硫化锂电池及其制造方法

文档序号:7221039阅读:2554来源:国知局
专利名称:硫化锂电池及其制造方法
技术领域
本发明涉及电化学动力工程,特别是化学电源(电池),其包括利用氧化-还原对Li+/LiG的负极(阳极),利用氧化-还原对SQ/S-2的正极 (阴极),以及非水的质子惰性的电解质。本发明的实施例也涉及正极 去极化剂物质的组成。
背景技术
贯穿本申请中以明确的引用方式提到了不同的专利及公开的专利本发明的公开内容以更充分地说明本发明所属领域的现有技术。
将能被制成用于电池结构的电活性材料称作电极。在电池中所用 的一对电极中,在具有更高电化学电势一端的电极被称为正极或阴极, 而在具有较低电化学电势一端的电极被称为负极或阳极。本文所述的 电池是指化学电源。
料。把用于阳极或负极中的电化学活性材料称为阳极活性材料。将包 括含有处于氧化态的阴极活性材料的阴极和含有处于还原态的阳极活 性材料的阳极的化学电源或电池称为处于充电状态。相应地,将包括 含有处于还原态的阴极活性材料的阴极和含有处于氧化态的阳极活性 材料的阳极的化学电源称为处于放电状态。
对于新型的可充电电池的重要要求是具有高比能、长循环寿命、 对使用者及环境的安全性以及低成本。最有前途的电化学体系之一是 锂-石危体系,其具有高的理论比能(2600 Wh/kg)、安全性以及低成本。 硫或基于疏的有机物及聚合物被用于锂-硫电池中作为正极去极化剂 物质。锂或锂合金被用作负极去极化剂物质。
元素硫(美国专利第5,789,108号;美国专利第5,814,420号),基
于硫的有机化合物(美国专利第6,090,504号> 或含疏的聚合物(美国专 利第6,201,100号、美国专利第6,174,621号、美国专利第6,117,590 号)通常在锂-硫电池中用作正极的去极化剂。金属锂通常用作负极材 料(美国专利第6,706,449号)。有人提出,可以使用能够可逆地嵌入锂 的材料来做负电极材料。这些材料包括石墨(D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller; "A short review of failure mechanism of lithium metal and lithiated graphite anodes in liquid electrolyte solutions,,(液态电解质 溶液中锂金属及锂化石墨阳极失败机理的简短评述);Solid State Ionics; 2002; vol 148; pp 405-416)以及某些金属的氧化物和硫化物(美国专利 第6,319,633号)。然而,本申请在可得到的文献中没有能够发现用于 锂-碌u电池的嵌入电极的明确实例。必须强调,嵌入电极(正或负)只 有以锂化形式存在时才有应用的可能。还有必要考虑到嵌入化合物(含 有锂的)化学上很活泼,并且具有与金属锂类似的化学性质。锂—疏电池的一个缺点(限制了其商业化)是由锂电极的低循环效 率而导致的中等循环寿命。因此在锂-硫电池中通常提供所需理论量 2至10倍的锂以达到较长的循环寿命。为了改善锂电极的循环,有人 提出在电极中加入不同的化合物(美国专利第5,962,171号、美国专利 第6,632,573号)或在电极表面沉积聚合物保护层(美国专利第 5,648,187号、美国专利第5,961,672或)或无机化合物保护层(美国专利 第6,797,428号、美国专利第6,733,924号)。保护涂层的使用显著改善 了锂电极的循环,但对于很多商业应用来说仍然不能提供足够长的循 环寿命。已知石墨嵌入电极具有很好的循环能力(D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller; "A short review of failure mechanism of lithium metal and lithiated graphite anodes in liquid electrolyte solutions"(液态电 解质溶液中锂金属及锂化石墨阳极失败才几理的简短评述);Solid State 1onics;2002; vol 148; pp 405-416)。然而,为了使用这种电极作为负极, 必须有锂离子源。在传统的锂离子电池中,锂离子源可以是锂化的钴, 镍,锰等过渡金属的氧化物,这些过渡金属用作正极的去极化剂。理论上可以使用碌u电极放电的终产物(斩u化锂及二硫化锂)作为锂
