El装置和电子机器的制作方法

文档序号:6904569阅读:143来源:国知局
专利名称:El装置和电子机器的制作方法
技术领域
本发明涉及EL装置和电子机器。
背景技术
近年,在笔记本电脑、移动电话、电子记事本等电子机器中,作为显 示信息的部件,提出具有多个场致发光(以下称作EL)元件的EL装置。 在EL元件中,在相对的一对电极之间配置有EL层(发光层)。
在EL装置的领域中, 一般使用交替层叠具有不同折射率的层的多层 膜,使特定波长的光共振。例如在专利文献1中,提出具有形成在玻璃衬 底全面上的由介质构成的半透明反射膜、形成在其上的由Si02构成的隔离 块、形成在其上的透明阳极、形成在其上的空穴注入层、形成在其上的发 光层、以及形成在其上的阴极的EL装置。该发光层无论在哪个象素中都由 共同的材料形成,发白光,但是为了使作为目的的输出颜色不同,透明阳 极和空穴注入层和发光层的光学距离的和或Si02的隔离块的厚度根据作为 目的的输出颜色而不同。因此,即使由相同的白色发光材料形成发光层, 也能取得R (红色)、G (绿色)、B (蓝色)的输出颜色。
此外,在专利文献2中,提出具有关于R、 G、 B象素分别由不同的材 料形成的发光层、与全部发光层重叠的半透明的反射层群的EL装置。半透 明的反射层群对于全部发光层是相同的构造,但是以提高输出颜色的色纯 度为目的,具有适合于R光的共振的半反射层、适合于G光的共振的半反 射层、适合于B光的共振的半反射层。这些半反射层分别具有多个低折射 率层(例如Si02层)多个高折射率层(例如Ti02层),这些低折射率层和 高折射率层交替层跌。在各半反射层中,高折射率层的折射率nl、其厚度
dl、低折射率层的折射率n2、其厚度d2设定为满足表达式l。 nl dl=n2 d2= (l/4+m/2) 入 ......(1)
这里,A是应该反射,共振的光的波长,m为0以上的任意整数。因此, 在各半反射层中,低折射率层具有彼此相同的厚度d2,高折射率层具有彼 此相同的厚度dl。日本专利第2797883号公报特表2003-528421号公报
可是,在专利文献l的EL装置中,即使能从白色发光输出不同的颜色, 也难以提高输出的光的色纯度。此外,对于R、 G、 B的全部波长区域,具 有某程度的发光强度的白色发光材料受限制。
此外,在专利文献2的EL装置中,实际上例如R象素的红色发光由适 合于G、或B的光的层大量反射。因此,无论哪个颜色的发光在通过半透明 的反射层群时大幅度衰减,无法取得所需的共振效果。此外,由发光层发 出的光在各界面反射或透射,在输出之前透过各种路线,所以不能说依据 表达式1决定低折射率层和高折射率层的厚度与显著的共振效果密切相关。 半透明的反射层群具有适合于R光的共振的半反射层、适合于G光的共振 的半反射层、适合于B光的共振的半反射层,所以层的数量必然多,难以 制造。

发明内容
因此,本发明提供能提高输出的光的色纯度,而且结构简单、制造容 易的EL装置。
本发明的EL装置的一个形态是一种EL装置,具有能发出相当于红色 的光的R象素、能发出相当于绿色的光的G象素、能发出相当于蓝色的光 的B象素,其特征在于所述各象素至少具有一对电极、夹在这些电极之 间并且通过被提供电能而发光的发光层,所述电极中的一方是透光性电极; 在所述透光性电极中与所述发光层相反一侧的面上形成绝缘体层叠膜;所 述绝缘体层叠膜具有由透光性绝缘体形成的多个低折射率层、由具有比所 述低折射率层还高的折射率的透光性绝缘体形成的多个高折射率层,这些 低折射率层和高折射率层交替层叠;各低折射率层跨所述R象素、所述G
象素和所述b象素的发光区域全区形成,在与所述r象素、所述g象素和 所述b象素中的任意一个重叠的区域中具有一样的厚度;所述高折射率层 跨所述r象素、所述g象素和所述b象素的发光区域全区形成,在与所述 r象素、所述g象素和所述b象素中的任意一个重叠的区域中具有一样的 厚度;多个所述低折射率层具有彼此不同的厚度;多个所述高折射率层具 有彼此不同的厚度;决定所述低折射率层和所述高折射率层的厚度,从而 如果所述发光层发光,则至少由于在所述透光性电极和所述绝缘体层叠膜 之间的界面以及所述低折射率层和所述高折射率层之间的界面的反射,在 所述r象素、所述g象素和所述b象素中的任意一个发光峰值波长,从所 述绝缘体层叠膜发出比没有所述绝缘体层叠膜时强度还高的光。
在该形态的el装置中,在透光性电极的与发光层相反一侧配置交替层 叠多个低折射率层和多个高折射率层的绝缘体层叠膜。通过适当决定低折 射率层和高折射率层的厚度,如果发光层发光,至少由于透光性电极和绝 缘体层叠膜之间的界面以及低折射率层和高折射率层之间的界面的反射, 在r象素、g象素、b象素中的任意一个发光峰值波长,从绝缘体层叠膜 发出比没有绝缘体层叠膜时强度还高的光。"发光峰值波长"是从象素的发 光层发出的光的波长中强度最高的波长。在本发明中,无论在r象素的发 光峰值波长,还是g象素的发光峰值波长,还是b象素的发光峰值波长, 都由于绝缘体层叠膜,发出高强度的光。因此,能提高输出的光的色纯度。 多个低折射率层具有彼此不同的厚度,但是各低折射率层在与r象素、g 象素、b象素的任意一个重叠的区域中具有一样的厚度,多个高折射率层 具有彼此不同的厚度,但是各高折射率层在与r象素、g象素、b象素的 任意一个重叠的区域中具有一样的厚度,所以没必要按照象素使厚度变化。 即与r象素、g象素、b象素重叠的绝缘体层叠膜具有公共的构造。此外, 没必要分别设计适合于r光的共振的层、适合于g光的共振的层、适合于 b光的共振的层。
本发明的el装置的其他形态是一种el装置,具有能发出相当于红色 的光的r象素、能发出相当于绿色的光的g象素、能发出相当于蓝色的光 的b象素,其特征在于所述各象素至少具有一对电极、夹在这些电极之 间并且通过被提供电能而发光的发光层,所述电极中的一方是透光性电极;
在所述透光性电极中与所述发光层相反一侧的面上形成绝缘体层叠膜;所 述绝缘体层叠膜具有由透光性绝缘体形成的低折射率层、由具有比所述低 折射率层还高的折射率的透光性绝缘体形成的高折射率层;所述低折射率 层跨所述R象素、所述G象素和所述B象素的发光区域全区形成,在与所
述R象素、所述G象素和所述B象素中的任意一个重叠的区域中具有一样 的厚度;所述高折射率层跨所述R象素、所述G象素和所述B象素的发光 区域全区形成,在与所述R象素、所述G象素和所述B象素中的任意一个 重叠的区域中具有一样的厚度;决定所述低折射率层和所述高折射率层的 厚度,从而当光从所述绝缘体层叠膜向所述透光性电极以及所述发光层入 射时,至少由于在所述透光性电极和所述绝缘体层叠膜之间的界面以及所 述低折射率层和所述高折射率层之间的界面的反射,所述R象素、所述G 象素和所述B象素的在各发光峰值波长的土20nm内的波长的反射率比各在 各发光峰值波长的土50nm内的其他波长的反射率还低。
在该形态的EL装置中,在透光性电极的与发光层相反一侧配置具有低 折射率层和高折射率层的绝缘体层叠膜。通过适当决定低折射率层和高折 射率层的厚度,当光从发光层一侧向透光性电极以及绝缘体层叠膜入射时, 至少由于在透光性电极和绝缘体层叠膜之间的界面以及低折射率层和高折 射率层之间的界面的反射,在各发光峰值波长的士20nm内的波长的反射率 比在各发光峰值波长的士50nm内的其他波长的反射率还低。例如,在R象 素的发光峰值波长的士50nm内,在R象素的发光峰值波长的土20nm内的 一个波长的反射率成为最低。据此,能提高输出的光的色纯度。在本说明 书中,"士20nm内"包含发光峰值波长的+20nm的波长和-20nm的波长, "士50nm内"包含发光峰值波长的+50nm的波长和-50nm的波长。低折射 率层在与R象素、G象素、B象素中的任意一个重叠的区域中具有一样的 厚度,高折射率层在与R象素、G象素、B象素中的任意一个重叠的区域 中具有一样的厚度,所以没必要按照象素使厚度变化。即与R象素、G象 素、B象素重叠的绝缘体层叠膜具有公共的构造。此外,没必要分别设计 适合于R光的共振的层、适合于G光的共振的层、适合于B光的共振的层。 因此,该EL装置的结构简单,容易制造。
