半导体装置的制作方法

文档序号:6876186阅读:113来源:国知局
专利名称:半导体装置的制作方法
技术领域
本发明涉及一种半导体装置,涉及无Pb焊料连接结构和采用该连接结构的电子装置,该无Pb焊料连接结构按照适合采用毒性很小的无Pb焊料合金的方式,与引线架等的电极连接。
背景技术
在过去,为了在有机主板等的电路主板上,连接LSI等的电子部件,制造电子电路主板,则采用Sn-Pb共晶焊料,接近该Sn-Pb共晶焊料,其熔点也类似的Sn-Pb焊料,或在这些焊料中添加有少量的Bi或Ag的焊料合金。在这些焊料中,按照重量百分比计,Pb的含量为40%。这些焊料中的任何一种焊料合金的熔点均基本为183℃,可在220~240℃的温度下进行焊接。
此外,待焊接的QFP(Quad Flat Package)-LSI等电子部件的电极一般采用下述电极,在该电极中,在作为Fe-Ni系合金的42合金表面上,通过电镀等方式,形成按照重量百分比计,90%Sn-10%Pb(下面简称为Sn-10Pb层)。这是因为焊料浸润性良好,并且保持性良好,不产生纤维状结晶的问题。
但是,包含于上述Sn-Pb系焊料中的Pb为对人体有毒的重金属,这样由于将包含Pb的制品废弃,会产生对地球环境造成污染,对生物产生恶劣影响的问题。由该电子产品造成的地球环境的污染是通过下述方式造成的,即在雨等作用下,从包含因放置而日晒漂白的Pb的电子制品中,析出Pb,该Pb的析出因最近的酸雨而有加速倾向。于是,为了减少环境污染,替代大量使用的上述Sn-Pb共晶系焊料的,不包含Pb的低毒性的无Pb焊料,以及作为在部件电极上所采用的Sn-10Pb层的替代材料的,不包含Pb的部件电极结构是必须的。作为无Pb焊料,从低毒性,材料供给性,成本,浸润性,机械性质,连接可靠性等的观点来看,Sn-Ag-Bi系焊料是有利的侯选者。另外,在焊接中,通常,通过加热到220~240℃附近,在主板的电极与焊料之间产生化合物的方式,进行连接。于是,由于所形成的界面随着焊料与部件一侧的电极材料的组合的不同而不同,这样为了获得稳定的连接界面,必须要求适合该焊料的电极材料。

发明内容
本发明的目的在于提供一种无Pb焊料连接结构,其相对引线架等的电极,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,具有足够高的连接强度,获得稳定的界面。
另外,本发明的另一目的在于提供一种电子装置,该装置采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,具有下述连接强度,并且获得即使随着时间的推移仍保持稳定的界面,该强度指足以抵抗因电子部件,主板之间的热膨胀系数之间的差别,焊接后的切割主板作业,或检验试验时的主板的变形,搬运等而在焊料连接部产生的应力的连接强度。
此外,本发明的还一目的在于提供一种无Pb焊料连接结构和电子装置,其采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,确保足够高的浸润性,具有足够高的连接强度,此外还可确保耐纤维状结晶性等。
为了实现上述目的,本发明涉及一种无Pb焊料连接结构,其特征在于通过Sn-Bi系层,将Sn-Ag-Bi系的无Pb焊料与电极连接。
另外,本发明的特征在于在上述无Pb焊料连接结构中,按照重量百分比计,上述Sn-Bi系层中的Bi含量在1~20%的范围内。
此外,本发明的特征在于在上述无Pb焊料连接结构中,在上述Sn-Bi系层与上述电极之间,具有Cu层。