离子源。然而,硫化锂及二硫化锂在质子惰性的电解质体系中溶解很 少,因此是电化学不活泼的。在锂-硫电池中用硫化锂作正极去极化剂的尝试迄今并不成功(Peled E., Gorenshtein A., Segal M., Sternberg Y.; "Rechargeable lithium-sulphur battery (extended abstract),,(可充电的 锂-硫电池(扩展的摘要));J. of Power Sources; 1989; vol 26; pp 269-271)。在质子惰性介质中,硫化锂能够与元素硫反应生成多疏化锂,而 多疏化锂在大多数已知的质子惰性电解质体系(AES)中都具有很好的 溶解度(Shin誦Ichi Tobishima, Hideo Yamamoto, Minoru Matsuda, "Study on the reduction species of sulphur by alkali metals in nonaqueous slovents"(非水溶剂中硫被碱金属还原的产物研究),Electrochimica Acta, 1997, vol 42, no 6, pp 1019-1029; Rauh R.D., Shuker F.S., Marston J.M., Brummer S.B., "Formation of lithium polysulphides in aprotic media"(质子惰性介质中多硫化锂的生成),J. Inorg. Nucl. Chem., 1977, vol 39, pp 1761-1766; J. Paris, V. Plichon, "Electrochemical reduction of sulphur in dimethylacetamide"( 二甲基乙酰胺中碌u的电化学还原), Electrochemica Acta, 1981, vol 26, no 12, pp 1823-1829; Rauh R.D., Abraham K.M., Pearson G.F., Surprenant J.K., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte,,(含有有机 电解质的锂/溶解的石危的电池),J. Electrochem. Soc., 1979, vol 126, no 4, pp 523-527)。多硫化锂在质子惰性电解质体系中的溶解度取决于其中 组分(溶剂和盐)的性质以及多硫化物链的长度。多疏化锂在溶液中可 以4安下面的反应式发生歧4匕反应。<formula>formula see original document page 7</formula>
因此,在电解液中可能发现同时存在不同长度的、互相处于热力 学平衡的多硫化锂。这些多硫化物的分子量分布由电解液成分的组成 和物理/化学性质决定。这些多硫化锂的溶液具有很高的导电性(Duck-Rye Chang, Suck誦Hyun Lee, Sun画Wook, Kim, Hee-Tak Kim, "Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulphur battery,,(基于四甘醇二曱醚和1,3國二 氧戊环的锂-硫电池二元电解质),J. of Power Sources, 2002, vol 112, pp 452國460)和很高的电化学活性(Taitiro Fujnaga, Tooru Kuwamoto, Satoshi Okazaki, Masashi Horo, "Electrochemical reduction of elemental sulphur in acetonitrile"(乙腈中元素硫的电化学还原),Bull. Chem. Soc. Jpn., 1980, vol 53, pp 2851-2855; Levillain