所述透光性电极和包含所述发光层的从所述透光性电极到所述发光层
的层厚度的组合根据所述象素的发光颜色不同。据此,即使与R象素、G 象素、B象素重叠的绝缘体层叠膜具有公共的构造,从透光性电极到所述 发光层的层厚度的组合根据象素的发光颜色而不同,所以能容易取得与各 发光颜色相应的适当的反射特性。
此外,本发明的EL装置是有机EL装置,在所述发光层和所述透光性 电极之间配置减少空穴或电极从所述发光层向所述透光性电极漏出的中间 层。据此,与没有中间层时相比,发光层内的厚度方向的发光位置不同。 例如与在发光层的两面没有发光层和电极之间的这样的中间层(空穴阻挡 层和电子阻挡层)时相比,在发光层和透光性电极之间设置中间层时,发 光层内的发光位置向中间层进而向透光性电极一方变位,根据中间层的材 料和/或厚度,有时在发光层和中间层的界面发光。因此,通过设置中间层, 选择其材料和/或厚度,能调整发光层内的厚度方向的发光位置,进而调整 光从发光位置到绝缘体层叠膜前进的光学距离。
所述绝缘体层叠膜具有多个低折射率层和多个高折射率层,这些低折 射率层和高折射率层交替层叠;多个所述低折射率层具有彼此不同的厚度; 多个所述高折射率层具有彼此不同的厚度。
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠 膜使光共振的构造中, 一般根据所述表达式l,低折射率层具有彼此相同的 厚度,高折射率层具有彼此相同的厚度,但是本发明的发明者已经发现在 这样的构造中,并不一定能取得显著的共振效果。多个低折射率层具有彼 此不同的厚度,多个高折射率层具有彼此不同的厚度时,R、 G、 B的任意 的光都共振,能以高能量发光。
此外,在所述绝缘体层叠膜的光射出一侧配置滤色器。通过这样设置 滤色器,能提高对比度和色纯度。
本发明的电子机器的特征在于具有本发明所述的EL装置作为显示 部。根据这样的电子机器,能实现输出的光的色纯度高的显示。


图1是表示本发明的滤色器发光型的有机EL装置的配置构造的图。 图2是图1的有机EL装置的剖视图。
8
图3是表示本发明的有机EL装置的各层的特性的表。 图4是表示由本发明的有机EL装置的象素发出的光的前进路线的例子 的模式图。
图5是表示从与本发明的有机EL装置的各象素重叠的区域发出的光的 频谱的曲线图。
图6是表示从与比较例的有机EL装置的各象素重叠的区域发出的光的 频谱的曲线图。
图7(a)是表示本发明的有机EL装置的制造的一个步骤的剖视图,(b) 是表示(a)之后的步骤的剖视图,(c)是表示(a)之后的步骤的剖视图。
图8 (a)表示图7 (c)之后的步骤的剖视图,(b)是表示(a)之后的 步骤的剖视图,(c)是表示(a)之后的步骤的剖视图。
图9是表示本发明的有机EL装置的垂直入射光引起的光的路线的例子 的模式图。
图10是表示关于与本发明的有机EL装置中的R象素重叠的区域的对
于从外部向有机EL装置垂直入射的光的反射率频谱的图。
图11是表示关于与本发明的有机EL装置中的G象素重叠的区域的对
于从外部向有机EL装置垂直入射的光的反射率频谱的图。
图12是表示关于与本发明的有机EL装置中的B象素重叠的区域的对
于从外部向有机EL装置垂直入射的光的反射率频谱的图。 图13是表示本发明的其他有机EL装置的各层特性的表。 图14是表示本发明的其他有机EL装置的各层特性的表。 图15是表示本发明的其他有机EL装置的各层特性的表。 图16是本发明的全彩色发光型的有机EL装置的实施例3的剖视图。 图17是表示本发明的实施例4的全彩色发光型的无机EL装置的一部
分的剖视图。
图18 (a)是表示本发明的电子机器的图,(b)是表示本发明的其他电 子机器的图,(c)是表示本发明的电子机器的图。
图中4一象素电极(阳极、透光性电极);7—发光层;9一对置电极 (阴极);16a、 16b、 16c—第二层间绝缘层(高折射率层);17a、 17b、 17c 一第二层间绝缘层(低折射率层);18—绝缘体层叠膜;100—有机EL装置(EL装置);202—透光性电极;204—发光层;206—背面电极;207—绝 缘体层叠膜;208—低折射率层;209—高折射率层。
具体实施例方式
下面,参照

本发明的各种实施例。在这些附图中,各层或各 构件的尺寸的比率与实际情况适当不同。 <实施例1>
说明本发明实施例1的全彩色发光型的有机EL装置。图1是表示有机 EL装置100的布线构造的图,图2是有机EL装置100的剖视图。
如图1所示,有机EL装置100具有多条扫描线101、在对于扫描线101 交叉的方向延伸的多条信号线102、与信号线102并列延伸的多条电源线 103。在扫描线101和信号线102的各交叉点附近,象素区形成矩阵状。
在信号线102上连接具有移位寄存器、电平移动器、视频线和模拟开 关的数据一侧驱动电路104。此外,在扫描线101上连接具有移位寄存器、 电平移动器的扫描一侧驱动电路105。
在各象素区A中设置通过扫描线101对栅极供给扫描信号的第一薄膜 晶体管122、保持通过该第一薄膜晶体管122从信号线102供给的象素信号 的电容器cap、把由电容器cap保持的象素信号提供给栅极的第二薄膜晶体 管2。此外,在象素区A中设置由第二薄膜晶体管2对电源线103通电时 驱动电流从所述电源线103流入的象素电极4、配置在该象素电极4和对置 电极(阴极)9之间的发光层7。由象素电极4、对置电极9和发光层7构 成有机EL元件。
根据这样的结构,如果驱动扫描线IOI,第一薄膜晶体管122导通,则 这时的信号线102的电位由电容器cap保持,按照所述电容器cap的状态, 决定第二薄膜晶体管2的导通和断开状态。而且,电流通过第二薄膜晶体 管2的沟道从电源线103流到象素电极4,电流再通过发光层7流向对置电 极9。发光层7按照流过它的电流量发光。
如图2所示,有机EL装置100具有由玻璃等透光性材料形成的透明衬 底1、在该透明衬底1上配置为矩阵状的多个有机EL元件7a。具体而言, 有机EL元件7a具有层叠在透明衬底1上的薄膜晶体管(TFT) 2、透明的 象素电极(透明阳极)4、发光层7、对置电极(阴极)9。
作为透明衬底l,除了玻璃衬底,还能使用硅衬底、陶瓷衬底、金属衬 底、塑料衬底、塑料薄膜衬底等公开的各种衬底。在透明衬底1的图的上 表面,把作为发光区的多个象素区A排列为矩阵状。具体而言,为了进行 彩色显示,排列与红色(R)、绿色(G)、蓝色(B)等各色对应的象素区。 在各象素区A中配置象素电极4,在其附近配置信号线、电源线、扫描线。 在本说明书中,把能发红色(R)光的象素区A称作R象素,把能发绿色 (G)光的象素区A称作G象素,把能发蓝色(B)光的象素区A称作B 象素。