还有,本发明的特征在于在上述无Pb焊料连接结构中,通过Cu材料,形成上述电极。
再有,本发明的特征在于上述电极为Fe-Ni系合金或Cu系的引线。
另外,本发明的特征在于在上述无Pb焊料连接结构中,上述Sn-Ag-Bi系的无Pb焊料以Sn为主成分,按照重量百分比计,Bi的含量在5~25%的范围内,Ag的含量在1.5~3%的范围内,Cu的含量在0~1%的范围内。
此外,本发明涉及一种电子装置,其使形成于电子部件上的第1电极,与形成于电路主板上的第2电极导通,其特征在于在上述第1电极上形成Sn-Bi系层,通过Sn-Ag-Bi系的无Pb焊料,将形成有该Sn-Bi系层的第1电极与上述第2电极连接。
还有,本发明的特征在于在电子装置中,按照重量百分比计,上述Sn-Bi系层中的Bi的含量在1~20%的范围内。
再有,本发明的特征在于在电子装置中,在上述Sn-Bi系层与上述第1电极之间,具有Cu层。
另外,本发明的特征在于上述Sn-Bi系层中的第1电极侧为Cu材料。
此外,本发明的特征在于在电子装置中,上述第1电极为Fe-Ni合金或Cu系的引线。
还有,本发明的特征在于在电子装置中,上述Sn-Ag-Bi系的Pb焊料以Sn为主成分,按照重量百分比计,Bi的含量在5~25%的范围内,Ag的含量在1.5~3%的范围内,Cu的含量在0~1%的范围内。
再有,本发明涉及一种无Pb焊料连接结构,其特征在于作为与电极连接的无Pb焊料为下述Sn-Ag-Bi系,其以Sn为主成分,按照重量百分比计,Bi的含量在5~25%的范围内,Ag的含量在1.5~3%的范围内,Cu的含量在0~1%的范围内。
如上所述,按照上述结构,相对引线架等的电极,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,可具有足够高的连接强度,获得稳定的界面。
此外,按照上述结构,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,可具有下述连接强度,并且获得即使在随着时间的推移,仍保持稳定的界面,该强度指足以抵抗因电子部件,主板之间的热膨胀系数之间的差别,焊接后的切割主板作业,或检验试验时的主板的变形,搬运等而在焊料连接部产生的应力的连接强度。
还有,按照上述结构,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,确保比如,220~240℃的温度下的足够高的浸润性,形成足够的角焊缝,具有足够高的连接强度,此外还可确保耐纤维状结晶性等。
附图简述

图1为表示本发明的QFP-LSI用的引线的截面结构的图。图2为表示本发明的TSOP用的引线的截面结构的图。图3为连接强度评价试验方法的简要说明图。图4为表示本发明的各种金属化引线的角焊缝部强度的评价结果的图。图5为表示本发明的各种金属化引线的浸润时间的评价结果的图。图6为表示本发明的各种金属化引线的浸润荷载的评价结果。图7为表示本发明的,形成Cu层的场合的角焊缝部强度的评价结果的图。图8为表示本发明的,形成Cu层的场合的角焊缝部强度的评价结果的图。图9为表示在已有的Fe-Ni合金(42合金)上形成Sn-10Pb镀层的引线的界面的观察结果的图,其中图9(a)为表示截面的图,图9(b)为从引线侧和焊料侧表示剥离部的图,图10为表示本发明的,在Fi-Ni合金(42合金)上形成Sn-4Bi镀层的引线的界面的观察结果的图,其中图10(a)为表示截面的图,图10(b)为从引线侧和焊料侧表示剥离部的图。图11为表示本发明的,在Fe-Ni合金(42合金)上,形成Cu层,之后在其上再形成Sn-4Bi镀层的引线的界面的观察结果的图,其中图11(a)为表示截面的图,图11(b)为从引线侧和焊料侧表示剥离部的图。
