制造锂电池的方法

文档序号:7224371阅读:495来源:国知局

专利名称::制造锂电池的方法
技术领域
:本发明涉及一种制造锂电池的方法,且具体涉及一种制造薄膜锂和锂离子电池的方法。
背景技术
:近年来,电子装置的迅速发展已经大大超过了电池技术的进步。因此,当今电池要求较高的功率密度、高循环寿命、宽操作温度范围、较快速的再充电能力以及增加的功率密度。因此可见,需要一种提供较高的功率密度、高循环寿命、宽操作温度范围、较快速的再充电能力以及增加的功率密度的电池。对于此高性能电池的大规模生产来说,低成本生产方法是重要的。因此本发明主要是针对提供此类高性能电池。
发明内容无图1是根据本发明优选形式生产的电池的示意横截面。图2是展示在研磨之前阴极材料的尺寸分布的曲线图。图3是展示在研磨一小时之后阴极材料的尺寸分布的曲线图。图4是展示在研磨三小时之后阴极材料的尺寸分布的曲线图。图5a是展示阴极颗粒的照片的副本。图5b是展示阴极颗粒的照片的副本。图6a是展示阴极颗粒的照片的副本。图6b是展示阴极颗粒的照片的副本。图7a是展示阴极颗粒的照片的副本。图7b是展示阴极颗粒的照片的副本。图8a是展示浇注阴极层的照片的副本。图8b是展示浇注阴极层的照片的副本。图8c是展示浇注阴极层的照片的副本。图9是展示在退火之后浇注阴极层的照片的副本。图IO是展示在退火之后浇注阴极层的照片的副本。图11是展示在退火之后浇注阴极层的照片的副本。图12是展示在退火之后浇注阴极层的照片的副本。图13是展示在退火之后浇注阴极层的照片的副本。图14a是展示在退火之后浇注阴极层的照片的副本。图14b是展示在退火之后浇注阴极层的照片的副本。图15a是展示在退火之后浇注阴极层的照片的副本。图15b是展示在退火之后浇注阴极层的照片的副本。图16是展示在退火之后浇注阴极层的照片的副本。图17是展示在退火之后浇注阴极层的照片的副本,其说明分层。图18a是展示在退火之后浇注阴极层的照片的副本。图18b是展示在退火和辊压之后浇注阴极层的照片的副本。图19是展示阴极阻抗与辊间隙之间的相关性的曲线图。图20是展示作为循环数的函数的容量的曲线图。图21a是展示在退火和用电解质层覆盖之后浇注阴极层的照片的副本。图21b是展示磷酸盐扩散的曲线图。图22a是展示在退火和用电解质涂覆之后浇注阴极层的照片的副本。图22b是展示在退火和用电解质涂覆之后浇注阴极层的照片的副本。图23是展示电池的循环的曲线图。图24是展示样本的电压轮廓的曲线图。图25是展示图24所示样本的初始循环曲线的曲线图。图26是展示样本的长期循环轮廓的曲线图。图27是展示样本的电压轮廓的曲线图。图28是展示图27所示样本的初始循环曲线的曲线图。具体实施例方式本发明的电池组件按常规定向,如特定并入本文的第6,835,493号和第5,597,660号美国专利所示。通过在衬底上将电池组件沉积为薄膜(小于5jxm)来构造薄膜固态电池。在图1中所示的示意性横截面中说明薄膜固态电池的典型结构。薄膜电池IO包含阴极集流体11、阴极12、电解质13、阳极14以及阳极集流体15。通过溅镀或其它合适的物理或化学沉积技术来沉积阴极和阳极集流体。通常通过在Ar+02中各自化合物的烧结目标的RE磁控管溅镀来沉积锂-钴氧化物或其它类似成分(LiCo02或LiMn204)的阴极膜,而同时通过在Ar+02中的V的反应性溅镀来沉积V205膜。电解质13可为经溅镀的LiP0N电解质膜,其覆盖阴极和衬底的直到阳极集流体的一部分,以便隔离衬底使其不与阳极直接接触。