E., Gaillard F., Leghie P., Demortier A., Lelieur J.P., "On the understanding of the reduction of sulphur (S8) in dimethylformamide (DMF)"(对二曱基曱酰胺(DMF)中石克 (Sg)还原的理解),J. of Electroanalytical Chemistry, 1997, vol 420, pp 167-177; Yamin H., Penciner J., Gorenshtain A., Elam M., Peled E., "The electrochemical behavior of polysulphides in tetrahydrofiiran"(四氬p夫喃 中多硫化物的电化学行为),J. of Power Sources, 1985, vol 14, pp 129-134; Yamin H., Gorenshtein A., Penciner J., Sternberg Y., Peled E., "Lithium sulphur battery. Oxidation/reduction mechanisms of polysulphides in THF solution"(锂石危电池THF溶液中多硫化物的氧化 /还原机理),J. Electrochem. Soc" 1988, vol 135, no 5, pp 1045-1048)。有人提出用在AES中的多石克化物溶液作为锂-石克电池的液态去 极4匕剂(Rauh R.D., Abraham K.M., Pearson G.F., Surprenant J.K., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte"(含有有机电解质的锂/溶解的硫的电池),J. Electrochem. Soc., 1979, vol 126, no 4, pp 523-527; Yamin H., Peled E., "Electrochemistry of a nonaqueous lithium/sulphur cell"(非水锂/石克电池 的电化学),J. of Power Sources, 1983, vol 9, pp 281-287>这样的电池一 般被称为"具有液态阴极的锂-疏电池"。在这种具有液态硫化物阴 极的电池中硫的利用程度取决于AES的性质和极化条件。在很多情况 下,如果计算全部碌u的还原以及硫化锂的生成,硫的利用程度接近100%(Rauh R.D., Abraham K'M., Pearson G.F., Surprenant J.K., Brummer S.B., "A lithium/dissolved sulphur battery with an organic electrolyte"(含有机电解质的锂/溶解的硫的电池),J. Electrochem. Soc., 1979, vol 126, no 4,卯523-527)。基于多疏化锂的液态阴极的能量输出 由其溶解度决定。在某些溶剂(如四氢呋喃)中,以多硫化锂形式的硫 的溶解度可以达到20M(Yamin H., Peled E., "Electrochemistry of a nonaqueous lithium/sulphur cell"(非7K锂/石危电池的电4匕学),J. of Power Sources, 1983, vol 9,卯281-287)。这样的液态阴极的能量输出超过 1000Ah/l。锂-硫电池的循环寿命还由金属锂电极的行为决定,并且 受该电极的循环效率限制,在硫化物体系中循环效率约为 80-90%(Peled E., Sternberg Y., Gorenshtein A., Lavi Y., "Lithium-sulphur battery: evaluation of dioxolane-based electrolytes"(裡 -石克电池基于二氧戊环的电解质的评4介),J. Electrochem. Soc., 1989, vol 136, no 6, 1621-1625)。