实施本发明的最佳方式下面对本发明的实施例进行描述。
本发明的实施例指通过下述方式,形成电子装置,该方式为采用毒性很小的无Pb焊料,将第1电极,与形成于电路主板上的第2电极之间连接,该第1电极由形成于半导体装置(LSI)等的电子部件上的QFP形引线或TSOP形引线等形成。作为无Pb焊料连接结构,包括有下述结构,在该结构中,比如,对上述第1电极,或第2电极,采用毒性很小的无Pb焊料进行连接。
作为上述毒性很小的无Pb焊料,采用Sn-Ag-Bi系焊料。
但是,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,必须具有下述连接强度,并且获得即使在随着时间的推移,仍保持稳定的界面,该强度指足以抵抗因电子部件,主板之间的热膨胀系数之间的差别,焊接后的切割主板作业,或检验试验时的主板的变形,搬运等而在焊料连接部产生的应力的连接强度。
此外,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,必须确保在作为从电路主板或电子部件的耐热性来说,适合的焊接温度的220~240℃的范围内的足够的浸润性,形成足够的角焊缝形状,具有足够高的连接强度。如果浸润性较差,则不形成足够的角焊缝形状,无法获得足够高的连接强度,或必须要求较强的焊剂,会对绝缘可靠性造成恶劣影响。
还有,如果在通过电镀等方式形成的电极表面上,产生纤维状结晶,并且生长,则由于在电极间产生短路,从而还必须确保耐纤维状结晶性等。
作为本发明的上述电极结构,为了获得足够高的连接强度,如图1和2所示,在由引线形成的电极1的表面上,形成Sn-Bi系层2。下面对本发明的电极结构的选择进行描述。该选择根据上述要求,主要通过连接强度,浸润性,耐纤维状结晶性的评价来进行。
在开始,给出对Sn-Ag-Bi系焊料与各种电极材料之间的连接强度进行调查的结果。图3表示测定方法的简要内容,形成样品引线4,其是在作为由Fe-Ni系合金(42合金)形成的电极的引线上,形成下述材料层而构成的,该材料层指在作为已有的Sn-10Pb层的替代材料的没有Pb的系中,认为具有可能的材料(Sn,Sn-Bi,Sn-Zn,Sn-Ag镀层)。此外,还对与已有的Sn-10Pb镀层相组合的场合进行评价。上述样品引线4的形状是这样的,按照宽度为3mm,长度为38mm,焊接部的长度为22mm的方式,成直角弯曲。镀层的厚度对于各组分来说,均为10μm左右。采用按照重量百分比计,82.2%Sn-2.8%Ag-15%Bi(下面简称为Sn-2.8Ag-15Bi)的无Pn焊料5,将该样品引线4焊接于作为电路主板的环氧玻璃主板6上的Cu片(Cu电极)7上。
上述环氧玻璃主板6上的Cu片(Cu电极)7的尺寸为3.5mm×25mm,焊料5是通过0.1mm×25mm×3.5mm的焊料箔片供给的。即,将上述焊料箔片5放置于上述环氧玻璃主板6上的Cu片7上,在其上,放置成直角弯曲的样品引线4。焊接是在大气中,在140℃预热60秒,最高温度为220℃的条件下进行的。另外,焊剂是在松香系中,含有氯的焊剂。在焊接之后,通过有机溶剂进行清洗。张拉试验针对下述3种场合进行,该3种场合包括在刚焊接之后进行焊接;考虑到随着时间的推移,连接部强度变差,在进行125℃168小时的高温放置之后进行焊接;为了对引线的浸润性变差的场合的界面强度进行调查,在将样品引线在150℃下放置68小时之后进行焊接。在该张拉试验中,将主板固定,夹住样品引线的前端,沿垂直方向,按照5mm/分钟的速度进行张拉。将此时的,最大强度,以及一定值的张拉强度分别作为角焊缝部强度,平直部强度,对各组分的样品引线进行评价。该试验针对各条件进行10次,计算其平均值。