阳极可为锂金属或其它嵌锂化合物(lithiumintercalationcompound),例如Sn3N4。所述电池还可包含密封层。申请人已经发现,为了减少通常通过真空技术制造的高功率薄膜电池的生产成本,可利用混合方法。在此方法中,通过湿浆料涂覆方法将LiCo02粉末浇注在薄金属衬底上。通过常规溅镀方法在浇注阴极膜的顶部上沉积固态电解质LiPON膜。显微镜分析指示LiPON具有对阴极膜的良好覆盖。在LiPON电解质沉积之后,通过在手套箱中的常规热蒸发在LiPON电解质顶部上沉积锂阳极以完成电池。市售LiCo02粉末具有5-10pm的平均粒径。这些数据指示锂离子可在没有电解质时在LiCo02颗粒内扩散通过5-10pm的距离。因此,需要非常薄的LiCo02膜(5-10pm厚)。市售LiCo02粉末具有较宽尺寸分布,其中最大颗粒为约20pm。为了浇注5-10pm厚的膜,必须将市售LiCo02粉末研磨到约5pm的平均粒径。无法将大颗粒光滑地浇注为5pm厚的膜,且太小的颗粒尺寸将由于颗粒对颗粒的阻力而导致增加的阴极阻抗。另一重要因素在于,阴极膜应极为光滑,使得薄LiPON膜(约2毫米厚)可覆盖其而没有针孔。通过在UPON沉积之前在高压下辊压通过不锈钢辊来实现阴极膜的所需光滑度。一旦阴极膜经辊压,便将其加热。在250与800'C之间的温度下将所述非常薄的膜(5-10nm厚)退火。为了制备本发明中所使用的锂钴氧化物(lithiumcobaltoxide)粉末,使用PM100行星式球磨机研磨锂钴氧化物,其中异丙醇(IPA)用作润湿剂。对放置在250mlZr02罐中和以450RPM的研磨速度旋涂的200gLiCoO2粉末(约80ml)、45mlIPA以及70mlZr02球(直径为3毫米)执行实验。图2展示在研磨之前LiCo02粉末的颗粒尺寸分布。平均粒径是7.42pm。最大颗粒尺寸是22.79pm。然而,在研磨一小时之后,颗粒尺寸分布导致4.32pm的平均粒径,其中最大颗粒尺寸减小到15.17pm,如图3所示。然而,研磨时间的进一步增加不导致颗粒尺寸的显著减小,如图4所示,图4展示在研磨三小时之后的颗粒尺寸分布。测试结果的概述在表1中展示。显然,在研磨一小时和三小时之后,颗粒尺寸基本上是相同的。换句话说,在研磨一小时之后颗粒尺寸己经达到其最小值。表l.研磨之前和之后颗粒尺寸的比较<table>tableseeoriginaldocumentpage7</column></row><table>球磨机过程可显著增加较小颗粒的产生。然而,这些较小颗粒在其可用于浇注光滑膜之前必须与大颗粒分离。使用离心分离机来分离较小LiCo02颗粒与较大颗粒。已使用Accuspin400离心分离机(热电)来完成此任务。申请人进行以下实验,用320ml蒸馏水稀释来自研磨过程(两小时研磨之后)的40g的颗粒浆料(LiCoO2:IPA重量比=200:45),接着以300rpm离心分离历时八分钟以分离颗粒。在离心分离之后,较小颗粒保留在溶液中,而较大颗粒沉积在离心管的底部。从离心管倒出悬浮有小颗粒的约800%体积的流体(较大颗粒沉积在测试管的底部)。通过加热以移除浆料中的水和IPA来恢复较小颗粒。图5展示的SEM图像指示离心分离方法可有效地分离不同的颗粒。图5a展示留在管底部的颗粒。这些颗粒大于约7pm。图5b展示从管顶部倒出的颗粒。这些颗粒的大部分看上去小于1pm。图7展示颗粒尺寸分布的高分辨率SEM图片。图6(a)是在10000倍放大率下的SEM图片。