介电陶瓷组合物和多层陶瓷电容器的制作方法

文档序号:6865514阅读:226来源:国知局
专利名称:介电陶瓷组合物和多层陶瓷电容器的制作方法
技术领域
本发明涉及介电陶瓷组合物和多层陶瓷电容器。具体而言,本发明涉及一种介电陶瓷组合物和一种多层陶瓷电容器,当采用高压直流电或高频/高压交流电操作所述的介电陶瓷组合物和多层陶瓷电容器时,其具有高可靠性。
背景技术
通常用低频低压交流电或低压直流电来运转多层陶瓷电容器。但是,近年来,随着电子仪器的开发,由于在电子器件小型化方面取得了快速进展,同样减小了多层陶瓷电容器的尺寸并且增大了它的容量。结果,在这样的多层陶瓷电容器中的一对电极之间施加的电压倾向于相对提高。要求这种多层陶瓷电容器在苛刻的条件下具有更高的电容、更低的损耗、提高的绝缘性能、提高的介电强度和更高的可靠性。
例如,专利文献1、2和3提出了可以在高频、高压交流电或高压直流电的条件下使用的介电陶瓷组合物和多层陶瓷电容器。
专利文献1中所述的介电陶瓷组合物由通式ABO3+aR+bM表示(其中ABO3是表示钛酸钡固溶体的通式;R表示选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素的氧化物;M表示选自Mn、Ni、Mg、Fe、Al、Cr和Zn中的至少一种元素的氧化物),其中主要组分中的A/B、a和b满足下面的关系0.950≤A/B≤1.050,0.12≤a≤0.30和0.04≤b≤0.30。相对于100重量份的主要组分,该介电陶瓷组合物含有0.8至8.0重量份作为附加组分的烧结添加剂。该介电陶瓷组合物还可以含有相对于1mol的钛酸钡固溶体为0.35mol或更少的X(Zr,Hf)O3(其中X表示选自Ba、Sr和Ca中的至少一种元素),和/或相对于1mol的钛酸钡为0.2mol或更少的D(其中D表示选自V、Nb、Ta、Mo、W、Y和Sc中的至少一种元素的氧化物)。该介电陶瓷组合物的烧制温度为1,300℃或更低。该介电陶瓷组合物的介电常数为200或更高,在用高频、高压交流电运转时的损耗低,在高耐电强度下具有高的绝缘强度,满足B和X7R特性的特性并且具有优异的高温负荷性能。
专利文献2中所述的耐变形介电陶瓷粉粒包括主要由钛酸钡构成的固溶体;并且包括烧结添加剂。陶瓷粉粒的轴比率,即c/a,是由X射线衍射确定的,并且在-25℃或更高的温度下满足1.000≤c/a≤1.003。当在2Vrms/mm的电场强度下,用频率为1kHz的交流电测量介电常数对温度的相关性时,在低于-25℃下观察到最高峰。主要组分由通式ABO3+aR+bM表示(其中R表示含有选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种元素的化合物;并且M表示含有选自Mn、Ni、Mg、Fe、Al、Cr和Zn中的至少一种元素的金属氧化物),其中主要组分中的A/B(摩尔比率)、a和b满足下面的关系1.000≤A/B≤1.035,0.005≤a≤0.12和0.005≤b≤0.12。相对于100重量份的主要组分,该介电陶瓷组合物含有0.2至4.0重量份的烧结添加剂。该介电陶瓷粉粒还可以含有相对于1mol的钛酸钡固溶体为0.20mol或更少的X(Zr,Hf)O3(其中X表示选自Ba、Sr和Ca中的至少一种元素),和/或相对于1mol的钛酸钡固溶体为0.20mol或更少的D(其中D表示选自V、Nb、Ta、Mo、W、Y、Sc、P、Al和Fe中的至少一种元素的氧化物)。该介电陶瓷组合物在施加高频/高电压时的损耗低并且热量产生低,并且在DC/AC负载下表现出稳定的绝缘电阻。
