陶瓷电子部件的制作方法

文档序号:6943325阅读:178来源:国知局
专利名称:陶瓷电子部件的制作方法
技术领域
本发明涉及一种陶瓷电子部件。
背景技术
近年来,随着在手机等移动通信器材、AV器材以及电脑器材等领域中小型化、高 性能化的进展,对用于这些器材的各种电子部件也要求小型化以及高性能化。为了有助于 这样的各种电子部件的小型化以及高性能化,在内部具有电极、配线等导体(以下将在电 子器件内部所具有的电极和配线等导体称为“内部导体”)的表面安装器件(SMD=Surface Mount Device)成为主流。于是,正在进行如下技术的研究,S卩,通过同时烧成材料特性不同的多种陶瓷组合 物来形成层叠陶瓷电子部件,从而制作性能得到改善的电子器件。例如可以列举组合磁性 体和电介质而形成的LC滤波器、组合高介电常数材料和低介电常数材料而形成的内藏有 电容器的电路基板(元件)等。在LC滤波器的情况下,对构成L部的陶瓷材料选择具有高Q值的低介电常数材料 从而得到较高的自谐频率,对C部选择温度特性好且介电常数高的材料,从而可以得到Q值 高且温度特性好的LC元件。在电容器的情况下,通过组合高介电常数材料和低介电常数材料,与仅由高介电 常数材料形成的电容器相比可以减少分布电容,与仅由低介电常数材料形成的电容器相比 可以实现大电容化。例如,在专利文献1中公开了同时一体烧成在微波域中的相对介电常数较高且具 有高Q值的绝缘层和相对介电常数较低的绝缘层而形成的电路基板。专利文献1 日本特开2001-284807号公报。

发明内容
然而,若通过同时烧成材质不同的材料而形成层叠有多个电介质层的电子器件, 则根据情况有时会出现电介质层彼此间粘结性不足,从而使电介质层剥离的情况。如果出 现这种情况,在作为电子部件而使用时会出现电介质层的剥离,从而导致出现次品。因此, 存在组合的电介质层的材料受到限制(制约)的情况,需要开发出可以解决该问题的技术。在此,本发明正是鉴于上述问题而完成的,其目的在于提供一种虽然层叠不同材 质的电介质层而形成但可以充分防止被层叠的电介质层彼此间的相互剥离的陶瓷电子部 件。本发明者们鉴于上述事实而进行了锐意的研究,结果意外地发现通过在含有主 成分为BaCKNd2O3以及TiO2的第一电介质层和与第一电介质层材质不同的第二电介质层之 间形成含有Zn以及Ti的边界层,第一电介质层和第二电介质层被牢固地层叠。SP,本发明的陶瓷电子部件具有含有主成分为BaCKNd2O3以及TiO2的第一电介质 层;与第一电介质层材质不同的第二电介质层;形成于第一电介质层与第二电介质层之间且含有Zn以及Ti的边界层。此外,在本发明中,优选将含有主成分为BaO、Nd2O3以及TiO2的第一电介质层和含有不同于第一电介质层的材质且含有Zn的电介质材料同时进行烧成而形成陶瓷电子部 件。通过同时进行烧成,能够在被层叠的电介质层之间形成含有Ti以及Zn的边界层。此外,在本发明中,优选第一电介质层还含有Zn。由此,可以使第一电介质层和第 二电介质层更加牢固地层叠。根据本发明可以得到虽然是层叠不同材质的电介质层而形成但可以充分防止被 层叠的电介质层彼此间的相互剥离的陶瓷电子部件。