此外,在透明衬底1上形成分别电连接在象素区A的象素电极(透明 阳极)4上的多个薄膜晶体管2。薄膜晶体管2分别具有在透明衬底1上配 置为岛状的半导体层13、与半导体层13的漏区重叠但是从半导体层13分 开的栅极12、连接在半导体层13的一端的栅区上的栅极12、连接在半导 体层13的另一端的源区上的源极11。半导体层13由多晶硅膜形成,电极 10、 11、 12例如由铝形成。如公开的技术所述,通过设置栅绝缘层30、第 一层间绝缘层31、第二层间绝缘层16a 16c、 17a 17c,半导体层13、电 极10、 11、 12配置为彼此不同的高度。具体而言,半导体层13由栅绝缘 层30覆盖,配置在栅绝缘层30上的栅极12由第一层间绝缘层31覆盖, 配置在第一层间绝缘层31上的源极11由第二层间绝缘层16a覆盖,漏极 10配置在第二层间绝缘层17c之上。
虽然未图示,但是如公开的技术所述,在绝缘层30、 31之间配置连接 在栅极12上的栅线,在绝缘层31、 16a之间配置连接在源极ll上的源线, 在绝缘层30、 31、 16a 16c、 17a 17c的任意层间配置图1所示的各种线。 在绝缘层30、 31上形成用于电连接源极11和半导体层13的源区的接触孔 23。在绝缘层30、 31、 16a 16c、 17a 17c上形成用于连接漏极10和半导 体层13的漏区的接触孔24。
绝缘体层叠膜18具有由透光性绝缘体形成的多个低折射率层、由具有 比低折射率层还高的折射率的透光性绝缘体形成的高折射率层,这些低折 射率层和高折射率层交替层跌。第二层间绝缘层16a 16c是高折射率层, 例如由SiNx或TK)2形成。第二层间绝缘层17a 17c是低折射率层,例如
由Si02形成。第二层间绝缘层16a 16c、 17a 17c跨透明衬底1上表面全 体以一样的厚度形成,因此,跨R象素、G象素、B象素的发光区全部区 域延伸,在与R象素、G象素、B象素的任意一个重叠的区域中具有一样 的厚度。如后所述,多个第二层间绝缘层16a 16c具有彼此不同的厚度, 多个第二层间绝缘层17a 17c具有彼此不同的厚度。
栅绝缘层30和第一层间绝缘层31例如由Si02形成。栅绝缘层30和第 一层间绝缘层31分别是决定TFT2的特性的要素,具有一样的厚度。
各象素区A的象素电极4形成在绝缘体层叠膜18的最上层的第二层间 绝缘层17c上,与对应的TFT2的漏极10电连接。象素电极4例如由ITO (铟锡氧化物)等透光性导电材料形成。在象素电极4上形成空穴注入/输 送层28,在空穴注入/输送层28上形成中间层29,在中间层29上形成发光 层7。在全部发光层7上形成电子注入层8,在其上形成对置电极9。即电 子注入层8和对置电极9在全部象素中是公共的,跨R象素、G象素、B 象素的发光区全部区域延伸。这样,象素电极4隔着发光层7与对置电极9 相对,与发光层7以及对置电极9一起构成有机EL元件(发光元件)7a。
空穴注入/输送层28、中间层29和发光层7形成在由围堰部51、 52划 分的凹部内。第一围堰部51由Si02等无机材料构成,第二围堰部52由丙 烯酸素质或聚酰亚胺等有机材料或Si02等无机材料构成。第一围堰部51 是第二层间绝缘层17c,局部覆盖象素电极4的外缘,在内部具有用于配置 发光层7的开口部。第二围堰部52配置在第一围堰部51上,具有比第一 围堰部51的开口部还大的开口部。
空穴注入/输送层28配置在各象素区A中,但是关于全部象素,由相 同的材料例如3、 4-聚乙烯氧噻吩(PEDOT)和苯乙烯磺酸(PSS)的混合 物(以下称作"PEDOT/PSS")形成。中间层29也配置在各象素区A中, 但是关于全部象素,由相同的材料形成。该中间层29是减少来自阴极的电 子从发光层7向象素电极(阳极)4漏出的电子阻挡层,例如由空穴注入性 良好的三苯胺类聚合物或TFB (poly(2, 7- (9, 9-di-n-octylfluorene)-(l,4-phenylene-(4-secbutyphenyl)imino) -1,4-phenylene))形成。
在发光层7中存在通过流过电极4、 9之间的电流,发红色(R)光的 红色发光层7R、发绿色(G)光的绿色发光层7G、发蓝色(B)光的蓝色
发光层7B。发光层7由按各色不同的有机EL材料形成。
如上所述,电子注入层8和对置电极9是全部象素公共的。电子注入 层8例如由LiF形成,在与R象素、G象素、B象素的任意一个重叠的区 域中具有一样的厚度。对置电极(阴极)9虽然未详细图示,但是由钙层和 铝层构成。接近电子注入层8的一方是钙制的极薄的第二对置电极层,远 离电子注入层8的一方是铝制,是更厚的第一对置电极层。第一对置电极 层和第二对置电极层分别在与R象素、G象素、B象素的任意一个重叠的 区域中具有一样的厚度。
本实施例的各发光元件的结构如上所述,但是作为本发明中能利用的 发光元件的变形,也可以是没有电子注入层8的类型、在电子注入层8和 发光层7之间设置电子输入层的类型等具有其他层的类型。例如当使用低 分子类的发光层7时, 一般利用具有阴极、电子输入层、发光层、空穴输 送层、空穴注入层和阳极的类型,关于高分子类的发光层7,常常利用具有 阳极、发光层、空穴注入层和阳极的类型,可以在这些类型中利用本发明。
此外,在本实施例中,阳极透明,阴极是反射性,来自发光层7的光 通过象素电极4以及绝缘体层叠膜18向外部放出,但是也可以在阳极为反 射性,阴极为透明,在透明阴极一侧配置绝缘体层叠膜18,来自发光层7 的光通过透明阴极和绝缘体层叠膜向外部放出的类型中利用本发明。此外, 本实施例的有机EL装置IOO是来自发光层7的光通过衬底1向外部放出的 底发光类型。也可以在来自发光层7的光向与衬底相反一侧放出的顶发光 类型中利用本发明。
如上所述,中间层29是电子阻挡层。与没有中间层29时相比,如果 有中间层29,则在发光层内的厚度方向,向中间层29进而向象素电极4(透 明阳极)一方变位,根据由中间层29的材料和/或厚度决定的电子阻挡性能, 有时在发光层7和中间层29的界面发光。在本实施例中,在发光层7和透 明阳极4之间配置作为电子阻挡层的中间层29,但是在阳极为反射性,阴 极为透明的类型中,在发光层和透明阴极之间配置作为空穴阻挡层的中间 层。空穴阻挡层是减少来自阳极的空穴从发光层7向对置电极(阴极)9漏 出的层。如果有空穴阻挡层,则在发光层内的厚度方向,向空穴阻挡层进 而向阴极一方变位,根据由空穴阻挡层的材料和/或厚度决定的空穴阻挡性
能,有时在发光层和空穴阻挡层的界面发光。如果在发光层7的两侧设置 中间层,即设置空穴阻挡层和电子阻挡层双方时,发光层内的厚度方向的 发光位置接近空穴阻挡层和电子阻挡层中阻挡性能大的一方。因此,至少 设置一方的中间层,通过选择材料和/或厚度,能调整发光层内的厚度方向 的发光位置,进而能调整光从发光位置前进到绝缘体层叠膜的光学距离。
图3是表示本实施例的有机EL装置100的各层特性的表。在图3中, 之所以使用相同材料而根据重叠的象素的颜色,折射率不同,是因为折射 率中存在波长依存性。图3所示的折射率以R象素发出620nm的光,G象 素发出540nm的光,B象素发出470 nm的光为前提。图3的各层的光学距 离是层的厚度和折射率的积。如图3所示,绝缘体层叠膜18内的第二层间 绝缘层16a 16c、 17a 17c分别在与R象素、G象素、B象素的任意一个 重叠的区域中具有一样的厚度。此外,多个第二层间绝缘层16a 16c具有 彼此不同的厚度,多个第二层间绝缘层17a 17c具有彼此不同的厚度。
绝缘体层叠膜18关于全部象素,为相同的结构,是相同的厚度,而从 象素电极4到发光层7的层(包含象素电极4和发光层7)的组合根据象素 的发光颜色而不同。在与R象素重叠的区域中,象素电极4的厚度为95nm, 但是在与G象素、B象素重叠的区域中,象素电极4的厚度为50nm。在与 R象素、G象素重叠的区域中,空穴注入/输送层28的厚度为70nm,但是 在与B象素重叠的区域中,空穴注入/输送层28的厚度为30nm。发光层7