图4表示各组分的样品引线的角焊缝部强度的评价结果。如果考虑到在普通的QFP-LSI等的塑料包装部件中,印刷电路主板的热膨胀系数的差别,则上述角焊缝部强度必须大于5kgf。由此,在按照在Fe-Ni系合金(42合金)上,形成除了含有按照重量百分比计23%的Bi的Sn-23Bi以外的Sn-Bi系层的方式所形成的样品引线中,获得大于5kgf的角焊缝部强度,但是可知道在Sn-Zn,Sn-Ag,Sn-Pb层的场合,无法获得足够高的连接界面。此外,在42合金上,形成厚度为2μm的Ni镀层。在其上,形成Au镀层,Pd镀层,Pb镀层,再在其上形成Au镀层,从而形成3种样品引线,同样地进行焊接,调查其界面强度,但是如图4所示,无法获得足够高的角焊缝部强度。由此,可知道,在作为电极的引线上,必须形成Sn-Bi系层。
对于进行了上述张拉试验的各组分的样品引线中的,形成了获得足够高的界面强度的Sn-Bi系镀层的引线,通过半月形图解法(メニスコグラフ),对Sn-2.8Ag-15Bi焊料的浸润性进行分析。为了调查浸润性,焊剂采用活性较差的类型。试验片是采用在将上述样品引线切割成1cm的长度后形成的制品。浸润性的试验条件是这样的,焊料软熔温度为220℃,浸渍速度为1mm/分,浸渍深度为2mm,浸渍时间为20秒,以荷载恢复到0的时间为浸润时间,以浸渍20秒后的荷载作为浸润荷载。另外,浸润性的测定是针对刚电镀后的引线,以及在150℃下放置168小时的引线这两种进行的。此外,在各条件下,测定10次,取其平均值。
图5,6分别表示各组分的浸润时间,浸润荷载。根据图5的浸润时间的结果可知道,在浸润初期的Sn-Bi系电镀引线中,Bi浓度较高的引线的浸润性良好,而在150℃下进行168小时的高温放置的场合,在按照重量百分比计,Bi的浓度小于1%,以及为23%时,其浸润性变差。在按照重量百分比计,Bi的浓度小于1%的场合,如图6所示,确保浸润荷载,但是由于浸润时间变差,这样难于实现浸润。因此,可知道,同样在Sn-Bi系层的中,为了获得足够高的浸润性,最好按照重量百分比计,Bi的含量在1~20%的范围内。
此外,在用于热膨胀系数的差别较大的材料之间的连接,温度差较大的环境的场合等情况下,由于产生于界面处的应力较大,这样为了确保足够的可靠性,界面的连接强度必须大于10kgf。因此,从图4可看出,由于在Fe-Ni系合金(42合金)上直接形成Sn-Bi系层,这样无法获得大于10kgf的角焊缝部强度。可认为其原因在于在界面处的化合物层未充分地形成。于是,为了提高对界面处的焊料的灵敏性,在Fe-Ni系合金(42合金)上,形成平均厚度为7μm的Cu镀层,在其上形成Sn-Bi系镀层,测定其界面强度。图7按照还对应于没有Cu层的场合的方式,列出此时的角焊缝部强度的结果,但是除了按照重量百分比计,Bi含量为23%的场合以外,获得大于10kgf的连接强度,可确认基层的Cu层的效果。另外,通过采用该电极结构,如图7一起所示的那样,可获得在下述场合获得的刚焊接后的界面强度,大于12.1kgf的界面强度,该场合指在42合金上直接形成有Sn-10Pb层的引线上,焊接Sn-Pb共晶焊料的已有的场合。