图6(b)是5000倍放大率的SEM图片。图式清楚展示颗粒尺寸小于1pm。己开发一种方法来选择具有小带宽(即,小颗粒分布范围)的LiCo02粉末。使用具有10nm的平均粒径的新获得的LiCoO2粉末。首先,将粉末与酒精混合。对粉末/酒精混合物进行超声处理以分离颗粒,并接着短暂摇晃以将其混合。接着允许溶液稳定历时l分钟以允许较大颗粒下沉到底部。接着倒出保持悬浮在溶液中的较小颗粒,进而留下较大颗粒沉积在底部。图7a展示具有尺寸从约5pm到30pm的尺寸的这些颗粒的SEM图像。接着用酒精重新填充含有溶液的容器,并再次进行超声处理和摇晃。以与实验的第一部分相同的方式再次允许其稳定。然而,这一次倒出溶液中的较小颗粒,并丢弃管底部中的大颗粒。现已选择尺寸大于5-12pm的颗粒,如图7(b)所示。一般来说,用细粉末制备的膜(小于1nm)在辊压之后展现有光泽的(类似于镜面)的表面。然而,用细粉末制备的所有膜给出非常高的电池电阻,其可能归因于膜中的多层颗粒。可见,Li离子仅具有对UCo02颗粒的顶层的良好接近。如果此LiCo02颗粒层还直接接触衬底,那么样本将具有良好的离子和电子传导性。如果此LiCo02颗粒层不直接接触衬底,且Li离子必须扩散通过多个颗粒,那么颗粒之间的多个界面促使所得的电池展现高阻抗。一旦阴极材料干燥,便收集粉末并用于通过以95:5的比率与PVA粘结剂混合来制成浇注溶液。将浆料混合2小时并给予5分钟的超声浴。接着使用l密耳刮刀间隙浇注浇注溶液或浆料。在干燥之后,在高压下辊压膜。图8展示浇注层的SEM横截面。层厚度优选为约7nm。图8展示浇注和辊压的单一LiCo02颗粒层的表面以及展示6.5-7.5lim层厚度的两个横截面图像。使用浇注LiCo02阴极的初始电池展示容量衰减以及劣于溅镀LiCo02的充电系数。这可能是由于经退火浇注阴极中的应力在充电/放电过程期间在层中引起裂缝,所述程序由于阴极中的约3-5%的膨胀/收縮而产生额外应力。为了消除此问题,己经使用若干不同的衬底,其具有显著不同的热膨胀系数(CTE)以希望修整LiCo02层中的初始应力以产生最佳性能。不锈钢(SS)衬底表现为在金属氧化方面性能最佳。以非常高的温度(800°C)退火的电池展示非常高的容量,但在前10到15次循环中展示大的衰减。在前几次循环之后容量为约170到150pAh,其具有仅0.36cm2的活性区域。已经进一步研究了若干衬底,其包含2密耳厚的镍、涂有2密耳厚的镍的Au/Co、涂有0.5密耳厚的镍的Au/Co、2密耳和4密耳厚的Al箔。这些衬底中,2密耳厚的镍和涂有2密耳厚的镍的Au/Co给出最佳粘合。在涂覆200埃的Co和2000埃的Au之前,在700'C下处理镍衬底一小时以形成绝缘层(NiO)的薄层(约2微米)。在500退火之后的带测试展示在较厚Ni衬底(2密耳厚)上制备的膜不如在0.5密耳厚Ni衬底上制备的膜易成粉状。沉积在厚衬底上的LiCo02可能具有较好的颗粒对衬底的粘结。在浇注过程期间形成的较薄衬底的微皱纹可能在退火过程期间破坏LiCo02层的完整性。尽管阴极在其以25(TC以上退火时将由于粘结剂损耗而损失其完整性,但较高温度(大于50(TC)的退火将导致阴极的烧结,且可通过烧结而不是粘结剂来将阴极粉末粘结在一起,优选将粉末烧结以使得仅其外围边缘烧结或与邻接颗粒的外围边缘熔合,即边缘熔合在一起而不是全部粉末熔合,且进而形成固态密集材料。在此努力下,将LiCo02样本浇注在涂有Au/Co的镍或Al衬底上,以550'C退火6小时,接着用LiPON和锂涂覆以完成电池。