的恶化。根据导通电压的上升可以知道恶化的进行。判定出一旦无导通电压上升,则恶化饱和。在本实施例中,在进行上述处理后进行通常的动作。也希望在从上述第一到第三实施例的各半导体装置中实施预先促进由于上述叠层缺陷所引起的恶化的处理。
下面说明本实施例的SiC-pn二极管装置19a的动作例。
在SiC-pn二极管装置19a中流过重复频率为5kHz、电流密度为360A/cm2的200A的电流。此时的导通电压为2.3V,反向恢复电荷为10.4μC。另外,恒定损失约为260W,开关损失约为31W。在驱动风扇98并对散热器88送风使空气和散热器88之间的热阻约为1℃/W时,可以使pn二极管元件13a的结温大约为350℃。
在具有耐电压为7.0kV的现有的Si-pn二极管的场合,结温125℃下用150A的电流(电流密度约为50A/cm2)导通时的导通电压为3.4V,反向恢复电荷为113μC。与上述现有的Si-pn二极管相比,本实施例的SiC-pn二极管装置19a的恒定损失大体是90%。另外,因为本实施例的pn二极管装置的反向恢复电荷约小1位,所以开关损失约小1位。SiC-pn二极管装置19a的总损失为Si-pn二极管的49%左右,可以大幅降低。在SiC-pn二极管装置19a中,结温为350℃时的导通电阻也比结温为125℃时Si-pn二极管的导通电阻小,其结果,总损失小。而且到失去半导体性质可以说成为金属状态还剩余约1.64eV的能隙。因为该1.64eV的SiC能隙也比Si的能隙大,所以可以确保相对于温度的较高的可靠性。
本实施例的SiC-pn二极管装置19的可控制电流为200A。因为n型SiC的漂移层2的厚度为80μm,所以相对于施加7kV的反向电压时的空乏层的厚度70μm具有约10μm的裕度,所以对于7kV的耐电压具有较高的可靠性。
在本实施例中,在pn二极管元件13a上预先在规定时间流过规定的电流,在饱和之前进行由于叠层缺陷所引起的恶化。因此,在SiC-pn二极管装置的使用中恶化不会慢慢进行,可以避免特性随时间的变化。
另外,在动作开始时,pn二极管元件13a在通过自发热上升到200℃或200℃以上的温度之前,使通电电流比额定值小。由此,在pn二极管元件13a的温度不十分高的场合,可以避免由于叠层缺陷所引起的导通电压的上升和由其引起的恒定损失大幅增加。
根据本实施例,因为不需要上述各实施例的半导体装置中设置的加热器等加热部件,因此构造简单,可以使半导体装置小型化。
第五实施例本发明的第五实施例涉及作为开关部使用上述第一实施例的SiC-pn二极管装置19、以及上述第二实施例的SiC-GTO闸流管装置49的、作为电力变换装置之一的逆变器装置。希望本实施例的逆变器装置采用在一个封装中容纳有上述SiC-pn二极管装置19和SiC-GTO闸流管装置49的封装作为开关部。
图6是本实施例的逆变器装置的电路图。图7是作为开关部的开关模块100a的剖面图,该开关部是在一个封装中容纳有上述SiC-pn二极管装置19的pn二极管元件13和SiC-GTO闸流管装置49的GTO闸流管元件20的开关部。
在图6中,逆变器装置90是把直流电源91的直流变换为三相交流并提供给负载92的电力变换装置。逆变器装置90是熟知的电路,在直流电源91的正极和负极之间,并联3个由两个开关模块100a、100b组成的串联连接体。开关模块100a和100b的、3个串联连接体各自的连接点101、102、103连接在负载92。在各开关模块100a、100b上设置因为熟知而省略详细结构的控制电路93。通过省略了图示的控制装置来控制各控制电路93。
因为开关模块100a和100b具有同样的结构,因此只详细说明开关模块100a。
在表示开关模块100a的剖面图的图7中,在金属支撑体125上设置图1所示的pn二极管元件13和图2所示的GTO闸流管元件20。
pn二极管元件13具有实质上和图1所示的结构同样的结构,但是在图1的结构中,将具有300μm的阴极区域1的厚度减小到50μm,取耐电压为5kV。pn二极管元件13通过厚度约为500μm的氮化铝的绝缘板126在和支撑体125之间保持绝缘的状态下安装。pn二极管元件13的阳极电极6用金引线8连接到支撑体125上。pn二极管元件13的阴极电极7用引线7a连接到阳极端子110。
GTO闸流管元件20在支撑体125上安装和图2所示同样的部件。GTO闸流管元件20的阴极电极32安装在下面具有阴极端子111的支撑体125上。GTO闸流管元件20的阳极电极29,通过引线34连接到阳极端子110,栅极电极31通过引线36连接到栅极端子112。通过上述各引线,pn二极管元件13与GTO闸流管元件20反并联连接。在支撑体125的下面,设置具有类似图4所示的加热器85的结构之加热器127。加热器127具有通电用的端子128、129。支撑体125上设置有罩119,以便覆盖pn二极管元件13、GTO闸流管元件20、以及阳极端子110与栅极端子112的各引线的连接部,在内部封入氮气的状态下焊接在支撑体125上。在罩119的外面设置有温度传感器18。