本申请所做的研究表明通过使用石墨作为负极能够提高具有液态 阴极的锂-疏电池的循环寿命。但在这种情况下需要锂离子源。通常 用长链多硫化物(Li2Sn, n ^8)溶液作为液态硫阴极。在这些分子中,8 个或更多的石克原子对应一个^l里离子。相应地,具有液态阴极的锂-斩u 电池的循环深度将变低,并且取决于多疏化物的链长。降低硫化锂链 的长度会增加基于硫化锂的具有液态阴极的锂-硫电池的循环深度。 然而,多硫化锂的链长越短,其在质子惰性电解质体系中的溶解度就 越低,因而降低液态硫化物阴极的能量输出。本申请发现,质子惰性电解质体系与硫化锂和硫的混合物接触时 将生成多硫化锂溶液。溶液中多疏化物的浓度以及多硫化物链的长度 一方面取决于硫化锂与硫的摩尔比,另一方面取决于质子惰性电解质 体系的性质。通常在少量疏的存在下不会发生硫化物的全部溶解。但> 在伴随可溶性多硫化物氧化成元素硫的电池充电过程中,硫化锂与生 成的石克反应导致碌u化锂的进一 步溶解,直至辟L^化锂的全部溶解。
发明概述本发明的第一方面提供化学电源,其包括由导电材料制成的正极(阴极)、渗透性的隔板(separator)或膜、由导电材料或能够可逆地嵌入 锂离子的材料制成的负极(阳极)、以及硫化锂和^f危的混合物,其中在 所述电极之间提供质子惰性电解质,所述电解质含有溶于至少一种溶 剂中的至少一种锂盐。将硫化锂和元素硫的混合物用作正极去极化剂物质(电活性物质) 并解决使用能够可逆地嵌入锂离子的材料作为负极时固有的问题(循 环寿命和生产成本)。疏化锂/疏混合物可以在制造时直接并入正极中,或可以是加入到 所述电解质中的胶体溶液或悬浮液,或半固态乳液、软膏或粉末组合 物中。正电极优选地为多孔的、高导电性的、并且有利地具有展开的 (developed)表面。在其它实施方案中,正极可以具有基本上或大体光滑的表面和/ 或具有非多孔的构造或结构。正极可以由碳或石墨,或者金属的或其它在石克化物介质中耐腐蚀的导电材料(任选地具有高多孔性)制成,所述材料优选是在疏化物介质中耐腐蚀的高导电材料(任选地具有高多孔性)。或者使用半导电的材料或半导体材料,如硅,来制备正极,或额外使用半导电的材料或 半导体材料,如硅,来制备正极。渗透性的隔板或膜可由多孔膜或无纺材料制成,所述无纺材料例 如微孔聚丙烯(Celgard⑧隔板)或无纺聚丙烯。当以悬浮液或胶体溶液形式提供碌u化锂A琉混合物时,该悬浮液或 胶体的固体含量优选为5%至50%。胶体或悬浮液中硫化锂的含量优 选为辟u含量的10%至99%或10%至90%重量比。质子惰性电解质可以含有一种或多种下列物质的溶液三氟曱烷 磺酸锂、高氯酸锂、双三氟曱烷磺酰基亚胺基锂、六氟磷酸锂、六氟 砷酸锂、四氯铝酸锂、四烷基铵锂盐、氯化锂、溴化锂和石典化锂,溶 剂选自下列的一种或几种二氧戊环、四氢呋喃、乙二醇二曱醚、二
甘醇二曱醚、三甘醇二曱醚、四甘醇二曱醚、碳酸二烷基酯、环丁砜 以及丁内酯。本发明的第二方面提供制造化学电源的方法,所述方法包括以下步骤i) 提供阴极;ii) 提供在质子惰性电解质中的硫化锂和硫的混合物,所述电解质 含有溶解在至少一种溶剂中的至少一种锂盐;iii) 对所述阴极涂覆所述混合物涂层;iv) 在所述涂覆的阴极上施加渗透性的隔板或膜;v) 在所述渗透性的隔板或膜上涂覆质子惰性电解质涂层,所述质 子惰性电解质含有溶解在至少一种溶剂中的至少一种锂盐;vi) 在所述质子惰性电解质上涂层上提供阳极,所述阳极由导电 材料或能够可逆地嵌入锂离子的材料制成;vii) 为所述阳极和阴极提供端子连接,并将通过本方法所述步骤 得到的结构密封。所述的阴极可以有展开的或粗糙的或平滑的表面。优选地,所述 的阴极为多孔的,但在某些实施方案中,阴极是非多孔的。石克化锂和石危的混合物优选地以悬浮液、胶体溶液、半固态乳液、 软膏或粉末的形式应用。在步骤v)中,质子惰性电解质中还可以任选地含有如步骤ii)中所述的石危化锂和辟u的混合物,或其不含有碌u化锂和辟u的混合物。结构可以是折叠的或在密封之前做成所期望的形状。 本发明的实施方案相对于现有技术的重要区别在于现有技术中的 正极(阴极)均含有直接形成阴极的含硫成分(硫、金属硫化物、包括聚 合物在内的有机硫化合物)。换句话说,这些含硫成分固有地结合在阴 极之中。在本发明的实施方案中,相反地,质子惰性电解质中的硫化 锂和碌,的混合物(如胶体溶液、悬浮液、半固态乳液或软膏或粉末)涂 覆或施加于导电惰性材料(如碳、石墨、金属、硅)上。没有任何含硫 的成分固有地结合在阴极之中。特别地,现有技术没有公开这样的电 池,其中质子惰性电解质中的石克化锂和辟u的混合物涂覆或施加于阴极