另外,如图8所示,通过在Sn-Bi层的下面形成Cu层,也可使角焊缝部强度提高。在这里,对于该Cu层,在采用42合金的引线架的场合,按照上述方式,可在42合金上形成Cu层,但是在采用Cu系引线架的场合,也可将其按照原样作为Cu层,还有,由于在引线架材料中添加有其它元素以便使刚性提高,但是为了不会对其产生影响,故也可再次采用Cu层。此外,形成了该Cu层的样品引线的浸润性一起表示于图5,6中,但是在几乎没有Cu层影响的情况下,Bi含量按照重量百分比计仍在1%以下,在高温放置的场合,浸润性变差,在Bi含量按照重量百分比计在1~20%的范围内的情况下,可获得足够的浸润性。还有,图7,图8的实例采用Sn-2.8Ag-15Bi,但是即使在采用Bi含量很少的系,比如Sn-2Ag-7.5Bi-0.5Cu系的情况下,通过在基层上形成Cu层,仍可获得界面强度提高的效果。
上述Sn-Bi系层,Cu层不限于电镀方式,其也可通过浸渍,蒸镀,滚压涂敷,通过金属粉末涂敷的方式形成。
按照上述方式,为了分析随电极材料不同而改变的原因,对连接部的截面进行研磨,分析界面的状况。此外,通过SEM观察进行了张拉试验的试料的剥离面。下面对其中的有代表性的组合的结果进行说明。
首先,图9表示下述场合的观察结果,该场合指将直接在过去使用的Fe-Ni系合金(42合金)上形成有Sn-10Pb镀层的引线,通过Sn-Ag-Bi系焊料连接,但是在该组合中,在界面处,Pb与Bi形成化合物而汇集,剥离产生于42合金与焊料的界面处。另外,在剥离掉的引线中的42合金表面上,检测有较薄的Sn,可认为焊料中的Sn与引线中的42合金形成化合物。因此,可认为,由于上述Pb与Bi的化合物集中于界面上,这样Sn与42合金的连接面积减小,连接强度非常弱。
图10表示下述场合的观察结果,该场合指Sn-10Pb镀层改变为Sn-4Bi镀层,但是在界面处形成的化合物较薄,剥离同样地产生于焊料与42合金的界面处。然而,由于Bi在粒状的结晶的状态下,Sn与42合金的连接面积的降低不象Sn-10Pb的场合那样低,这样可认为可获得大于5kgf的连接强度。经俄歇能谱分析,此时的化合物层为约70nm的Sn-Fe层。
此外,图11表示在Sn-4Bi层下面形成Cu层的观察结果,可知道在界面处,形成较厚的Cu与Sn的化合物层。上述剥离产生于该化合物层与焊料的界面处,或化合物层中。剥离面在于图10的42合金引线上直接形成有Sn-Bi层的引线的场合,几乎是平齐的,与此相对,在形成有Cu层的场合,剥离面是凹凸不平的。于是,可认为这样的剥离面的差异与界面强度的提高有关。另外,上面的分析结果与采用Sn-Ag-Bi系焊料的其它的成分而获得的结果相同。
对上述各成分的样品引线,调查纤维状结晶的发生,但是可看到在形成Sn-Zn镀层的样品引线中,产生纤维状结晶。另外,对于Sn镀层,在过去,具有纤维状结晶性的问题。但是,对于Sn-Bi系层,看不到产生纤维状结晶,耐纤维状结晶性也没有问题。
因此,按照本发明的电极结构,对于Sn-Ag-Bi系焊料,可获得连接强度,浸润性,耐纤维状结晶性优良的连接部。
对于焊料,选择下述Sn-Ag-Bi系焊料,其主成分为Sn,按照重量百分比计,Bi含量在5~25%的范围内,Ag含量在1.5~3%的范围内,Cu含量在0~1%的范围内,之所以这样选择是因为该范围内的组分的焊料可在220~240℃的温度范围内进行焊接,相对Cu,获得与具有已有情况的Sn-Ag共晶基本相同的浸润性,并且具有在高温条件下足够的可靠性。即,虽然有如下担心,该担心指在Sn-Ag-Bi系焊料中,按照重量百分比计,Bi含量大于10%,具有在138℃附近熔融的部分(3元共晶),对高温下的可靠性造成影响,但是将该3元共晶析出量控制在实际上没有问题的值,并且还确保125℃下的高温强度。于是,通过采用该组分的焊料,对上述电极进行焊接,则可获得实用的,高可靠度的电子装置。