这些样本具有经证明的合理的电化学性能。还在700和800'C下退火类似的样本,然而这些样本展示快得多的容量衰减,这可归因于在充电/放电过程期间的开裂/接触损耗。图9展示的SEM图片展现在Co/Au/Ni箔(2密耳)上退火到750'C历时30分钟的浇注LiCo02的表面形态。将具有1%粘结剂的LiCo02浇注层退火到55(TC历时5小时。尽管样本在摩擦时展示一些粉末状性质,但其看上去光滑且层没有剥落。LiPON和Li沉积且电池在25pA下循环。其展示良好的可循环性和合理的容量。27pAh的C率容量是针对0.36cii^的活性区域。此浇注电池具有约5-10pm的厚度且是从精细(小于lpm)且规则的粉末(约7pm)的混合物浇注。图10展示电池的横截面。(在箔的撕开期间从Al箔起离所述层以产生横截面)。当以C率循环时,样本容量损耗最小。用于以上样本的温度/时间组合(550'C历时5小时)不足以完全烧结或连接浇注层内的个别颗粒。必须完成更多测试来增加阴极退火温度以努力实现较好的颗粒间粘合。将初始测试样本退火到850'C和950'C历时16小时。图11和12中的图像展示退火到950°C(左)和85(TC(右)的浇注层的比较。图11展示样本的横截面,且图12展示样本的顶面。图像展示95(TC退火促使颗粒比850'C退火聚结得更多。在850'C下退火历时16小时,Co/Au集流体保持完整和传导。然而,退火到95(TC历时16小时导致Co/Au阴极集流体的高阻抗。对Co/Au层的测试展示其在退火到900'C历时高达5小时之后保持传导,且较长持续时间的测试持续进行。退火温度在浇注膜的制备中是个重要因素。在小于250'C的温度下,LiCo02颗粒可通过粘结剂粘结在一起,但粘结剂(离子和电子绝缘体)的高阻抗将导致所得电池的高阻抗。在80(TC以上的温度下,LiCo02粉末烧结在一起。然而,难以找到在800'C以上不氧化的经济且柔性的衬底。在25(TC与800'C之间的温度下,粘结剂将分解和/或蒸发。温度越高,粘结剂移除得越快。在550'C的温度下,PVA(基于水)、PVB(基于酒精)和LHB-108P(基于水,LiCo科技公司,台湾)将在约6小时内几乎完全分解和/或蒸发。此温度还限制涂有Au/Co的镍衬底的氧化。因此,已使用在55(TC下持续6小时的退火。大体上,较厚的LiCo02膜往往展现较差的结合且在退火之后看上去为粉末状。即使表面在辊压之后看上去光滑,但表面层可容易通过透明胶带而剥落,且下方的膜很呈粉末状。这些膜还导致高电阻电池。这是与先前对细粉末的分析一致的,因为厚膜必须依赖于多个颗粒到颗粒的接触来传导离子和电子。这些多个界面将显著增加电池电阻。制备额外样本并在25(TC下退火。样本C119使用LiCo02:PVA(聚乙烯醇)比率为95:5的阴极,其中LiCo02具有窄颗粒分布(5-12nm)。C120使用的LiCo02:PVA比率为95:5的阴极,其中LiCo02是所制造(未分离)的大粉末(平均粒径10jtim,具有宽尺寸分布),且C121是混合有研磨且分离的细粉末的原始(7pm)粉末。所有C120样本在LiPON沉积之后失效。浇注层分离且LiPON剥落。实验展示厚于7-8pm的层通常以此方式失效。衬底-颗粒粘结较强且颗粒-LiPON粘结较强,但层内的颗粒-颗粒粘结弱得多。随着浇注层厚度增加,需要较多的颗粒-颗粒粘结来将整个层保持在一起,因为较少的颗粒跨越从衬底到LiPON的整个距离。