上,然后在涂层上面放置渗透性隔板或膜。此外,本发明的实施方案应用了与现有技术体系不同的电化学方 法。在现有技术体系中,阳极由锂、锂合金或其它从开始就含有锂离 子的材料制成,阴极由从开始就含有硫的成分制成。电池反应的形式为;c" + S-丄/^。在本发明的实施方案中,起始阳极中并不含有金属 锂或锂离子。锂离子只是在电池充电时被并入阳极中。同样,起始阴 极中并不含有硫。简单地说,本发明的实施方案中的锂-硫化物体系 具有从现有的锂-硫电池循环结束点开始的循环,并且在这个循环中, 放电时锂在阳极被氧化,疏在阴极被还原。附图的筒要说明为了更好的理解本发明的实施方案并显示其如何起作用,应当示 例性地参考其附图,其中

图1显示第一实施例的充电-放电图; 图2显示第二实施例的充电-放电图。发明详述已经知道,在质子惰性溶剂中,硫化锂与疏反应得到不同长度的 多硫化锂. 质子惰性溶剂ti2S固十肚S固 Ii2Sn溶液多^f克化锂在大部分已知的质子惰性电解质体系中都有很好的溶解性,且具有很高的电化学活性。在溶液中,多硫化锂发生多步分解Li2Sn ~> 3U+ + LiS; US; — U+ + S2n含有根据下式
情性电极/ Li2S + nS+ 盐溶液/惰性电极构建的硫化锂与辟u混合物的电池在充电时,在负极上发生锂离子的还原反应Li+ + e ~> Li0并且在正电极上发生辟u的氧化反应S^2 —2e~>nS在电池放电时,在电极上发生逆反应在负极上在正极上:这种电池的能量强度和循环效率受硫化锂与硫的摩尔比的强烈影 响。此摩尔比一方面要提供高能量强度,另一方面要提供长循环寿命。实施例i疏化锂,98%(Sigma-Aldrich ,英国)和升华辟u , 99.5%(Fisher Scientific,英国)以质量比90:10在高速研磨机(Microtron MB550)中在干 氩气(水分含量20至25ppm)气氛下研磨15至20分钟。将辟u化锂和硫的研 磨混合物置于烧瓶中,并在烧瓶中加入电解质。1M三氟曱烷磺酸锂 (购自3M公司,明尼苏达州圣保罗)的环丁砜(99.8 %, GC标准物,购 自Sigma-Aldrich,英国)溶液净皮用作电解质。液体与固体的质量比为 10:1。烧瓶内的物质在室温下用磁力搅拌器混合24小时。通过过滤从 不溶的固相中分离液相。分析硫化物形式的硫以及总疏含量。还分析 并考虑了初始电解质中的总硫含量。为、浙糾初始电解质中的总硫含量,%质量比 25,8±0.1 与硫和石危化锂的混合物反应后电解质中的总辟K含量,% 26。9±0。1 与硫和石危化锂的混合物反应后电解质中的硫化物硫含量,% 0.18±0.015通过分析结果可以计算与硫和硫化锂的混合物反应后电解质中多 疏化锂的组成及其浓度。多石克化物组成LiWw 浓度0.18%实施例2如实施例1所述方法制得多疏化物的电解质溶液(1M三氟甲烷磺 酸锂的环丁砜溶液)并用化学方法分析总石克含量及硫化物。LisS与S的 质量比为50:50。》、絲充.初始电解质中的总硫含量,%质量比 25.8±0.1
与硫和硫化锂的混合物反应后电解质中的总硫含量,% 31.8±0.1 与硫和硫化锂的混合物反应后电解质中的硫化物硫含量,% 0.96±0,05通过分析结果计算与硫和硫化锂的混合物反应后电解质中多硫化 锂的组成及其浓度。多碌u化物组成Li2S6.25 浓度0.96%实施例3如实施例l所述方法制得多硫化物的电解质溶液(1M三氟甲烷磺 酸锂的环丁砜溶液)并用化学方法分析总硫含量及疏化物。Li;jS与S的 质量比为10:90。力、浙潜充.初始电解质中的总硫含量,%质量比与硫和碌u化锂的混合物反应后电解质中的总硫含量,%与碌b和石危化锂的混合物反应后电解质中的辟K化物-危含量,%25.8±0.129.90.7通过分析结果计算与硫和硫化锂的混合物反应后电解质中多疏化 锂的组成及其浓度。多碌i/f匕物组成Li2S5.86 浓度0.7%