专利文献3中所述的介电陶瓷组合物包括钛酸钡、稀土氧化物(其中所述的稀土元素是选自Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb中的至少一种元素),氧化钙和氧化硅,而没有氧化镁。钛酸钡表示为BamTiO3。稀土氧化物表示为RO3/2(其中R表示稀土元素。氧化钙表示为CaO。氧化硅表示为SiO2。该介电陶瓷组合物由通式100BamTiO3+aRO3/2+bCaO+cSiO2表示(其中系数100、a、b和c表示摩尔比率),其中m、a、b和c满足下面的关系0.990≤m≤1.030,0.5≤a≤30,0.5≤b≤30和0.5≤c≤30。该介电陶瓷组合物不含有MgO,因为CaO和MgO的共同存在导致可靠性劣化。该介电陶瓷组合物具有下面的优点其温度特性满足由JIS规定的B特性和由EIA规定的X7R特性。介电损耗低至2.5%或更低。当在室温施加4kVDC/mm时,绝缘电阻(R)和电容(C)的乘积(CR)为10,000Ω·F或更大。在高温下,用高电压的加速寿命试验中,确保长时期的绝缘电阻。因此,可以形成用于多层陶瓷电容器的高度可靠且更薄的介电陶瓷层。
专利文献1日本未审查专利申请公开No.2000-103668专利文献2日本未审查专利申请公开No.2002-50536专利文献3日本专利No.3509710发明内容本发明要解决的问题但是,专利文献1、2和3中提出的介电陶瓷组合物中的每一种可以与高频高压交流电或高压直流电一起使用,并且具有高的可靠性。然而,预期电子器件小型化和更高电容的趋势导致在更加苛刻的使用条件下。此外,可以预期还需要可靠性的改善。因此,在这样苛刻的使用条件下确保和改善可靠性是一个急迫的问题。
本发明是为克服上述问题而完成的。本发明的一个目的在于提供一种高度可靠的介电陶瓷组合物和多层陶瓷电容器,其中即使在将来进一步减小尺寸和进一步增大电容,该介电陶瓷组合物在用高压直流电或高频/高压交流电运转时的热量产生也低,并且其具有的介电常数和电阻率也不劣于在公知技术中的那些。
本发明要解决的问题根据本发明的第一方面,一种介电陶瓷组合物包含表示为100BamTiO3+xCuO+aROn+bMnO+cMgO的主要组分(其中系数100、x、a、b和c表示摩尔比率;m表示Ba与Ti的比率(Ba/Ti);R表示选自Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种金属元素;和n表示保持电中性所需要的正数并且是由R的价数确定的),其中m、x、a、b和c满足下面的关系0.990≤m≤1.050;0.1≤x≤5.0;9.0≤a≤20.0;0.5≤b≤3.5;并且0<c≤4.0,并且相对于100重量份的所述主要组分,所述的介电陶瓷组合物含有0.8至5.0重量份的烧结添加剂。
根据本发明的第二方面,根据本发明的第一方面的介电陶瓷组合物还包含作为添加剂的MO(其中M表示选自Ni和Zn中的至少一种金属元素),所述的主要组分表示为100BamTiO3+xCuO+aROn+bMnO+cMgO+dMO,其中c和d满足下面的关系0<c+d≤4.0;并且d>0。
根据本发明的第三方面,根据本发明的第一或第二方面的介电陶瓷组合物在所述的主要组分中还包含X(Zr,Hf)O3(其中X表示选自Ba、Sr和Ca中的至少一种金属元素)作为添加剂,其中所述添加剂的含量相对于100mol的BamTiO3为大于0mol且小于等于15mol。
根据本发明的第四方面,在本发明第一至第三方面中的任何一方面中,烧结添加剂为SiO2。
根据本发明的第五方面,一种多层陶瓷电容器包含多个介电陶瓷层,所述的介电陶瓷层是层压的;内部电极,每个内部电极位于介电陶瓷层之间;与所述的内部电极电连接的外部电极,其中所述的介电陶瓷层各自是由根据本发明第一至第四方面中的任何一方面所述的介电陶瓷组合物构成的。
根据本发明的第六方面,在本发明的第五方面中,内部电极各自由导电材料构成,所述的导电材料主要含有Ni、Ni合金、Cu或Cu合金。