所沉积的LiPON膜对多层系统增加大的压缩应力,其可分离浇注层,从而促使LiPON的分层。对样本C120的横截面的SEM分析揭露膜为10-11nm厚(见图13)。将样本C119浇注在涂有Ni的2密耳Al箔(C119a)上,禾B1密耳纯Ni箔(C119b)上。图14展示这些样本的SEM横截面。C119a具有8)im的阴极厚度。C119b具有7^im的厚度。尽管具有相似的浇注和辊压条件,但Ni箔上的稍微较薄的层的原因在于M箔较硬且较薄,从而允许辊压过程中的较少凹陷或缓冲。尽管以上图像展示1密耳Ni箔上的阴极层压縮得较多,但样本C119a与CU9b表面的图像的比较(见图15)揭露颗粒对Ni箔比对涂有Ni的Al箔具有较小粘合。这可从图15(b)所示的Ni箔浇注膜中的空穴看出,所述空穴由失去的颗粒引起。空穴在层上扩展,且在许多情况下其足够深以暴露箔表面。这使得几乎不可能使用仅仅2nm的LiPON电解质薄膜来实现完全绝缘的覆盖。使用2密耳间隙浇注C12Ib样本以加厚膜。图16所示的横截面指示厚度仅为4pm的层。为了增加电池的能量密度,需要减小箔衬底厚度或增加LiCo02厚度。使用增加的间隙进行浇注以在同一衬底上生产样本,从而给出10-12pm的阴极(辊压后)。尽管这些层在带测试中展示优良的粘合,但样本在LiPON沉积之后分层。分层发生在图17所示的浇注LiCo02层"内"。颗粒粘附在LiPON膜下且粘附到衬底表面(穿过图像下半部中的颗粒不可见),且在LiCo02层本身"内"已清楚分离。人们已经开发一种方法来制备超薄阴极膜(单一层)。谨慎控制阴极浆料的浓度、浇注间隙以及速度以浇注具有最小厚度但对整个衬底仍具有良好覆盖的阴极膜。典型的浇注条件是LiCo02:PVA的比率=98:/2,固体与液体(水)的比率为约1:2。浇注间隙为l密耳且浇注速度为5毫米/秒。所浇注膜对衬底不具有完全覆盖,如图18所示。图18(a)展示Al箔上对衬底不具有完全覆盖的所浇注LiCo02的SEM图片。图18(b)展示在不锈钢辊之间经压縮之后的LiCo02膜的SEM图片。所述膜展示在辊压之后对衬底的覆盖要好得多。AI箔变形以适合LiCo02颗粒的形状。已观察到,涂有Ni(0.3pm)的A1箔(通常2密耳厚)比单独的Al箔或涂有连接粘合剂(例如Adcote(Rohm和Haas化学品LLC的注册商标))的Al箔的性能好得多。而且,退火到35(TC历时1小时或退火到450'C历时1小时的涂有Ni的Al箔将阻抗从约5千欧姆减少到300-600欧姆。图19展示具有不同辊压(压延)压力(或间隙)的阴极阻抗。结果指示阻抗随着压力(随着辊间隙减小而增加)增加而减小。然而,在辊间隙减小到1密耳以下之后阻抗不进一步减小。还研究了颗粒尺寸和成分对阴极粘合和阻抗的影响。从c105批,大颗粒已用于浇注阴极。在表2中概述成分和衬底。表2样本制备条件<table>tableseeoriginaldocumentpage11</column></row><table>纯LiCo02在干燥之后给出对Al和涂有Ni的Al的较差粘合。具有99/1成分的阴极展示对Al的良好粘合,但在8(TC下干燥整夜之后展示对涂有Ni的Al的较差粘合。浇注在涂有adcote的A1衬底上的所有阴极展示在干燥和辊压之后的良好粘合。然而,所有这些样本的初始阻抗在3-6千欧姆的范围内。因此,优选进行热处理以减小电池阻抗。在Ni/Al衬底上浇注的阴极(具有95/5的成分)在450。C下加热历时1小时。