的厚度根据象素的发光颜色而不同。
图4是表示由本实施例的有机EL装置100的象素发出的光的前进路线 的例子的模式图。在图4中,实线表示层间的界面,单点划线表示光的前 进路线。图示的光的前进路线是代表的例子,虽然此外也存在多个光的前 进路线,但是为了使图简明,省略。此外,图的单点划线的角度未正确表 示光的前进角度,描写为容易区别多个前进路线。
图4以在发光层7和中间层29之间的界面BO发光为前提。从发光位 置向全方位发光,但是在反射性的对置电极9和电子注入层8之间的界面, 未被对置电极9吸收的全部光向图的右方反射。此外,光在透过的2个层 之间的界面发生反射和折射。即光的一部分在界面反射,另一部分折射, 前进。须指出的是,当光从折射率高的物质(例如第二层间绝缘层16a 16c)
向低的物质(例如第二层间绝缘层17a 17c)前进时,如果入射角超过某 角度(临界角),就发生光在该界面全部反射的现象即全反射,但是光从折 射率高的物质向低的物质前进时,入射角小于临界角时(近似垂直入射时), 光在界面只反射一部分,剩下的折射,前进。
根据以上的结构,如果发光层7发光,则由于中间层29和空穴注入/ 输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象 素电极4和绝缘体层叠膜19之间的界面、低折射率的第二层间绝缘层17a 17c和高折射率的第二层间绝缘层16a 16c之间的界面的反射,发生共振 作用,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层 叠膜时强度高的光从绝缘体层叠膜18向外侧(对于绝缘体层叠膜18,发光 层7的相反一侧即透明衬底1一侧)放出。"发光峰值波长"是从象素的发 光层7放出的光的波长中强度最高的波长。在本发明中,无论在R象素的 发光峰值波长(620nm),还是G象素的发光峰值波长(540mn),还是B象 素的发光峰值波长(470nm),通过绝缘体层叠膜18放出高强度的光。因此, 能提高输出的光的色纯度。
换言之,在本实施例中,决定高折射率层(第二层间绝缘层16a 16c) 和低折射率层(第二层间绝缘层17a 17c)的厚度,从而如果发光层7发 光,则由于所述界面的反射,在R象素、G象素、B象素的任意发光峰值 波长,比没有绝缘体层叠膜时强度高的光从绝缘体层叠膜18向外侧放出。
首先,说明以下说明的各层的厚度的决定步骤的前提。垂直入射的两 个层的界面的反射率R、透射率T、反射的相位变化4)r及透过的相位变化 dn由以下的表达式(2) (5)求出。可是,n,是入射一侧的媒体的折射 率,n2是出射一侧的媒体的折射率,k2是出射一侧的媒体的消光系数,折 射率和消光系数依存于光的波长。
R={(ni—n2)2+k22}/{(ni+n2)2+k22} ……(2)
T二4n!ri2/((n+n2)2+k22) ...... (3)
Or二tan—'(2nk2/ (n,2 —n22—k22)} ...... (4)
Ot=tan—'{k2/ (1^+112)} ...... (5)使用表达式(2) (5)以及各层的厚度,求出垂直入射的各界面的 反射光的强度(振幅)和相位、透过光的强度(振幅)和相位,推测从绝 缘体层叠膜18向外侧放出的合计的光(输出光)的强度(或振幅)。而且, 一边改变各层的厚度, 一边重复推测从绝缘体层叠膜18向外侧放出的合计 的光的发光峰值波长下的强度(或振幅),求出各层的最佳厚度。在强度的 推测时,把从发光到最多3次反射的光合计。比3次更多反射的光由于层 内的光的吸收,大幅度衰减。
作为条件,在现实的厚度范围内使象素电极4、空穴注入/输送层28以 及发光层7的厚度变化。具体而言,假定对象素电极4的材料使用ITO, 把厚度的范围限定在40nm 100nm。假定空穴注入/输送层28的材料使用 PEDOT/PSS,把厚度的范围限定在20nm 100nm。发光层7的厚度范围限 定在60nm 100nm。此外,以在发光层7和中间层29之间的界面BO发光 为前提(参照图4)。
使用软件,通过仿真推测向外侧放出的合计的光的发光峰值波长下的 强度。具体而言,使用在2005年8月能从日本东京的赛霸耐特系统株式会 社(Cybernet Systems Co.,Ltd)以"OPTAS-FILM"的商品名取得的软件。
(步骤1)虽然其目的在于最终,关于与R象素、G象素、B象素重叠 的区域的任意一个,尽可能增大向外侧放出的合计的光的发光峰值波长的 强度,但是绝缘体层叠膜18的高折射率层(第二层间绝缘层16a、 16b、 16c) 以及低折射率层(第二层间绝缘层17a、 17b、 17c)的厚度在任意区域中都 是公共的,所以首先在与具有可见光区域的几乎中心波长约540nm的发光 峰值波长的G象素重叠的区域中,把高折射率层16a、低折射率层17a、高 折射率层16b、低折射率层17b、高折射率层16c、低折射率层17c、象素电 极4G、空穴注入/输送层28G、中间层29G、发光层7G的厚度最优化。具 体而言, 一边改变各层的厚度, 一边重复推测从绝缘体层叠膜18向外侧放 出的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的 光的厚度组合作为最佳的厚度组合选择。折射率和消光系数依存于光的波 长,所以在该阶段,使用关于绿波长(540nm)的光学常数(折射率和消光 系数)。这样取得的是关于与图3的G象素重叠的区域的各层的厚度。
(步骤2)接着关于与R象素(发光峰值波长约620nm)重叠的区域,
把高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的厚度固定在步 骤l中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发 光层7R的厚度最优化。具体而言,以高折射率层16a、 16b、 16c和低折射 率层17a、 17b、 17c的厚度为确定条件, 一边改变象素电极4R、空穴注入/ 输送层28R、中间层29R、发光层7R的厚度, 一边重复推测从绝缘体层叠 膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值波 长最高强度的光的厚度组合作为最佳的厚度组合选择。在该阶段,使用关 于红波长(620nm)的光学常数(折射率和消光系数)。这样取得的是关于 与图3的R象素重叠的区域的各层的厚度。
(步骤3)接着,关于与B象素(发光峰值波长约470nm)重叠的区 域,把高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的厚度固定 在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、 发光层7R的厚度最优化。具体而言,以高折射率层16a、 16b、 16c和低折 射率层17a、 17b、 17c的厚度为确定条件, 一边改变象素电极4R、空穴注 入/输送层28R、中间层29R、发光层7R的厚度, 一边重复推测从绝缘体层 叠膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值 波长最高强度的光的厚度组合作为最佳的厚度组合选择。在该阶段,使用 关于蓝波长(470nm)的光学常数(折射率和消光系数)。这样取得的是关 于与图3的B象素重叠的区域的各层的厚度。