如上所述,本发明的介电陶瓷组合物含有表示为100BamTiO3+xCuO+aROn+bMnO+cMgO的主要组分。即,该主要组分包含基本组合物,BamTiO3、ROn和MnO,以及添加剂CuO和MgO。因此,可以得到高度可靠的介电陶瓷组合物,其当用高压直流电或高频/高压交流电运转时的热量产生低,并且其具有的介电常数和电阻率也不劣于在公知技术中的那些。可以将该介电陶瓷组合物用于要求具有更小尺寸和更大电容的多层陶瓷电容器的介电材料。在组成式中,m、x、a、b和c满足下面的关系0.990≤m≤1.050;0.1≤x≤5.0;9.0≤a≤20.0;0.5≤b≤3.5;和0<c≤4.0。
在构成介电陶瓷组合物主要组分的钛酸钡,BamTiO3中,Ba与Ti比率m(Ba/Ti)满足0.990≤m≤1.050。比率m低于0.990时,电阻率低至小于1011Ωm。比率m大于1.050时,平均无故障时间在高温负载可靠性试验中缩短。
相对100BamTiO3,以摩尔比率计,CuO含量x满足0.1≤x≤5.0。CuO含量x小于0.1时,平均无故障时间短至低于100小时;因此,可靠性退化。CuO含量x大于5.0时,电阻率低至小于1011Ωm.
相对100BamTiO3,以摩尔比率计,ROn含量满足9.0≤a≤20.0。ROn含量a小于9.0时,平均无故障时间短至低于100小时;因此,可靠性退化。ROn含量a大于20.0时,介电常数降低。ROn可以是选自Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种稀土元素的氧化物。备选地,ROn可以是复合氧化物,其中根据需要组合至少两种稀土元素。此外,ROn中的n表示保持电中性所需要的正数并且是由稀土元素R的价数确定的。
相对100BamTiO3,以摩尔比率计,MnO含量b满足0.5≤b≤3.5。当MnO含量b低于0.5或高于3.5,电阻率低至小于1011Ωm。
相对100BamTiO3,MgO含量c满足0<c≤4.0。MgO具有增大介电常数的作用。MgO含量c为0时,平均无故障时间低于100小时。MgO含量c为4.0时,介电常数降低。MgO具有促进稀土元素R与陶瓷粒子的固溶体形成的作用。可以通过加入MgO改善可靠性。但是,如果MgO和CaO共同存在,CaO使促进稀土元素R的固溶体形成的作用退化。因此,适宜的是,在本发明的介电陶瓷组合物中基本上不含有CaO。但是,在制备本发明的介电陶瓷组合物时,在某些情况下,不可避免地污染CaO。相对于100mol的BamTiO3,不可避免地污染的CaO的含量优选低于0.5mol,并且更优选低于0.3mol。此处定义的术语“基本上不含有Ca”是指可以含有少量不可避免地污染的CaO。
此外,本发明的介电陶瓷组合物相对于100重量份的主要组分含有0.8至5.0重量份的作为附加组分的烧结添加剂。在烧结添加剂的含量相对于100重量份的主要组分低于0.8重量份时,难以稳定地进行烧结。在烧结添加剂的含量大于5.0重量份时,平均无故障时间低于100小时;因此,可靠性退化。对烧结添加剂没有特别限制,可以将已知的烧结添加剂用作烧结添加剂。例如,本发明中,可以优选使用SiO2。
介电陶瓷组合物在主要组分中含有作为添加剂的MO。主要组分表示为100BamTiO3+xCuO+aROn+bMnO+cMgO+dMO,其中c和d优选满足下面的关系0<c+d≤4.0;和d>0。M表示选自Ni和Zn中的至少一种金属元素。因此,MO可以是含有选自那些金属元素中的一种金属元素的金属氧化物。备选地,MO可以是含有两种金属元素的复合氧化物。与不结合MO的情况相比,主要组分中MO的结合增大了介电常数。但是,如果MO含量相对于100mol的BamTiO3超过4.0mol,与不结合MO的情况相比,介电常数不利地降低。