在使本实施例的逆变器装置90动作时,在动作开始前预先给加热器127通电,使所有的开关模块100a、100b的温度上升到约200℃。各开关模块100a、100b的温度采用上述第一实施例中所说明的方法由各自的控制电路93检测,并进行控制使之保持在规定值。
下面说明本实施例的逆变器装置90的动作例。使各开关模块100a、100b的温度上升到200℃,取直流电源91的直流电压为3kV、开关模块100a、100b的开关频率为2kHz,使逆变器装置90动作。该动作中给负载92供给150A的交流输出电流时,在各开关模块100a、100b上发生的损失为4.2W,是比较低的值。逆变器装置90的效率约为98.6%,可以实现比较高的效率。构成本实施例的逆变器的各开关模块100a、100b的可控制电流为150A,可控制电流密度为250A/cm2,可以得到大的值。因为使各开关模块100a、100b在200℃或200℃以上的高温下运行,所以可以确认几乎不产生由于叠层缺陷的影响所引起的导通电压的上升,就能够避免由于导通电压的上升所引起的损失增大,同时得到较高的可靠性。
以上说明了本发明的5个实施例,但是本发明覆盖更多的适用范围或者派生结构。
例如,半导体元件,可以是能够通过栅极控制信号进行开/关控制的自激型闸流管,也可以是栅极关断闸流管(GTO闸流管)、静电感应闸流管、MOS闸流管、双向GTO闸流管、反向导通闸流管、MOS栅极GTO闸流管等。也可以是具有pn结的pn二极管或混合二极管等复合二极管。
另外,在上述各实施例中,叙述了使用SiC或GaN作为宽间隙半导体材料的半导体元件,但是本发明也可以有效地适用于使用钻石、磷化镓、硼氮化物等其他宽间隙半导体材料的半导体元件。
另外,在各半导体元件中,对于把n型区域置换成p型区域、把p型区域置换成n型区域的反极性半导体元件也可以使用本发明的结构。
作为使半导体元件的温度上升的发热部件的加热器,使用了用硅胶包覆镍铬合金线等金属电阻体的加热器,但是也可以采用例如在两个云母或陶瓷板间配置加热器发热体并压接形成的面状加热器。另外,也可以使用陶瓷加热器或者管式加热器等其他原料的加热器、红外线灯以及远红外线陶瓷加热器等辐射型加热部件。作为其他的方法,也可以是使用热枪等向半导体装置吹热风的方法、使用高频感应加热装置来感应加热半导体装置的金属支撑体10和金属罩14的方法。代替上述加热部件也可以利用半导体元件的自发热。这种情况下,在有3个电极的半导体元件的场合,在阳极电极和基极电极之间通电的方法和在阳极电极和栅极电极之间通电的方法哪个都可以。
在上述各实施例中,表示出在半导体装置的封装中使用了金属罩的TO型的封装,但是代替金属罩也可以使用耐高热树脂的罩。另外,各半导体装置的结构也可以不是TOM型,而是柱型或扁平型、使用了耐高热树脂的SIP型、在Si的功率模块中一般使用的模铸型的结构。作为载流子寿命的控制方法,除电子束照射以外也可以使用γ射线的照射、或者照射质子氦离子等带电粒子。在上述实施例中,作为使用例表示了3相逆变器装置,但是也可以是矩阵逆变器或者DCDC变换器等其他电力变换装置。另外,在逆变器或者变换器以外的开关电源或整流装置、调节器、高频发送装置等其他电力变换装置也可以采用本发明。
本发明可以实现可控制电流大且低损失、在高电压下具有较高可靠性的半导体装置,并可以广泛地应用于处理大电流高电压的电力应用中。
权利要求
1.一种半导体装置,其特征在于,具有使用宽间隙半导体的、在正向特性上具有内嵌电压的宽间隙双极半导体元件;容纳所述宽间隙双极半导体元件,并具有用于把所述宽间隙双极半导体元件连接到外部装置上的电气连接部件的半导体封装;和把所述半导体封装内的所述宽间隙双极半导体元件保持在比常温高的规定温度的发热部件。
2.权利要求1所述的半导体装置,其特征在于,所述规定的温度是比这样一个温度高的温度,在所述这样一个温度下,随所述宽间隙双极半导体元件的温度上升而降低的内嵌电压的降低数量所对应的所述宽间隙双极半导体元件的恒定损失的减少数量变得比随所述温度的上升而增加的导通电阻的增加数量所对应的所述恒定损失的增加数量大。
3.权利要求1或者2所述的半导体装置,其特征在于,所述宽间隙双极半导体元件预先用γ射线、电子束以及带电粒子束中至少一个照射,并进行调整使载流子的寿命处于规定的范围内。