如上所述,首先关于与G象素重叠的区域,决定包含绝缘体层叠膜18 的高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的各层厚度,然 后关于与其它象素重叠的区域,固定绝缘体层叠膜18的这些层,决定其他 层的厚度。可是,在高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的最优化步骤(步骤1)中,可以把与R、 G、 B的任意象素重叠的区 域作为厚度决定的基准。可是,如果象本实施例那样,把与可见光的几乎 中心波长的G象素重叠的区域作为基准,则容易决定象素电极4R、空穴注 入/输送层28R、中间层29R、发光层7R的厚度,从而关于与R象素、G 象素、B象素重叠的区域的任意一个,都向外侧放出高强度的光。
图5是表示从与本实施例的有机EL装置100的各象素重叠的区域经过 透明衬底1放出的光的频谱的曲线图。图6是从与比较例的有机EL装置的
各象素重叠的区域经过透明衬底放出的光的频谱的曲线图。在这些图中,
由红、绿、蓝区别的曲线分别表示从与R象素、G象素、B象素重叠的区 域放出的光的频率。虽然未图示,但是比较例的有机EL装置具有玻璃制的 透明衬底、形成在其上的厚度600nm的SiNx制的单一层间绝缘层、形成在 其上的R、 G、 B的有机EL元件。比较例的各有机EL元件具有形成在层 间绝缘层上的厚度50nm的ITO制的象素电极(透明阳极)、形成在其上的 PEDOT/PSS制的空穴注入/输送层、形成在其上的中间层(电子阻挡层)、 形成在其上的发光层、形成在其上的反射性的金属制的阴极。关于任意颜 色的有机EL元件,象素电极、空穴注入/输送层、中间层以及发光层的厚 度是公共的。
在图5中,相对强度是用虽然没有绝缘体层叠膜18,但是从其他条件 与本实施例相同的有机EL装置的与R象素、G象素、B象素重叠的区域放 出的光的频率的最大强度除以本实施例的有机EL装置100的放出光的强度 而取得的。在图6中,相对强度是用虽然没有层间绝缘层,但是从其他条 件与比较例相同的有机EL装置的与R象素、G象素、B象素重叠的区域放 出的光的频率的最大强度除以比较例的有机EL装置的放出光的强度而取 得的。从图5和图6可知,根据本实施例,与比较例即以往技术的有机EL 装置相比,各色的强度大,频谱半值宽度窄。因此,根据本实施例,能提 高输出的光的色纯度。
如上所述,根据本实施例,无论R象素的发光峰值波长,G象素的发 光峰值波长,B象素的发光峰值波长,通过绝缘体层叠膜18,能防止高强 度的光。因此,能提高输出的光的色纯度。绝缘体层叠膜18内的多个低折 射率层17a、 17b、 17c具有彼此不同的厚度,但是低折射率层17a、 17b、 17c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的 厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重 叠的绝缘体层叠膜18具有公共的构造。此外,没必要分别设计适合于R光 的共振、G光的共振、B光的共振的层。因此,有机EL装置IOO的结构是 简单的,容易制造。
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠 膜使光共振的构造中,根据所述表达式1, 一般低折射率层具有彼此相同的
厚度,高折射率层具有彼此相同的厚度,但是本发明者已经发现用这样的
构造不一定能取得显著的共振效果。象本实施例那样,多个低折射率层17a、 17b、 17c具有彼此不同的厚度,多个高折射率层16a、 16b、 16c具有彼此 不同的厚度时,R、 G、 B的任意光共振,能以高强度放出。
此外,根据本实施例,从象素电极4(透光性电极)到发光层7的层(包 含象素电极4和发光层7)的层的组合按照象素的发光色不同,所以与R 象素、G象素、B象素重叠的绝缘体层叠膜18即使具有公共的构造,也容 易取得与各发光色对应的适当的反射特性。虽然根据区域而形成不同厚度 的薄膜是困难的,或常常变得复杂,但是在使用高分子类的发光层7时, 在形成空穴注入/输送层28和发光层7时,能采用喷墨法那样滴下液体材料 的方法,所以通过适当调整液体材料的滴下量,容易控制空穴注入/输送层 28以及发光层7的厚度。
在该实施例中,在发光层7和空穴注入/输送层28之间设置作为电子阻 挡层的中间层29,在输出光的强度推定上,以在发光层7和中间层29之间 的界面BO (参照图4)发光为前提。可是,可以不设置这样的中间层。当 没有中间层29时,在发光位置由空穴注入/输送层28、发光层7和电子注 入层8的特性决定的电子和空穴的平衡位置发光。例如没有中间层,使用 PEDOT/PSS作为空穴注入/输送层28,使用LiF作为电子注入层8时,关于 任意的象素,都不是在界面BO,而在发光层7内发光。在R象素中,在离 界面BO约30nm的位置发光。当没有中间层时,使用这些发光位置,按照 所述方法,能计算输出光的强度。
下面说明所述有机EL装置的制造方法的一例。
首先,如图7 (a)所示,在预先准备的透明衬底1之上形成岛状的半 导体层13。这里,把多晶硅膜通过光刻法,在各象素区A (参照图2) — 对一形成半导体层13。
接着覆盖半导体层13在透明衬底1上形成栅绝缘膜30。具体而言,通 过CVD法或其他蒸镀法把Si02形成膜厚75nm。然后,在所述栅绝缘膜30 上,即在半导体层13的与沟道区重叠的区域上形成岛状的栅极12。具体而 言,通过溅射法形成A1膜,用光刻法把它构图。
接着如图7 (b)所示,形成第一层间绝缘层31。具体而言,通过CVD
法或其他蒸镀法把把Si02形成膜厚800nm。接着形成连接在半导体层13 的源区上的接触孔23。具体而言,通过对于栅绝缘膜30和第一层间绝缘层 31的掩模蚀刻,形成到达半导体层13的源区的通孔,通过在该通孔中填充 Al等导电材料,形成接触孔23。然后,在第一层间绝缘层31上形成连接 在接触孔23上的源极11,再覆盖源极11在第一层间绝缘层31上形成第二 层间绝缘层16a、 16b、 17a、 17b、 16c、 17c。
接着,在第二层间绝缘层16a 17c上形成连接在半导体层13的漏区上 的接触孔24。具体而言,通过对第二层间绝缘层16a 17c的掩模蚀刻,形 成到达半导体层13的漏区的通孔,通过在该通孔中填充Al等导电材料, 形成接触孔24。然后,在第二层间绝缘层17c上形成连接在接触孔24上的 象素电极4。具体而言,通过溅射法把ITO形成给定图案。具体而言,象 素电极4按各颜色形成上述的最佳膜厚。具体而言,R象素的象素电极4R 形成95nm的厚度,G象素的象素电极4G形成50nm的厚度,B象素的象 素电极4B形成50nm的厚度。
接着,如图8 (a)所示形成具有与各象素区A (参照图2)对应的开 口部51a的Si02制的第一围堰部51。具体而言,进行Si02薄膜形成步骤、 光刻步骤和蚀刻步骤。形成第一围堰部51,从而开口部51a的周缘部与象 素电极4的外缘部重叠。在第一围堰部51上形成具有与各象素区A对应的 开口部52a的第二围堰部(隔壁)52。该第二围堰部52是聚丙烯酸树脂, 通过包含聚丙烯酸树脂的溶液的涂敷步骤、涂敷的膜的干燥步骤、光刻步 骤、蚀刻步骤,形成。