优选地,本发明的介电陶瓷组合物在主要组分中含有作为添加剂的X(Zr,Hf)O3,相对于100mol的BamTiO3,该添加剂的含量大于0mol并且小于等于15mol。与不结合X(Zr,Hf)O3的情况相比,主要组分中X(Zr,Hf)O3的结合增大了介电常数,并且延长了平均无故障时间。当主要组分中X(Zr,Hf)O3的含量相对于100mol的BamTiO3超过15.0mol时,与不结合X(Zr,Hf)O3的情况相比,介电常数不利地降低。X表示选自Ba、Sr和Ca中的至少一种金属元素。对X(Zr,Hf)O3中Zr与Hf的比率没有特别限制。但是,考虑到充分的烧结性,Hf与Zr的比率优选小于等于30mol%。
对用于制备在介电陶瓷组合物中使用的材料粉末的方法没有特别限制。可以采用任何方法,只要可以制备表示为BamTiO3的钛酸钡即可。用于制备钛酸钡的方法的有用实例包括干法合成,其中煅烧原材料的混合物,然后进行固相反应;和湿法合成,如热液合成,水解或溶胶-凝胶法。
此外,主要组分中的BamTiO3的添加剂ROn(其中R表示选自Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种金属元素),以及Cu、Mn、Si、Mg、Ni和Zn的氧化物,不限于氧化物粉末。可以将有机金属或醇盐或碳酸盐的溶液用作原材料,只要这些原材料可以形成根据本发明的介电陶瓷材料即可。通过使用这些材料获得的特性不退化。
将上述的原料粉末烧制,从而制备根据本发明的介电陶瓷组合物。
本发明的多层陶瓷电容器包括由本发明的介电陶瓷组合物构成的介电陶瓷层。本发明的介电陶瓷组合物用作每一介电陶瓷层,得到具有下列特性的多层陶瓷电容器介电常数大于等于300;在1kHz和50Vrms/mm下的介电损耗小于等于0.5%;电阻率大于等于1011Ωm;在高温负载可靠性试验(175℃,直流电场强度40kV/mm)中,平均无故障时间大于等于100小时,其具有高可靠性;并且在施加300kHz和1.77kVrms/mm的高频交流电时,介电损耗低至小于等于0.8%,导致热量产生低。
此外,可以在还原气氛中烧制构成本发明多层陶瓷电容器的内部电极。即,内部电极各自由导电材料构成,所述的导电材料主要含有Ni、Ni合金、Cu或Cu合金。因此,可以以低成本形成内部电极。
益处根据本发明的第一至第六方面,可以提供高度可靠的介电陶瓷组合物和多层陶瓷电容器,其中,即使在将来进一步降低尺寸和进一步增大电容,该介电陶瓷组合物在用高压直流电或高频/高压交流电运转的热量产生也低,并且其具有的介电常数和电阻率也不劣于在公知技术中的那些。
附图简述

图1是根据本发明的一个实施方案的多层陶瓷电容器的横截面视图。
参考数字1 多层陶瓷电容器2 介电陶瓷层3A、3B 第一和第二内部电极4 层压体4A、4B 第一和第二外部电极5A、5B 第一和第二外部电极实施本发明的最佳方式下面,将基于图1中所示的实施方案描述本发明。图1是根据本发明的一个实施方案的多层陶瓷电容器的横截面视图。
例如,如图1中所示,多层陶瓷电容器1包括层压体4,其含有多个介电陶瓷层2,所述的介电陶瓷层是层压的;和多个第一内部电极3A和多个第二内部电极3B,第一和第二内部电极中的每一个位于介电陶瓷层2之间。第一外部电极5A位于层压体4一侧端面上,并且第二外部电极5B位于层压体4的另一侧上。第一外部电极5A与第一内部电极3A电连接,并且第二外部电极5B与第二内部电极3B电连接。
如图1中所示,第一内部电极3A中的每一个从一端(图中的左端)延伸至相应介电陶瓷层2的另一端(右端)附近。第二内部电极3B中的每一个从右端延伸至相应介电陶瓷层2的左端附近。第一和第二内部电极3A和3B各自由导电金属构成,所述的导电金属主要含有Ni等。