实施例4通过下述程序由50o/。的导电石友黑(Ketjenblack EC-600JD,购自 Akzo Nobel Polymer Chemicals BV,荷兰)和作为粘合剂的50%聚氧化 乙烯(PEO, 4,000,000分子量,购自Sigma-Aldrich,英国)制成多孔性电 极。干组分的混合物在高速研磨机(Microtron MB550)中研磨15至20分 钟。然后向混合物中加入乙腈作为粘合剂的溶剂。得到的悬浮液在DLH 实验室搅拌机中混合15至20小时。悬浮液的固含量为5%。由此得到的 悬浮液用自动涂膜机(Elcometer SPRL)沉积在具有导电碳涂层的厚度 为18 pm的铝箔(Rexam Graphics产品60303号,马萨诸塞州South Hadley)的 一侧作为集电器。碳涂层在环境条件下干燥20小时。干燥后,在1000kg/cn^的压力 下将电极压紧。压紧后所得的干阴极层厚度为8 pm并且含有0.47 mg/cn^的碳-PEO混合物。碳层的体积密度为590 mg/cm3,孔隙率为 72%。实施例5制备了含有硫化锂和辟u的混合物的电解质悬浮液。硫化锂,98%(Sigma-Aldrich,英国)和升华辟u, 99.5%(Fisher Scientific,英国) 以质量比90:10在高速研磨机(Microtron MB550)中在干氩气(水分含量 20至25ppm)气氛下研磨15至20分钟。将疏化锂和疏的研磨混合物置于 球磨机中,并在球磨机中加入电解质。1M三氟曱烷磺酸锂(购自3M 公司,明尼苏达州圣保罗)的环丁砜(99.8%, GC标准物,购自 Sigma-Aldrich,英国)溶液被用作电解质。液体与固体之比为10:1。实施例6将实施例4中得到的坚硬复合阴极用在具有约5 ci^电极表面积的 产生电流的小电池中。电极安装进电池之前,在50。C真空下干燥5小时。 Celgard 2500(日本东京Tonen Chemical Corporation的商标,也可购自 纽约州Pittsford的Mobil Chemical Company薄膜部)被用作多孔隔板。 铜箔被用作负极的集电器。所述的电池用下述方法装配实施例5中硫化锂和硫的电解质悬浮液沉积在实施例4中的多孔碳 阴极表面上形成约7.5 mg/cn^的平滑薄层。然后在电极的沉积悬浮液 上面放置一层Celgard2500。含有三氟甲烷磺酸锂(购自3M公司,明尼 苏达州圣保罗)的环丁砜(99.8%, GC标准物,购自Sigma-Aldrich,英国)溶液,但不含有任何硫化锂-锂悬浮液的电解质以l /11/0112的量沉积在隔板上。在由此得到的"三明治"结构上面放置铜集电器。最后 将电池密封。电池在环境条件放置24小时,然后在电流强度0.05 mA/cn^下充电 至2.8V的电压。此后,将电池循环。充电和i文电在电流强度O.l mA/cn^下进行, ;改电终点为1.5V,充电终点为2.8V。充电-》文电图如图1所示。此充电 -放电图与使用元素硫作为阴极去极化剂(电活性物质)的锂-硫电池 上得到的充电-放电图相似。锂-疏利用效率为55%至65%。实施例7将实施例3中得到的固态复合阴极用于阴极表面积约5 112的电化 学电池中。电池组装之前,将电极在50。C真空下干燥5小时。Celgard 2500(日本东京Tonen Chemical Corporation的商标,也可购自纽约州 Pittsford的Mobil Chemical Company薄膜部)被用作多孑L隔板。用20 /mi铝箔作为负极的集电器。所述的电池用下述方法装配将如实施例2所述得到的硫化锂和硫的电解质悬浮液涂覆在多孔 碳电极表面上形成约7.5 mg/cn^的均匀薄层。然后在涂覆有悬浮液的 电极上面放置一层Celgard2500。电解质以1 j^l/cn^的量沉积在隔板上。 在上面放置铜箔盘,然后将电池密封。电池在环境条件;改置24小时,然后在电流强度0.05 mA/cn^下充电 至2.8V的电压。然后在电流强度O.l mA/cn^下将电池循环,放电终点为1.5V,充