接着,如图8(b)所示,在由各围堰部51、 52形成的开口部51a、 52a 内的象素电极4上配置液状组成物61。这里,作为液状组成物61的配置方 法,采用公开的液相法(湿工艺、湿式涂敷法),例如使用旋转涂敷法、喷 墨(液滴喷出)法、裂缝涂敷法、浸渍涂敷法、喷涂成膜法、印刷法。这 样的液相法是适合于把高分子材料成膜的方法,与气相法相比,不是用真 空装置等高价的设备,就能廉价制造有机EL装置。通过使用这样的液相法, 在各开口部5内的象素电极4上形成液状组成物61 。
液状组成物61是把用于形成空穴注入/输送层28的材料溶解或分散到 溶剂中、把用于形成中间层29的材料溶解或分散到溶剂中、把用于形成发
光层(有机EL层)7的材料溶解或分散到溶剂中。即在形成空穴注入/输送
层28、中间层29发光层7时,进行成为各层的材料的液状组成物61的配 置,干燥。如图8 (C)所示,形成空穴注入/输送层28后,形成中间层29, 然后形成各色的发光层7R、 7G、 7B。
空穴注入/输送层28按各色形成上述的最佳膜厚,具体而言,R象素的 空穴注入/输送层28R为70nm, G象素的空穴注入/输送层28G为70nm, B 象素的空穴注入/输送层28G为30nm。此外,中间层29按各色形成上述的 最佳膜厚,具体而言,R象素的中间层29R为8nm, G象素的中间层29G 为8nm, B象素的中间层29B为8nm。此外,发光层7按各色形成上述的 最佳膜厚,具体而言,R象素的发光层7R为96nm, G象素的发光层7G为 卯nm, B象素的发光层7B为70nm。
接着,在透明衬底1上的整个面(即相当于象素区的开口部5内的发 光层7上和第二隔壁52上)通过真空蒸镀法形成由LiF构成的电子注入层 8,再在电子注入层8上通过真空蒸镀法形成由Al构成的对置电极(阴极) 9,从而具有图2所示的结构的有机EL装置100。
<实施例2>
下面,说明决定具有与实施例1相同的构造的有机EL装置100的各层 厚度的其他步骤。在本方法中,假定从外部相有机EL装置IOO,从透明衬 底1和绝缘体层叠膜18向着象素电极4和发光层7,把等能量的白色光垂 直入射,R、 G、 B的象素在各发光峰值波长的反射光强度成为最小地决定 各层厚度。可是,从外部相有机EL装置IOO垂直入射的光没必要限定于等 能量白色光,如果着眼于反射率,则决定本实施例的厚度的方法与R象素、 G象素、B象素在各发光峰值波长的反射率成为最小地决定各层厚度的方法 是等价的。这里所说的"反射光强度"是从绝缘体层叠膜18向象素电极4 和发光层7的入射光的反射光即从象素电极4向绝缘体层叠膜18的方向的 合计的输出光的强度,"反射率"是反射光即从象素电极4向绝缘体层叠膜 18的方向的合计的输出光的强度对于从绝缘体层叠膜18向象素电极4和发 光层7的入射光强度的比。根据决定方法,取得与实施例1同样厚度的组 合(图3所示),能提高输出的光的色纯度。
因此,在取得的有机EL装置100中,如果发光层7发光,则通过中间
层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4 之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第 二层间绝缘层17a 17c和高折射率的第二层间绝缘层16a 16c之间的界面 的反射,发生共振作用,在R象素、G象素、B象素的任意发光峰值波长, 比没有绝缘体层叠膜18时还高强度的光从绝缘体层叠膜18向外侧(对于 绝缘体层叠膜18,发光层7的相反一侧,即透明衬底1 一侧)放出。此外, 在相同的有机EL装置100中,光从绝缘体层叠膜18—侧向象素电极4(透 光性电极)4和发光层7垂直入射时,通过中间层29和空穴注入/输送层28 之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4 和绝缘体层叠膜18之间的界面以及低折射率的第二层间绝缘层17a 17c 和高折射率的第二层间绝缘层16a 16c之间的界面的反射,位于R象素、 G象素、B象素的各发光峰值波长士20nm内的一个波长的反射率比该发光 峰值波长土50nm内的其他波长的反射率还低。例如,当光从外部向有机EL 装置100垂直入射时,在R象素的发光峰值波长(620nm)土50nm内的范围 内,位于R象素的发光峰值波长士20nm内的一个波长的反射率成为最低。 图9是表示本实施例的有机EL装置100的垂直入射光IL引起的光的 前进路线例子的模式图。在图9中,实线表示层间的界面,单点划线表示 光的前进路线。图示的光的前进路线是代表的例子,此外存在多个光的前 进路线,但是为了使图简明,省略。此外,图的单点划线的角度未正确表 示光的前进角度,描写为容易区别多个前进路线。从图9可知,在反射性 的对置电极9和电子注入层8之间的界面,未被对置电极9吸收的全部光 向图的右方反射。此外,光在透过的2个层之间的界面发生反射和折射。 结果,从象素电极4向绝缘体层叠膜18的反射光从绝缘体层叠膜18向图 的右侧出射。使用这些反射光的合计或对于入射光的反射光的合计的比即 反射率,在本实施例中,决定各层的厚度。
首先,说明以下说明的各层厚度的决定步骤的前提。垂直入射的两个 层在界面的反射率R、透射率T、反射的相位变化4)r和透射的相位变化4) t由以下的表达式(2) (5)求出。可是,n,是入射一侧的媒体的折射率, n2是出射一侧的媒体的折射率,k2是出射一侧的媒体的消光系数,折射率 和消光系数依存于光的波长。
RUr^ + kA/Km+I^ + k/} ……(2)
T二4mn2/((n,+n2)2+k22〉 ...... (3)
①r二tan—'(2mk2/ (n,2 —n22—k22)} ...... (4)
①t二tan一、k2/ ( +112)} ……(5)
使用表达式(2) (5)以及各层的厚度,关于垂直入射有机EL装置 100的等能量白色光,求出在各界面的反射光的强度(振幅)和相位、透过 光的强度(振幅)和相位,推测在内部反射,经过透明衬底1向外部出射 的合计的反射光的强度(或振幅)。然后, 一边改变各层的厚度, 一边重复 推测从绝缘体层叠膜18向外侧放出的合计的反射光的强度,求出各层的最 佳厚度。在强度的推测时,把从发光到最多3次反射的光合计。比3次更 多反射的光由于层内的光的吸收,大幅度衰减。
作为条件,在现实的厚度范围内使象素电极4、空穴注入/输送层28以 及发光层7的厚度变化。具体而言,假定对象素电极4的材料使用ITO, 把厚度的范围限定在40nm 100nm。假定对空穴注入/输送层28的材料使 用PEDOT/PSS,把该厚度的范围限定在20nm 100nm。把发光层7的厚度 范围限定在60nm 100nm。
使用软件,通过仿真推测向外侧放出的合计的反射光的强度。具体而 言,使用在2005年8月能从日本东京的赛霸耐特系统株式会社(Cybernet Systems Co.,Ltd)以"OPTAS-FILM"的商品名取得的软件。
(步骤l)虽然其目的在于最终,关于与R象素、G象素、B象素重叠 的区域的任意一个,尽可能减小对应的象素的发光峰值波长的反射光强度, 但是绝缘体层叠膜18的高折射率层(第二层间绝缘层16a、 16b、 16c)以 及低折射率层(第二层间绝缘层17a、 17b、 17c)的厚度在任意区域中都是 公共的,所以首先在与具有可见光区域的几乎中心波长约540nm的发光峰 值波长的G象素重叠的区域中,把高折射率层16a、低折射率层17a、高折 射率层16b、低折射率层17b、高折射率层16c、低折射率层17c、象素电极 4G、空穴注入/输送层28G、中间层29G、发光层7G的厚度最优化。具体 而言, 一边改变各层的厚度, 一边重复推测从绝缘体层叠膜18向外侧放出