如图1中所示,第一外部电极5A与层压体4中的第一内部电极3A电连接。第二外部电极5B与层压体4中的第二内部电极3B电连接。第一和第二外部电极5A和5B各自由导电金属构成,所述的导电金属主要含有Ag等。此外,第一电镀层6A和第二电镀层7A以此顺序位于第一外部电极5A的表面上。第一电镀层6B和第二电镀层7B以此顺序位于第二外部电极5B的表面上。
实施例1现在将基于具体的实施例来描述本发明。在此实施例中,在根据下面所述的程序制备表1中所示的样品1至49后,根据下面所述的程序由这些样品制备多层陶瓷电容器。评估得到的多层陶瓷电容器的电性能。表2所示为评估结果。在表1和2中,带有星号的样品号是指在本发明范围之外的样品。
制备表1和2中所示的样品1至49,目的在于研究主要组分100BamTiO3+xCuO+aROn+bMnO+cMgO中的m、x、R(稀土元素)、a、b、c和烧结添加剂的含量f的影响。将这些因素中的任何一种从本发明的范围之内改变到本发明的范围之外,并且将另外的因素固定在本发明的范围之内。
(1)介电陶瓷组合物的制备称重表1中所示的原材料并且混合,以形成具有表1中所示组成的原料粉末。将聚乙烯醇缩丁醛粘合剂和有机溶剂如乙醇加入其中。用球磨机将得到的混合物中的每一种进行湿式混合,以制备作为介电陶瓷组合物的陶瓷浆料。在此实施例中,将SiO2用作烧结添加剂。
(2)多层陶瓷电容器的制造将项(1)中得到的每种陶瓷浆料由刮刀法形成为薄片,以得到各自厚度为14μm的陶瓷生片。然后,通过丝网印刷将主要由Ni构成的导电糊涂覆在陶瓷生片上,以形成用于形成内部电极的导电糊薄膜。
如图1中所示,层压陶瓷生片,从而交替地层压具有导电糊薄膜的侧,形成陶瓷生层压体。将得到的陶瓷生层压体在氮气气氛中加热至350℃以燃烧粘合剂,然后在氧分压为10-9至10-12MPa的含H2-N2-H2O气体的还原气氛中,在表2所示的温度下烧制2小时,以形成多层陶瓷烧结体。
另一方面,制备含有B2O3-SiO2-BaO玻璃料的银糊。将该银糊涂覆至每个多层陶瓷烧结体的两个端面上。将涂覆至每个多层陶瓷烧结体的两个端面上的银糊在N2气氛中于600℃焙烧,以在每个多层陶瓷烧结体的任一端面上形成第一和第二外部电极,第一和第二外部电极分别与第一和第二内部电极连接。将第一和第二外部电极的表面进行电镀两次,以形成第一和第二电镀层。从而,制备出多层陶瓷电容器。得到的多层陶瓷电容器中的每一个的外部尺寸为3.2-mm-宽、4.5-mm-长和0.5-mm-厚。位于第一和第二内部电极之间的介电陶瓷层的厚度为10μm。有效介电陶瓷层数为5。相对的电极中每一个的面积为2.5mm2/层。对得到的多层陶瓷电容器,样品1至49,评估下面所述的电性能。表2示出了评估结果。
(3)评估多层陶瓷电容器电性能的方法及评估结果A)介电常数(ε)和介电损耗(tanδ)通过施加50Vrms/mm、1kHz的信号电压,由自动电桥测量法测量样品1至49中的每一个的电容(C)和介电损耗(tanδ)。基于所得到的电容测量值和多层陶瓷电容器的结构计算介电常数(ε)。表2示出了评估结果。
B)电阻率(ρ)由绝缘电阻仪,通过施加300V的DC电压60秒,测定样品1至49中的每一个的绝缘电阻(R)。然后,计算电阻率(ρ)。表3和4示出了结果。
C)平均无故障时间(MTTF)
将样品1至49各自如下进行高温负载可靠性试验将400V的DC电压施加到175℃的每个样品上,以测量绝缘电阻随着时间的变化。在高温负载可靠性试验中,当绝缘电阻(R)达到小于等于106Ω时,将其确定为故障。测定每个样品的平均无故障时间。表2示出了结果。