电终点为2.8V。得到的充电-放电曲线如图2所示。本发明的优选特征对于本发明的所有方面都适用,并且可以用于 任何可能的组合。在本说明书的描迷及权利要求中,"包括(comprise)"及"含有 (contain)",及其变化,例如"包括(comprising)"和"包括(comprises)" 均表示"包括但不限于",并且不意味着(并且也不是)排除其它的组 分、整数、部分、添加物或步骤。在本说明书的描述及权利要求中,单数表达也包括复数,除非文 中另有要求。特别地,当使用不定冠词时,说明书应该被理解为包括 复数和单数,除非文中另有要求。
权利要求
1.化学电源,其包括由导电材料制成的正极(阴极)、硫化锂和硫的混合物、渗透性的隔板或膜、以及由导电材料或能够可逆地嵌入锂离子的材料制成的负极(阳极),其中在所述电极之间提供质子惰性电解质,所述电解质含有溶于至少一种溶剂中的至少一种锂盐。
2. 如权利要求1所述的化学电源,其中所述正极为多孔的。
3. 如权利要求1所述的化学电源,其中所述正极为非多孔的。
4. 如权利要求1、 2或3中所述的化学电源,其中所述正极具有 展开的或粗糙的表面。
5. 如权利要求1、 2或3中所述的化学电源,其中所述正极具有 平滑的表面。
6. 如前述任一权利要求所述的化学电源,其中所述正极由碳或石 墨,或者在疏化物介质中耐腐蚀的金属材料,或者半导电的材料制成。
7. 如前述任一权利要求所述的化学电源,其中所述渗透性的隔板 或膜由多孔的织造的或非织造的材料制成。
8. 如前述任一权利要求所述的化学电源,其中提供悬浮液、胶体 溶液、半固态乳液、软膏或粉末形式的所述石克化锂和石克的混合物。
9. 如权利要求8所述的化学电源,其中所述混合物的固含量为5% 至50%。
10. 如4又利要求8或9所述的化学电源,其中所述混合物中辟d匕 锂的含量为石危含量的10%至99%重量比。
11. 如前述任一权利要求所述的化学电源,其中所述质子惰性电 解质含有下列一种或多种物质的溶液三氟曱烷磺酸锂、高氯酸锂、 双三氟曱烷磺酰基亚胺基锂、六氟磷酸锂、六氟砷酸锂、四氯铝酸锂、 四烷基铵锂盐、氯化锂、溴化锂、碘化锂,溶剂选自下列的一种或几 种二氧戊环、四氢呋喃、乙二醇二曱醚、二甘醇二曱醚、三甘醇二 曱醚、四甘醇二曱醚、碳酸二烷基酯、环丁砜以及丁内酯。
12. 制造化学电源的方法,所述方法包括以下步骤i) 提供阴极;ii) 提供在质子惰性电解质中的硫化锂和硫的混合物,所述电解 质含有溶解在至少一种溶剂中的至少一种锂盐;iii) 对所述阴极涂覆所述混合物涂层;iv) 在所述涂覆的阴极上施加渗透性的隔板或膜;v) 在所述的渗透性的隔板或膜上涂覆质子惰性电解质涂层,所 述质子惰性电解质含有溶解在至少一种溶剂中的至少一种锂盐;vi) 在所述质子惰性电解质涂层上提供阳极,所述阳极由导电材 料或能够可逆地嵌入锂离子的材料制成;vii) 为所述阳极和阴极提供端子连接,并将通过所述方法的步 骤得到的结构密封。
13. 如权利要求12所述的方法,其中所述阴极为多孔的。
14. 如权利要求12所述的方法,其中阴极具有光滑的表面。
15. 如权利要求12至14中任一权利要求所述的方法,其中在步 骤v)中,所述质子惰性溶剂含有硫化锂和硫的混合物。
16. 如权利要求12至14中任一权利要求所述的方法,其中在步 骤V)中,所述质子惰性溶剂中不含有硫化锂和硫的混合物。
17. 如权利要求12至16中任一权利要求所述的方法,其中所述 结构是折叠的或在密封之前成形的。
18. 基本上如本申请所述的化学电源。
19. 基本上如本申请所述的制造化学电源的方法。
全文摘要
本发明公开了化学电源,其包括由导电材料制成的正极(阴极)、硫化锂和硫的混合物、渗透性的隔板或膜、以及由导电材料或能够可逆地嵌入锂离子的材料制成的负极(阳极),其中在电极之间提供质子惰性电解质,所述电解质含有溶于至少一种溶剂中的至少一种锂盐。
文档编号H01M4/58GK101128954SQ200680005677
公开日2008年2月20日 申请日期2006年3月21日 优先权日2005年3月22日
发明者叶莲娜·卡拉塞娃, 弗拉迪米尔·克洛什尼特斯 申请人:奥克斯能源有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1