阴极阻抗在退火之后从7千欧姆下降到1.2千欧姆。用此阴极制备的样本已证明非常良好的电化学性质,其给出75pAh容量和良好的可逆性。图20展示电池的充电和放电容量。阴极的有效厚度是3pm,其非常接近于由SEM测得的厚度。进一步研究指示如果样本在240-250'C下退火历时仅2分钟,那么样本阻抗从3-6千欧姆(在辊压之后立即)减小到300-600欧姆。如果样本在240'C以下的温度退火,那么样本阻抗急剧增加。测试展示在衬底安装在用于LiPON敷设的板上之后在衬底上使用IR灯,可容易实现此热处理条件(250'C)。这将允许在退火循环与LiPON敷设开始之间具有非常短的时间,以在允许衬底在退火之后落座时使所见的阴极阻抗的逐渐上升最小化。为了研究LiPON电解质和阴极膜的相容性,将LiCo02粉末(具有7pm的平均粒径)与5%的粘结剂和3%的传导碳混合以形成浆料。使用刮刀将阴极浆料浇注在薄铝衬底上以实现约25nm的膜厚度。在12(TC中热处理整夜之后,5pm厚的LiPON涂层沉积在阴极顶部。通过图21a所示的扫描电子显微方法分析膜的横截面。其展示LiCo02膜由连续的LiPON膜覆盖。图21b展示LiPON膜下方的LiCo02粉末的EDX光谱。LiPON膜沉积在经辊压的LiCo02阴极的顶部,如图22所示。图22(a)展示沉积在LiCo02阴极上的LiPON膜的倾斜视图,其在两侧上浇注有4pm厚的Al箔。图指示LiPON对阴极膜具有非常良好的表面覆盖。图22(b)展示涂覆在LiCo02上的2.5nmLiPON的横截面,其给出阴极结构和LiPON覆盖的进一步细节。将具有1%粘结剂的LiCo02浇注层退火到550'C历时5小时。尽管样本在摩擦时展示一些粉末状性质,但其看上去光滑且层没有剥落。LiPON和Li经沉积且电池在25pA下循环。其展示良好的可循环性和合理的容量。27^Ah的C率容量是针对0.36cn^的活性区域。此浇注电池具有约5-10pm的厚度且是从精细(小于1jim)且规则的粉末(约7pm)的混合物浇注。图23展示电池的循环特性。当以C率循环时,样本容量损耗最小。尽管具有低温退火阴极的电池证明优良的可循环性,但高温(55(TC)退火样本展示较好的容量,因为其可为100%的LiCo02而没有任何非活性材料(可在没有电解质的情况下防止离子和电子输送的那类粘结剂)。用5%LHB-108P粘结剂浇注LiCo02膜。将混合浆料辊压整夜并在浇注在涂有Au/Co的2密耳厚的Ni衬底上之前经超声处理。将镍衬底在700"C下处理1小时以在涂有200埃的钴和2000埃的金之前形成绝缘层(NiO)的薄层(约2微米pm)。接着将膜在不锈钢辊中压延并在550'C下退火历时6小时。约2pm厚的LiPON沉积在LiCo02膜的顶部,且接着在LiPON的顶部热蒸发约2pm厚的锂金属以完成电池。在175HAh/cn^的电流密度下循环样本。图24和25中展示样本fcl023b.001的初始电压轮廓和循环曲线。样本经循环600次循环以上,其中容量衰减为3.9%/100次循环,如图26所示。在另一测试中,用5%的PVA粘结剂浇注LiCo02膜。将混合浆料辊压整夜并在浇注在涂有Ni的2密耳厚的Al衬底上。接着将膜在不锈钢辊中压延并在630'C下退火历时6小时。约2nm厚的LiPON沉积在LiCo02膜的顶部,且接着在LiPON的顶部热蒸发约2pn厚的锂金属以完成电池。在12.5^Ah/cr^的电流密度下循环样本。图27和28中展示样本fcl0051c.008的初始电压轮廓和其循环曲线。