D)高频下的介电损耗(tanδ)为了评估样品1至49中的每一个在施加高频交流电的过程中的热量产生,将300kHz的1.77kVrms/mm信号电压施加给每个样品,以测量介电损耗(tanδ)。表2示出了结果。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+fSiO2

表中,Sample No.表示样品号。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+fSiO2

表中,Sample No.表示样品号,Firing Temperature表示烧制温度,huor表示小时,并且Insufficient Sintering表示不充分的烧结。
从表2中所示的结果,在用于研究Ba与Ti的比率m(Ba/Ti)的影响的样品1至6中,由所得到的如下所述的性能发现在本发明范围(0.990≤m≤1.050)内的样品2至5中的每一个即使在用高压直流电或高频/高压交流电运转时也具有高的可靠性确保介电常数(ε)大于等于300;介电损耗(tanδ)在1kHz和50Vrms/mm下小于等于0.5%;电阻率(ρ)大于等于1011Ωm;在高温负载可靠性试验(175℃,DC场强度40kV/mm)中,平均无故障时间长达100小时,具有高可靠性;并且在施加高频交流电(300kHz,1.77kVrms/mm)的情况下,介电损耗(tanδ)小于等于0.8%,显示低的热量产生。相反,在本发明范围之外的样品1和6中,发现比率m小于0.990的样品1具有下面的性能电阻率(ρ)为9.5×1010Ωm,低于1011Ωm;平均无故障时间(MTTF)为90小时,短于100小时;并且300kHz下的介电损耗(tanδ)高达1.8%,显示出产生热量趋势。此外,发现比率m大于1.050的样品6具有下面的性能平均无故障时间(MTTF)为90小时,短于100小时;并且300kHz下的介电损耗(tanδ)高达1.8%,显示出产生热量趋势。
从表2中所示的结果,在用于研究CuO含量x的影响的样品7至12中发现在本发明范围(0.1≤x≤5.0)内的样品8至11满足所述的特性评估。相反,在本发明范围外的样品7和12中,发现x小于0.1并且不含CuO的样品7的平均无故障时间(MTTF)为90小时,短于100小时。此外,发现,x大于5.0的样品12的电阻率(ρ)为8.3×1010Ωm,低于1011Ωm;并且300kHz下的介电损耗(tanδ)高达1.2%。
从表2中所示的结果,在用于研究ROn含量a的影响的样品13至18中发现在本发明范围(9.0≤a≤20.0)内的样品14至17满足所述的特性评估。相反,在样品13和18中,发现含量a小于9.0的样品13的平均无故障时间(MTTF)为90小时,短于100小时。此外,发现,含量a大于20.0的样品18的介电常数(ε)为280,低于300。
从表2中所示的结果,在用于研究MnO含量b的影响的样品19至24中发现在本发明范围(0.5≤b≤3.5)内的样品21至23满足所述的特性评估。相反,在本发明范围外的样品19、20和24中,发现对不含MnO的样品19除了电阻率(ρ)外没有进行测量。发现含量b小于0.5的样品20的电阻率(ρ)为8.5×1010Ωm,低于1011Ωm;并且平均无故障时间(MTTF)为85小时,短于100小时。此外,发现含量b大于3.5的样品24的电阻率(ρ)为9.0×1010Ωm,低于1011Ωm。
从表2中所示的结果,在用于研究MgO含量c的影响的样品25至29中发现在本发明范围(0<c≤4.0)内的样品26至28满足所述的特性评估。相反,在本发明范围外的样品25和29中,发现不含MgO的样品25的平均无故障时间(MTTF)为80小时,短于100小时。此外,发现含量c大于4.0的样品29的介电常数(ε)为280,低于300。