(实施例1)图1表示本发明的QFP-LSI用的引线的截面结构。该图表示具有引线的截面结构的一部分,但是在作为Fe-Ni系合金(42合金)的电极的引线1上,形成Sn-Bi系层2。该Sn-Bi系层2通过电镀形成,其厚度为10μm。另外,Sn-Bi镀层中的Bi浓度按照重量百分比计为8%。采用Sn-2.8-Ag-15Bi-0.5Cu焊料,将具有该电极结构的上述QFP-LSI,焊接于作为电路主板的环氧玻璃主板上。该焊接是在最高温度为220℃,采用氮软溶炉的条件下进行。由此,可获得具有足够高的连接强度的连接部。此外,同样,采用Sn-2Ag-7.5Bi-0.5Cu焊料,在环氧玻璃主板上,在240℃下,于大气中,进行软溶,经软溶的接缝中的,特别是在高温下的可靠性较高。
(实施例2)图2表示本发明的TSOP用的引线的截面结构。该图表示具有引线的截面结构的一部分,在作为Fe-Ni系合金(42合金)的电极的引线1上,形成Cu层,在其上形成Sn-Bi系层2。该Cu层,Sn-Bi系层2通过电镀方式形成。该Cu层3的厚度为8μm,Sn-Bi系镀层2的厚度为10μm。Sn-Bi系镀层2的厚度为10μm。此外,按照重量百分比计,Sn-Bi系镀层中的Bi含量为5%。由于TSOP的引线刚性较大,这样在实际工作时的部件本身的发热,另外用于高温下的场合,发生于界面处的应力大于QFP-LSI。在这样的场合,必须形成具有足以抵抗该界面应力的界面强度的界面,在Sn-Bi系层2下面形成Cu层3,则效果更好。
采用Sn-Ag-Bi系焊料,通过纸软溶炉,将该TSOP焊接于印刷电路主板上,进行温度循环试验。该试验条件为下述2个条件,即-55℃30分钟,125℃30分钟的1个小时/1次循环,以及0℃30分钟,90℃30分钟的1个小时/1次循环,在500次循环,1000次循环后,对截面进行观察,调查开裂的发生状况。将该情况,与下述场合进行比较,该场合指通过Sn-Pb共晶焊料,将包括形成有Sn-10Pb层的引线的,相同尺寸的TSOP,直接焊接于42合金引线上,但是在-55℃/125℃的温度循环中,开裂的发生较早,在0℃/90℃的温度循环中,特别是不会发生问题,获得实际上充分的连接界面。
(实施例3)本发明的电极结构还可适合用于主板上的电极。比如,为了使主板的焊接性提高,最好形成焊料涂层,但是在过去,采用包含Sn-Pb焊料,特别是Sn-Pb共晶焊料等中的Pb的焊料。为此,使上述涂层用焊料中不具有Pb,可采用本发明的Sn-Bi层。还有,由于通常,主板的电极由Cu形成,这样在采用Sn-Ag-Bi系焊料的场合,可获得足够高的连接强度。图中表示是适合采用该结构的实例,但是在电路主板的环氧玻璃主板上的Cu片(Cu电极)上,通过滚压涂敷方式,形成厚度约为5μm的Sn-8Bi层。
由于形成有该焊接涂层,这样相对主板的浸润性提高,并且还可使连接强度提高。
工业的可利用性按照本发明,获得下述效果,该效果指获得适合用于作为无Pb材料,优良的Sn-Ag-Bi系的电极结构。
此外,按照本发明,获得下述效果,该效果指可形成下述无Pb焊料连接结构,在该结构中,采用相对引线架等的电极,毒性很小的Sn-Ag-Bi系中的无Pb焊料合金,具有足够高的连接强度,并且可获得稳定的连接界面。