分析指示具有浇注LiCo02的薄膜电池可具有优良的循环稳定性。4号样本经测试1000次循环以上,其中容量损耗为约2.1%/100次循环。样本fcl023b.001经循环600次循环以上,其中容量损耗为约3.9%/100次循环。LiCo02层的有效厚度(假定70|uAh/cm2/nm的标准容量)从0.04pm变化到4.82nm。这意味着仅邻近于LiPON层的LiCo02用于电池充电/放电过程中,但此过程非常稳定且具有最小的容量衰减。已分析了电池的不同特征之间的相关性。发现电池容量衰减随着电池库仑效率的增加而减小,但容量衰减并不与电池的电流密度直接相关,即,在正确条件中制备的电池(例如在涂有Au/Co的2密耳厚的Ni箔上浇注并在550'C下退火)可在高电流下放电,但仍展现最小的容量衰减。具有较小电阻的样本总是具有较小的容量衰减。大容量电池(具有较大的有效厚度)总是具有较小的电阻。已经研发了用于制造薄膜电池的混合方法,其中通过湿浆料浇注方法将超薄膜LiCo02膜涂覆在薄铝衬底上。分别通过溅镀和热蒸发来沉积固态电解质、LiPON膜和阳极(锂金属膜)。通过此技术制备的样本经循环600次循环以上,其中容量损耗为约3.9%/100次循环。薄膜电池的面积容量达到338nAh/cm2,其对应于4.82pm的有效厚度。这非常接近于阴极的理论容量。己经执行系统研究来识别薄膜电池的最佳制备条件。在初始实验中,将大多数样本在25(TC下退火。实验结果指示离子玻璃和碳添加剂的添加可增加阴极的离子和电子传导性。尽管具有25(TC退火的阴极的电池展现优良的可循环性,但其容量受到粘结剂存在的显著限制。在通过高温(从450到60(TC)退火移除粘结剂之后,样本证明比在较低温度下退火的样本高得多的容量。实验数据的进一步分析表明大多数样本的容量对应于单一层LiCo02颗粒的容量。这指示仅邻近于LiPON膜的第一LiCo02层参与这些电池的充电/放电过程。因此,5-7pm厚的LiCo02膜(其对应于LiCo02的平均粒径)将是阴极的理想厚度。具有较小电阻的样本总是具有较大容量和较小的容量衰减。应了解,其它嵌锂化合物,例如锂镍氧化物(lithiumnickeloxide)、锂锰氧化物(lithiummanganeseoxide)、氧化钒(vanadiumoxide)、五氧化钒(vanadiumpent-oxide)以及锂铁磷酸盐(lithiumironphosphate),可用作锂钴氧化物阴极材料的替代物。因此可见,现在提供一种用于生产薄膜电池阴极的方法,其较有效且较经济。当然应了解,在不脱离如所附权利要求书中所陈述的本发明精神和范围的情况下,除了本文具体陈述的修改以外,可对本文所描述的特定优选实施例作出许多修改。权利要求1.一种生产薄膜电池阴极的方法,其包括以下步骤(A)提供大量粉末状阴极材料;(B)提供衬底;(C)用所述阴极材料形成液体浆料;(D)在所述衬底上浇注所述液体浆料;(E)使所述液体浆料干燥以形成阴极材料层;(F)将所述阴极层压缩到大体均匀的厚度;以及(G)将所述阴极层加热到至少250摄氏度。2.根据权利要求l所述的方法,其中步骤(A)中所述粉末状阴极材料具有5与12微米之间的平均粒径。3.根据权利要求2所述的方法,其中步骤(F)中将所述阴极层压縮到5与12微米之间的厚度。4.根据权利要求1所述的方法,其中步骤(A)中所述粉末状阴极材料选自由锂钴氧化物、锂镍氧化物、锂锰氧化物、氧化钒、五氧化钒、锂铁磷酸盐以及其它嵌锂化合物组成的群组。5.