从表2中所示的结果,在用于研究烧结添加剂(SiO2)的加入量f的影响的样品30至35中发现在本发明范围(0.8<f≤5.0)内的样品30至34满足所述的特性评估。相反,在本发明范围外的样品30和35中,发现加入量小于0.8重量份的样品30未被烧结。此外,发现加入量大于5.0的样品35的平均无故障时间(MTTF)为90小时,短于100小时。
从表2中所示的结果,在用于研究ROn的类型,即稀土元素氧化物的类型的影响的样品36至49中发现只要ROn含量在本发明范围(9.0≤a≤20.0)内,所有的样品都满足所述的性能评估。
实施例2在此实施例中,如表3所示,将作为MO的NiO或ZnO加入到实施例1中得到的样品17的主要组分中。将NiO和ZnO中的每一种的含量d从本发明的优选范围(0<c+d≤4.0和d>0)改变至本发明的范围之外。以与实施例1中相同的程序制备介电陶瓷组合物,样品50至55。然后,如实施例1中那样制备使用这些样品的多层陶瓷电容器。如实施例1中那样测量多层陶瓷电容器的电性能。表4示出了结果。在表3和4中,带有星号的样品号是指在本发明范围之外的样品。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+dMO+fSiO2

表中,Sample No.表示样品号。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+dMO+fSiO2

表中,Sample No.表示样品号,Firing Temperature表示烧制温度,并且hour表示小时。
从表4中所示的结果发现,与不含NiO的样品17的那些相比,其中在每种主要组分中结合有在本发明优选范围(0<c+d≤4.0和d>0)内的NiO的样品50和51具有更高的电阻率(ρ)和延长的平均无故障时间(MTTF),这显示出进一步改善的可靠性。发现,与不含NiO的样品17相比,具有超过本发明优选范围的NiO含量的样品52具有稍低的介电常数(ε)。但是,发现,与样品17相比,样品52具有改善的电阻率(ρ)和延长的平均无故障时间(MTTF)。对于其中将代替NiO的ZnO作为MO结合的样品53至55,证实存在与结合NiO的情况相类似的趋势。
实施例3在此实施例中,如表5中所示,将Ba(Zr,Hf)O3作为X(Zr,Hf)O3结合在实施例1中得到的样品17的主要组分中。将其含量e从本发明的优选范围(0mol<e≤15mol,相对于100mol的BamTiO3)改变至本发明的范围之外。以与实施例1中相同的程序制备介电陶瓷组合物,样品56至60。然后,如实施例1中那样制备使用这些样品的多层陶瓷电容器。如实施例1中那样测量多层陶瓷电容器的电性能。表6示出了结果。在表3和4中,带有星号的样品号是指在本发明范围之外的样品。
此外,如表5中所示,将Sr(Zr,Hf)O3作为X(Zr,Hf)O3结合在实施例2中得到的样品50的主要组分中。将其含量从本发明的优选范围(0<e≤15)改变至本发明的范围之外。结果,制备介电陶瓷组合物,样品61至62。测量这些样品的电性能。表6示出了与样品50比较的结果。此外,如表5中所示,将Ca(Zr,Hf)O3作为X(Zr,Hf)O3结合在实施例2中得到的样品53的主要组分中。将其含量从本发明的优选范围(0<e≤15)改变至本发明的范围之外。结果,制备介电陶瓷组合物,样品63至64。测量这些样品的电性能。表6示出了与样品53比较的结果。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+dMO+eX(Zr,Hf)O3+fSiO2

表中,Sample No.表示样品号。
100.0BamTiO3+xCuO+aROn+bMnO+cMgO+dMO+eX(Zr,Hf)O3+fSiO2