另外,按照本发明,获得下述效果,该效果指采用Sn-Ag-Bi系中的无Pb焊料合金,具有下述连接强度,并且获得即使在随着时间的推移,仍保持稳定的界面,该强度指足以抵抗因电子部件,主板之间的热膨胀系数之间的差别,焊接后的切割主板作业,或检验试验时的主板的变形,搬运等而在焊料连接部产生的应力的连接强度。
还有,按照本发明,采用毒性很小的Sn-Ag-Bi系的无Pb焊料合金,确保比如,在220~240℃温度下的足够高的浸润性,形成足够的角焊缝,具有足够高的连接强度,此外还可确保耐纤维状结晶性等。
再有,按照本发明,通过采用Sn-Ag-Bi系焊料,对电子部件进行焊接,则可获得具有足够高的连接强度,并且在实际上还可确保足够高的浸润性。另外,纤维状结晶性也不会有问题。于是,便获得下述效果,该效果指可采用与已有技术相同的设备,工艺,形成有利于环境的无Pb的电子制品。
权利要求
1.一种具有电极的电路板,其特征在于,在该电极上设置有Sn-Bi合金层,该Sn-Bi合金包括按重量百分比计1%-20%的Bi。
2.一种具有电极的电路板,电极由Cu制成。
3.根据权利要求1或2所述的电路板,其特征在于,Sn-Bi合金层通过滚压涂敷方式形成在该电极上。
4.根据权利要求1或2所述的电路板,其特征在于,Sn-Bi合金层通过镀敷、浸渍、蒸镀、或者金属粉末涂敷的方式形成在该电极上。
5.根据权利要求1或2所述的电路板,该电路板是环氧玻璃板。
6.一种连接结构,包括借助无Pb焊料进行连接的第1电极和第2电极,其特征在于,第1电极被设置到电子部件上,第2电极形成在电路板上并设置有作为表面层的Sn-Bi合金层,上述Sn-Bi合金包括按重量百分比计1%-20%的Bi。
7.根据权利要求6所述的连接结构,其特征在于,在第1电极上也设置有作为表面层的Sn-Bi合金层,上述Sn-Bi合金包括按重量百分比计1%-20%的Bi。
8.根据权利要求6所述的连接结构,其特征在于,第2电极具有位于Sn-Bi合金层下方的Cu层。
9.根据权利要求8所述的连接结构,其特征在于,在第1电极上也设置有作为表面层的Sn-Bi合金层,上述Sn-Bi合金包括按重量百分比计1%-20%的Bi。
10.根据权利要求6~9中任一项所述的连接结构,其特征在于,上述电子部件是LSI。
11.根据权利要求10所述的连接结构,其特征在于,该LSI是QFP型LSI。
12.根据权利要求10所述的连接结构,其特征在于,该LSI是TSOP型LSI。
13.根据权利要求6~9中任一项所述的连接结构,其特征在于,无Pb焊料是Sn-Ag-Bi合金。
全文摘要
一种无Pb焊料连接结构和半导体装置,该无Pb焊料连接结构具有足够高的连接强度,获得即使在随时间的推移的情况下仍保持稳定的界面,保持足够的浸润性和对纤维状结晶的抵抗性。特别是,无Pb焊料的特征在于作为代表性的无Pb焊料的Sn-Ag-Bi与电极连接,该电极的表面上形成有Sn-Bi层。最好,按照重量百分比计,上述Sn-Bi层中的Bi浓度在1~20%的范围内,以便获得足够高的浸润性。当要求更加可靠的接缝时,在上述Sn-Bi层的下面形成Cu层,以便获得具有足够高的界面强度的连接部。
文档编号H01L23/482GK1897789SQ20061010163
公开日2007年1月17日 申请日期1998年12月9日 优先权日1997年12月16日
发明者下川英惠, 曾我太佐男, 奥平弘明, 石田寿治, 中冢哲也, 稻叶吉治, 西村朝雄 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1