4.权利要求1或者2所述的半导体装置,其特征在于,所述宽间隙双极半导体元件,通过照射能从0.1MeV到20MeV、作为照射量的每单位面积的电子数从5×1011/cm2到5×1014/cm2的各范围内的电子束的照射,从而预先进行调整,以便使载流子的寿命处于规定的范围内。
5.权利要求1所述的半导体装置,其特征在于,所述发热部件在所述宽间隙双极半导体元件的动作开始前,预先把宽间隙双极半导体元件加热到比50℃高的规定温度。
6.权利要求1、2或者5所述的半导体装置,其特征在于,所述规定的温度大于等于125℃。
7.权利要求1所述的半导体装置,其特征在于,所述发热部件是设置为用于给所述宽间隙双极半导体元件供热的电气加热器。
8.权利要求1所述的半导体装置,其特征在于,所述发热部件是通过控制所述宽间隙双极半导体元件通电时所产生的热的散热,从而使所述宽间隙双极半导体元件的温度上升到大于等于125℃的散热器。
9.权利要求1所述的半导体装置,其特征在于,所述发热部件是一个散热器,它通过控制所述宽间隙双极半导体元件通电时所产生的热的散发,从而使所述宽间隙双极半导体元件的温度上升到这样一个温度,在所述这样一个温度下,所述宽间隙双极半导体元件随温度上升而降低的内嵌电压的降低数量所对应的所述宽间隙双极半导体元件的恒定损失的减少数量变得比随所述温度的上升而增加的导通电阻的增加数量所对应的所述恒定损失的增加数量大。
10.权利要求1所述的半导体装置,其特征在于,所述半导体封装具有温度传感器、以及根据所述温度传感器的检测输出把所述宽间隙双极半导体元件的温度保持在所述规定温度的温度控制部。
11.权利要求1到6中任何一项所述的半导体装置,其特征在于,所述宽间隙双极半导体元件是具有pn结的二极管以及自激型闸流管中的任何一方。
12.一种半导体装置,其特征在于,具有使用了宽间隙半导体的宽间隙双极发光半导体元件;面对所述宽间隙双极发光半导体元件进行设置以便接收所述宽间隙双极发光半导体元件发出的光的宽间隙光电二极管;容纳所述宽间隙双极发光半导体元件以及宽间隙光电二极管,具有用于把所述宽间隙双极发光半导体元件以及宽间隙光电二极管连接到外部装置上的电气连接部件的封装;以及用于把所述封装保持到比常温高的规定温度的发热部件。
13.一种半导体装置的制造方法,其特征在于,具有在高杂质浓度的第1导电型的SiC的阴极区域上形成低杂质浓度的第2导电型的SiC漂移层的工序;在所述漂移层上形成第1导电型的SiC基极区域的工序;在所述基极区域上形成第2导电型的SiC阳极区域的工序;以及在所述阴极区域、漂移区域、基极区域和阳极区域上用规定的电子密度照射规定照射能的电子束的工序。
14.一种半导体装置的制造方法,其特征在于,具有在高杂质浓度的第1导电型的SiC阴极区域上形成低杂质浓度的第1导电型的SiC漂移层的工序;在所述漂移层上形成第2导电型的SiC阳极区域的工序;在所述阳极区域上设置阳极电极的工序;在所述阴极区域上设置阴极电极的工序;以及在所述阳极电极和阴极电极之间在规定的时间流过规定的正向电流,在所述漂移层及阳极区域产生叠层缺陷的工序。
15.一种电力变换装置,其特征在于,具有使用宽间隙半导体的GTO闸流管元件;与所述GTO闸流管元件反并联连接的、使用宽间隙半导体的二极管元件;容纳所述GTO闸流管元件以及所述二极管元件,反并联连接所述GTO闸流管元件以及所述二极管元件,具有用于把所述反并联连接的GTO闸流管元件和二极管元件与外部装置连接的电气连接部件的封装;开关模块,具有把所述封装内的所述GTO闸流管元件以及二极管元件保持在比常温高的规定温度的发热部件;开关电路,在直流电源的正极和负极之间并联连接3个至少串联连接了两个所述开关模块的串联连接体;以及控制电路,设置在所述各开关模块的每一个上,用所述发热部件加热各开关模块,在各开关模块达到规定的温度后进行控制使所述开关电路动作。
16.权利要求15所述的电力变换装置,其特征在于,所述发热部件是加热所述封装的加热部件以及控制所述封装的散热的散热器中至少一个。
全文摘要
为了得到可控制电流较大且损失较低的功率半导体装置,使用加热器等加热装置令使用宽间隙半导体的双极半导体元件的温度上升。该温度是比这样的温度高的温度,在所述这样的温度下,随所述宽间隙双极半导体元件的温度上升而降低的内嵌电压的降低数量所对应的所述宽间隙双极半导体元件的恒定损失的减少数量变得比随所述温度的上升而增加的导通电阻的增加数量所对应的所述恒定损失的增加数量大。
文档编号H01L29/20GK1701439SQ20048000111
公开日2005年11月23日 申请日期2004年8月19日 优先权日2003年8月22日
发明者菅原良孝 申请人:关西电力株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1