的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的光 的厚度组合作为最佳的厚度组合选择。折射率和消光系数依存于光的波长,
所以在该阶段,使用关于绿波长(540nm)的光学常数(折射率和消光系数)。 这样取得关于与图3的G象素重叠的区域的各层厚度相同的厚度。
(步骤2)接着关于与R象素(发光峰值波长约620nm)重叠的区域, 把高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的厚度固定在步 骤l中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发 光层7R的厚度最优化。具体而言,以高折射率层16a、 16b、 16c和低折射 率层17a、 17b、 17c的厚度为确定条件, 一边改变象素电极4R、空穴注入/ 输送层28R、中间层29R、发光层7R的厚度, 一边重复推测从绝缘体层叠 膜18向外侧放出的合计的反射光的发光峰值波长的强度,把放出在发光峰 值波长最低强度反射光的厚度组合作为最佳的厚度组合选择。在该阶段, 使用关于红波长(620nm)的光学常数(折射率和消光系数)。这样取得关 于与图3的R象素重叠的区域的各层厚度相同的厚度。
(步骤3)接着,关于与B象素(发光峰值波长约470nm)重叠的区 域,把高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的厚度固定 在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、 发光层7R的厚度最优化。具体而言,以高折射率层16a、 16b、 16c和低折 射率层17a、 17b、 17c的厚度为确定条件, 一边改变象素电极4R、空穴注 入/输送层28R、中间层29R、发光层7R的厚度, 一边重复推测从绝缘体层 叠膜18向外侧放出的合计的反射光的发光峰值波长的强度,把放出在发光 峰值波长最低强度反射光的厚度组合作为最佳的厚度组合选择。在该阶段, 使用关于蓝波长(470nm)的光学常数(折射率和消光系数)。这样取得关 于与图3的B象素重叠的区域的各层的厚度相同的厚度。
如上所述,首先关于与G象素重叠的区域,决定包含绝缘体层叠膜18 的高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的各层厚度,然 后关于与其它象素重叠的区域,固定绝缘体层叠膜18的这些层,决定其他 层的厚度。可是,在高折射率层16a、 16b、 16c和低折射率层17a、 17b、 17c的最优化步骤(步骤1)中,可以把与R、 G、 B的任意象素重叠的区 域作为厚度决定的基准。可是,如果象本实施例那样,把与可见光的几乎
中心波长的G象素重叠的区域作为基准,就容易决定象素电极4R、空穴注 入/输送层28R、中间层29R、发光层7R的厚度,从而关于与R象素、G 象素、B象素重叠的区域的任意一个,都向外侧放出高强度的光。
图10 图12是表示对于从与本实施例的有机EL装置100的各象素重 叠的区域的外部经过透明衬底1向有机EL装置IOO垂直入射的光的反射率 频谱的图。图IO表示关于与R象素重叠的区域的反射率频谱,图ll表示 关于与G象素重叠的区域的反射率频谱,图12表示关于与B象素重叠的区 域的反射率频谱。从这些图确认位于R象素、G象素、B象素的各发光峰 值波长士20nm内的一个波长的反射率比发光峰值波长士50nm内的其他波长 的反射率还低。例如光从外部向有机EL装置100垂直入射时,在R象素的 发光峰值波长(620nm) 土50nm的范围内,位于R象素的发光峰值波长土 20nm内的某一个波长的反射率成为最低。
根据本实施例的各层厚度的决定方法,取得与实施例1相同的有机EL 装置IOO (图3表示细节)。因此,表示从与由本实施例取得的有机EL装置 100的各象素重叠的区域经过透明衬底1放出的光的频谱的曲线图与图5相 同。如关于实施例1所述的那样,如果参照图5和关于比较例的图6,则变 得清楚,根据本实施流,能提高输出的光的色纯度。
此外,绝缘体层叠膜18内的多个低折射率层17a、 17b、 17c具有彼此 不同的厚度,但是低折射率层17a、 17b、 17c分别在与R象素、G象素、B 象素的任意一个重叠的区域中具有一样的厚度,多个高折射率层16a、 16b、 16c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的 厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重 叠的绝缘体层叠膜18具有公共的构造。此外,没必要分别设计适合于R光 的共振、G光的共振、B光的共振的层。此外,第二层间绝缘层16a 16c、 17a 17c具有一样的厚度,所以通过蚀刻,能统一形成全部接触孔24。因 此,该有机EL装置IOO的结构简单,制造容易。
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠 膜使光共振的构造中,根据所述表达式l, 一般低折射率层具有彼此相同的 厚度,高折射率层具有彼此相同的厚度,但是本发明者已经发现用这样的 构造不一定能取得显著的共振效果。象本实施例那样,多个低折射率层17a、 17b、 17c具有彼此不同的厚度,多个高折射率层16a、 16b、 16c具有彼此 不同的厚度时,R、 G、 B的任意光共振,能以高强度放出。
此外,根据本实施例,从象素电极4 (透光性电极)到发光层7的层(包 含象素电极4和发光层7)的层的组合按照象素的发光色不同,所以与R 象素、G象素、B象素重叠的绝缘体层叠膜18即使具有公共的构造,也容 易取得与各发光色对应的适当的反射特性。虽然根据区域而形成不同厚度 的薄膜是困难的,或常常变得复杂,但是在使用高分子类的发光层7时, 在形成空穴注入/输送层28和发光层7时,能采用喷墨法那样滴下液体材料 的方法,所以通过适当调整液体材料的滴下量,容易控制空穴注入/输送层 28以及发光层7的厚度。
<其他厚度的组合>
如果根据上述的实施例1和实施例计算各层的厚度,则不仅上述的厚 度的组合(图3),而且取得其他组合。图13 图15表示这些组合(类型A 类型L)。在图13 图15中,R、 G、 B分别表示与R象素重叠的区域、与 G象素重叠的区域、与B象素重叠的区域。与图3同样,在这些图中,越 上面的行,与离第一对置电极越远的层对应。
在图13 图15所示的类型A 类型L的有机EL装置中,如果发光层 7发光,则通过中间层29和空穴注入/输送层28之间的界面、空穴注入/输 送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜18之间的 界面以及低折射率的第二层间绝缘层17a 17c和高折射率的第二层间绝缘 层16a 16c之间的界面的反射,发生共振作用,在R象素、G象素、B象 素的任意发光峰值波长,比没有绝缘体层叠膜18时还高强度的光从绝缘体 层叠膜18向外侧(对于绝缘体层叠膜18,发光层7的相反一侧,即透明衬 底1 一侧)放出。此外,在相同的有机EL装置100中,光从绝缘体层叠膜 18—侧向象素电极4 (透光性电极)4和发光层7垂直入射时,通过中间层 29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4 之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第 二层间绝缘层17a 17c和高折射率的第二层间绝缘层16a 16c之间的界面 的反射,位于R象素、G象素、B象素的各发光峰值波长士20nm内的一个 波长的反射率比该发光峰值波长土50nm内的其他波长的反射率还低。因