表中,Sample No.表示样品号,Firing Temperature表示烧制温度,并且hour表示小时。
从表6中所示的结果发现,与不含Ba(Zr,Hf)O3的样品17的那些相比,其中在每种主要组分中结合有在本发明优选范围(0<e≤15)内的Ba(Zr,Hf)O3的不含MO的样品56至59具有延长的平均无故障时间(MTTF),这显示出更加改善的可靠性。发现,与不含Ba(Zr,Hf)O3的样品17相比,具有超过本发明优选范围的Ba(Zr,Hf)O3含量的样品60具有稍低的介电常数(ε)。但是,发现,与样品17相比,样品60具有延长的平均无故障时间(MTTF),表现出改善的可靠性。
从表6中所示的结果发现,其中在实施例2中得到的样品50中结合有在本发明优选范围内的Sr(Zr,Hf)O3的样品61具有进一步延长的平均无故障时间(MTTF)。发现,具有超过本发明优选范围的Sr(Zr,Hf)O3含量的样品62的介电常数(ε)低于在实施例2中得到的样品50的介电常数(ε)。但是,发现,与样品50相比,样品62具有延长的平均无故障时间(MTTF),显示出进一步改善的可靠性。对于其中将Sr(Zr,Hf)O3结合至实施例2中得到的样品53中的样品63和64,证实存在与样品61和62相类似的趋势。
本发明不限于所述的实施例。只要满足本发明的要求,本发明可以包括任何的介电陶瓷组合物和多层陶瓷电容器。
工业适用性可以适宜地将本发明用于用高压直流电或高频/高压交流电运转的多层陶瓷电容器。
权利要求
1.一种介电陶瓷组合物,其包含表示为100BamTiO3+xCuO+aROn+bMnO+cMgO的主要组分(其中系数100、x、a、b和c表示摩尔比率;m表示Ba与Ti的比率(Ba/Ti);R表示选自Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种金属元素;和n表示保持电中性所需要的正数并且是由R的价数确定的),其中m、x、a、b和c满足下面的关系0.990≤m≤1.050;0.1≤x≤5.0;9.0≤a≤20.0;0.5≤b≤3.5;并且0<c≤4.0,并且相对于100重量份的所述主要组分,所述的介电陶瓷组合物含有0.8至5.0重量份的烧结添加剂。
2.根据权利要求1所述的介电陶瓷组合物,其还包含作为添加剂的MO(其中M表示选自Ni和Zn中的至少一种金属元素),所述的主要组分表示为100BamTiO3+xCuO+aROn+bMnO+cMgO+dMO,其中c和d满足下面的关系0<c+d≤4.0;并且d>0。
3.根据权利要求1或2所述的介电陶瓷组合物,其在所述的主要组分中还包含X(Zr,Hf)O3(其中X表示选自Ba、Sr和Ca中的至少一种金属元素)作为添加剂,其中所述添加剂的含量相对于100mol的BamTiO3为大于0mol且小于等于15mol。
4.根据权利要求1至3中任何一项所述的介电陶瓷组合物,其中所述的烧结添加剂是SiO2。
5.一种多层陶瓷电容器,其包含多个介电陶瓷层,所述的介电陶瓷层是层压的;内部电极,每个内部电极位于所述的介电陶瓷层之间;与所述的内部电极电连接的外部电极,其中所述的介电陶瓷层各自是由根据权利要求1至4中任何一项所述的介电陶瓷组合物构成的。
6.根据权利要求5所述的多层陶瓷电容器,其中所述的内部电极各自由导电材料构成,所述的导电材料主要含有Ni、Ni合金、Cu或Cu合金。
全文摘要
一种介电陶瓷组合物,其包含由经验式100Ba
文档编号H01G4/12GK1922118SQ20058000574
公开日2007年2月28日 申请日期2005年2月9日 优先权日2004年2月27日
发明者伴野晃一 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1