根据权利要求l所述的方法,其中步骤(C)中所述浆料还包含粘结剂。6.根据权利要求5所述的方法,其中步骤(G)中将所述阴极层加热到至少500摄氏度。7.根据权利要求5所述的方法,其中步骤(G)中将所述阴极层加热到使所述阴极粉末的外围边缘彼此烧结的温度。8.根据权利要求1所述的方法,其中步骤(F)中通过使所述阴极层在辊之间通过来压縮所述阴极层。9.根据权利要求1所述的方法,其中步骤(B)中所述衬底选自由铝、涂有钴和金的铝、涂有金的镍、镍、铂以及不锈钢组成的群组。10.根据权利要求1所述的方法,其中步骤(F)中将所述阴极层压縮到5与12微米之间的厚度。11.一种生产薄膜电池阴极的方法,其包括以下步骤-(A)提供具有5与12微米之间的平均粒径的大量粉末状阴极材料;(B)用所述阴极材料形成液体浆料;(C)在衬底上浇注所述液体桨料;(D)使所述液体浆料干燥以形成阴极材料层;以及(E)将所述阴极层压縮到5与12微米之间的大体均匀的厚度。12.根据权利要求11所述的方法,其进一步包括步骤(F):将所述阴极层加热到至少250摄氏度。13.根据权利要求12所述的方法,其中步骤(F)中将所述阴极层加热到使所述阴极粉末的外围边缘彼此烧结的温度。14.根据权利要求ll所述的方法,其中步骤(A)中所述粉末状阴极材料选自由锂钴氧化物、锂镍氧化物、锂锰氧化物、氧化钒、五氧化钒、锂铁磷酸盐以及其它嵌锂化合物组成的群组。15.根据权利要求ll所述的方法,其中步骤(B)中所述浆料还包含粘结剂。16.根据权利要求12所述的方法,其中步骤(F)中将所述阴极层加热到至少500摄氏度。17.根据权利要求11所述的方法,其中步骤(D)中通过使所述阴极层在辊之间通过来压缩所述阴极层。18.根据权利要求11所述的方法,其中步骤(C)中所述衬底选自由铝、涂有钴和金的铝、涂有金的镍、镍、钼以及不锈钢组成的群组。19.一种生产薄膜电池阴极的方法,其包括以下步骤(A)提供大量粉末状阴极材料;(B)提供衬底(C)用所述阴极材料形成液体浆料;(D)在所述衬底上浇注所述液体浆料;(E)使所述液体浆料干燥以形成阴极材料层;以及(F)将所述阴极层压縮到大体均匀的厚度。20.根据权利要求19所述的方法,其中步骤(A)中所述粉末状阴极材料具有5与12微米之间的平均粒径。21.根据权利要求19所述的方法,其中步骤(F)中将所述阴极层压缩到5与12微米之间的厚度。22.根据权利要求19所述的方法,其中步骤(A)中所述粉末状阴极材料是锂钴氧化物粉末。23.根据权利要求19所述的方法,其中步骤(C)中所述浆料还包含粘结剂。全文摘要本发明揭示一种薄膜电池(10),其包含阴极集流体(11)、阴极(12)、电解质(13)、阳极(14)以及阳极集流体(15)。通过将锂钴氧化物或其它合适的阴极材料研磨为具有5与12微米之间的平均粒径的粉末、用所述阴极材料形成液体浆料、在衬底上浇注所述液体浆料、使所述液体浆料干燥以形成阴极材料层以及将所述阴极层压缩到5与12微米之间的大体均匀且光滑的厚度来生产所述阴极。接着将所述压缩层加热到使所述阴极颗粒的外围边缘烧结或熔化在一起的温度。文档编号H01M10/04GK101351907SQ200680043841公开日2009年1月21日申请日期2006年10月11日优先权日2005年10月11日发明者史蒂夫·白金汉,张继光,朗尼·G·约翰逊申请人:埃克塞勒特龙固体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1