此,关于实施例1和实施例2,能取得上述的效果。
在实施例1和实施例2中,绝缘体层叠膜18内部的层数即高折射率层 和低折射率层的合计层数为6。可是,作为图14的类型G,象例示的那样, 绝缘体层叠膜18内部的层数可以为8,可以是其他层数例如2、 4、 10或更 大。可是,如果层叠数增加,就存在视角依存性增强的倾向。即存在视场 角变窄的倾向。
<实施例3>
可以把有机EL装置100象图16所示那样变形。在图16所示的实施例 3中,在R象素、G象素、B象素中分别重叠滤色器CF。滤色器CF把对 应的象素的发光颜色的波长区的光透射,吸收其他波长区的光。例如与R 象素重叠的滤色器CF使红波长区(620nm附近)的光透射,吸收其他波长 区的光。滤色器CF接合在从象素放出光一侧的透明衬底1上,其周围由黑 底矩阵BM包围。在滤色器CF和黑底矩阵BM上重叠保护膜19,在其上 设置绝缘体层叠膜18。通过这样在各象素上重叠滤色器CF,能提高对比度 和色纯度。即象素发光时的光的色纯度提高,当象素不发光时,该象素看 起来更暗。
<实施例4>
图17表示本发明实施例4的无机EL装置。作为本发明的EL装置, 以有机EL装置为例进行说明,但是无机EL装置也在本发明的范围内。如 图17所示,无机EL装置具有在玻璃制的透明衬底201上由ITO形成的透 光性电极202、在其上由SiNx形成的第一绝缘膜203、在其上形成的发光层 204、在其上由SiNx形成的第二绝缘膜205、在其上由Al形成的背面电极 206。根据本发明,在透明衬底201和透光性电极202之间存在具有由SiNx 形成的低折射率层和例如由SiNx形成的高折射率层209的绝缘体层叠膜 207,在与R、 G、 B的象素的任意一个重叠的区域中,低折射率层208和 高折射率层209各自的厚度一样,根据象素的发光颜色,透明衬底201、第 一绝缘膜203、发光层204的厚度的组合不同。
而且,与实施例1或实施例2同样决定各层的厚度。在取得的无机EL 装置中,如果发光层204发光,则由于第一绝缘膜203和透光性电极202 之间的界面、透光性电极202和绝缘体层叠膜207之间的界面、低折射率 之间的界面的反射,发生共振作用,在R象素、G 象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜207时还高强度 的光从绝缘体层叠膜207向外侧(对于绝缘体层叠膜207,发光层204的相 反一侧,即透明衬底201—侧)放出。此外,在相同的无机EL装置中,光 从绝缘体层叠膜207 —侧向透光性电极202和发光层204垂直入射时,由 于第一绝缘膜203和透光性电极202之间的界面、透光性电极202和绝缘 体层叠膜207之间的界面、低折射率层208和高折射率层209之间的界面 的反射,位于R象素、G象素、B象素的各发光峰值波长士20nm内的一个 波长的反射率比该发光峰值波长土50nm内的其他波长的反射率还低。因 此,关于实施例l和实施例2,取得上述的效果。可以没有第一绝缘膜203。 <电子机器>
下面参照图18说明具有本发明的EL装置的各种电子机器。图18 (a) 是表示移动电话一例的立体图。在图18 (a)中,符号600表示移动电话主 体,符号601表示使用所述任意的EL装置的显示部。图18 (b)是表示字 处理器、个人电脑等便携式信息处理装置的一例的立体图。在图18 (b)中, 符号700是信息处理装置,符号701表示键盘等输入部,符号703表示信 息处理装置主体,符号702表示使用所述任意的EL装置的显示部。在图 18 (c)中,符号800表示手表主体,符号801表示使用所述任意的EL装 置的显示部。
权利要求
1.一种EL装置,具有能发出红色光的R象素、能发出绿色光的G象素、以及能发出蓝色光的B象素,其特征在于所述各象素,至少具有一对电极、和夹在这些电极之间且通过被提供电能而发光的发光层,所述电极中的一方是透光性电极;在所述透光性电极中的与所述发光层相反一侧的面上,形成有绝缘体层叠膜;所述绝缘体层叠膜,具有由透光性绝缘体所形成的多个低折射率层、和由具有比所述低折射率层还高的折射率的透光性绝缘体所形成的多个高折射率层;这些低折射率层与高折射率层交替层叠;所述多个低折射率层的每一个,跨所述R象素、所述G象素和所述B象素的发光区域全区形成,即使在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中也具有一样的厚度;所述多个高折射率层的每一个,跨所述R象素、所述G象素和所述B象素的发光区域全区形成,即使在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中也具有一样的厚度;所述多个低折射率层彼此具有不同的厚度;所述多个高折射率层彼此具有不同的厚度。
2. 根据权利要求1所述的EL装置,其特征在于决定所述多个低折 射率层和所述多个高折射率层的厚度,以便当光从所述绝缘体层叠膜一侧 向所述透光性电极以及所述发光层入射时,至少通过在所述透光性电极与 所述绝缘体层叠膜之间的界面的反射、和所述多个低折射率层及所述多个 高折射率层中的彼此相邻的低折射率层与高折射率层之间的界面的反射, 使得所述R象素、所述G象素和所述B象素的在各发光峰值波长的± 20nm 内的波长的反射率,低于把各发光峰值波长的土20nm内的波长除外的在 各发光峰值波长的士50nm内的反射率。
3. 根据权利要求1或2所述的EL装置,其特征在于 所述透光性电极和包含所述发光层的从所述透光性电极到所述发光层的层厚度的组合,根据所述象素的发光颜色而不同。
4. 根据权利要求1所述的EL装置,其特征在于.-所述EL装置是有机EL装置;在所述发光层与所述透光性电极之间配置中间层,以便减少空穴或电 子从所述发光层向所述透光性电极漏出。
5. 根据权利要求1所述的EL装置,其特征在于-在所述绝缘体层叠膜的光射出一侧配置滤色器。
6. —种电子机器,其特征在于具有权利要求1所述的EL装置。
全文摘要
EL装置,具有R象素、G象素及B象素,各象素至少具有一对电极和发光层,电极中的一方是透光性电极。在透光性电极中的与发光层相反一侧的面上形成有绝缘体层叠膜,该膜具有由透光性绝缘体所形成的多个低折射率层和多个高折射率层;这些低折射率层与高折射率层交替层叠。多个低折射率层的每一个,跨R、G和B象素的发光区域全区形成,即使在与R、G和B象素中的任意一个重叠的区域中也具有一样的厚度;多个高折射率层的每一个,跨R、G和B象素的发光区域全区形成,即使在与R、G和B象素中的任意一个重叠的区域中也具有一样的厚度。多个低折射率层彼此厚度不同;多个高折射率层彼此厚度不同。能提高输出的光的色纯度,而且结构简单、制造容易。
文档编号H01L51/50GK101350361SQ20081021485
公开日2009年1月21日 申请日期2005年11月22日 优先权日2004年11月22日
发明者小林英和 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1