图1为将本实施方式的陶瓷电子部件作为LC滤波器时一个实施方式的概念图。图2为示意实施例10的一体化芯片的边界附近COMPO图像的附图替代照片。图3为示意实施例10的一体化芯片的烧成后芯片的芯片中心部边界附近COMPO 图像的附图替代照片。图4为示意针对实施例10的一体化芯片的Zn成分的EDS图像的附图替代照片。图5为示意针对实施例10的一体化芯片的Ti成分的EDS图像的附图替代照片。符号说明10 :LC滤波器;12 导通孔;C1、C2、C3 电容器;L 线圈
具体实施例方式以下,详细说明用于实施本发明的方式(以下简称“本实施方式”)。以下的本实 施方式为用于说明本发明的示例,并不意味着本发明被限定为以下内容。在不脱离本发明 的要旨的范围内,可以适当地对本实施方式予以变形来实施本发明。本实施方式的陶瓷电子部件具有含有主成分为BaO、Nd2O3以及TiO2的第一电介 质层、与第一电介质层材质不同的第二电介质层、形成于第一电介质层与第二电介质层之 间且含有Zn以及Ti的边界层。(第一电介质层)本实施方式的第一电介质层含有主成分为BaCKNd2O3以及Ti02。第一电介质层中作为主成分至少含有BaO、Nd2O3以及TiO2,具体而言,可以列举 BaO-Nd2O3-TiO2系、Bi2O3-BaO-Nd2O3-TiO2系等电介质陶瓷。在此,并不限定BaO、Nd2O3以及 TiO2的各自的含有比例,可以根据所期望的物性而适当选择优选的含有比例。在BaO-Nd2O3-TiO2系化合物的情况下,优选在下述通式(1)所表示的组成式中,满 足下述(2) (5)所表示的关系的化合物。xBaO · yNd203 · zTi02......(1)6· 0 彡 χ (mol % ) ^ 23. 0......(2)13. 0 ^ y (mol % ) ^ 30. 0......(3) 64. 0 ^ z(mol% ) ^ 68. 0......(4)x+y+z = 100......(5)此外,第一电介质层可以进一步含有其他材料作为主成分。具体而言,可以列举例如镁橄榄石(2MgO · SiO2)、顽火辉石(MgO · SiO2)、透辉石(CaO · MgO · 2Si02)等,其中优选 镁橄榄石(Forsterite 化学式一般表示为2Mg0 · SiO2或Mg2SiO4,本说明书中使用前者)。 从介电损失小的观点出发,优选2Mg0 · SiO2以镁橄榄石结晶的形态包含于电介质层中。利 用X射线分析装置(XRD)可以确认电介质层中是否含有镁橄榄石结晶。BaO-Nd2O3-TiO2系化合物具有较高的相对介电常数ε r,其值约为55 105。而 2Mg0 · SiO2(镁橄榄石)在单体的形态下具有较低的相对介电常数ε r,其值约为6. 8。本 实施方式的陶瓷电子部件中,作为第一电介质层的主成分含有相对介电常数er较高的 BaO-Nd2O3-TiO2系化合物和相对介电常数ε r较低的2Mg0-SiO2,从而可以适宜地降低第一 电介质层的相对介电常数er。此夕卜,BaO-Nd2O3-TiO2系化合物的Q · f值(单位GHz)约为2000 8000GHz。而 2Mg0 · SiO2 (镁橄榄石)单体的Q · f值约为200000GHz。与BaO-Nd2O3-TiO2系化合物的介 电损失相比,2Mg0*Si02的介电损失较小。在本实施方式中,由于作为第一电介质层的主成 分含有BaO-Nd2O3-TiO2系化合物以及相比于BaO-Nd2O3-TiO2系化合物介电损失小的镁橄榄 石,因此可以形成介电损失小的电介质层。在此,Q · f值(单位GHz)表示介电损失的大小,是损耗角δ的正切函数tan δ 的倒数Q(Q= 1/tan δ )与共振频率f的乘积,其中损耗角δ为现实电流与电压的相位差 和理想电流与电压的90度相位差之差。通常,向理想的电介质陶瓷施加交流电流时电流与电压具有90度的相位 差,然而,当交流电流的频率变大而成为高频时,由于电介质陶瓷的电极化(electric polarization)以及极性分子的取向不能追随高频电场的变化,或者由于电子或离子的传 导,电通密度相对于电场具有相位的滞后(相位差),从而使现实的电流与电压之间具有90 度以外的相位。这样的相位差所导致的高频能量的一部分变为热而散发的现象被称作介 电损失。介电损失的大小以上述Q · ·值表示。介电损失小则Q f值变大,介电损失大则 Q · f值变小。(副成分)第一电介质层中除了主成分之外可以进一步含有副成分。对副成分没有特别的限 定,可以列举锌氧化物、硼氧化物、铋氧化物、钴氧化物、锰氧化物、铜氧化物、碱土类金属氧 化物、玻璃等。作为碱土类金属氧化物,有选钙氧化物。作为玻璃,优选包含锂氧化物的玻璃。
通过含有上述各副成分可以降低烧结温度,从而能够在比作为内部导体而使用的 由Ag金属形成的导体部件的熔点低的温度下进行烧成。对副成分的含量没有特别的限定,优选相对于主成分的总量,副成分的总量为1. 0
质量% 20.0质量%。作为副成分之一的锌氧化物的含量,相对于主成分100质量%,将锌氧化物的质 量换算为ZnO时的质量比优选为0. 1质量%以上且7. 0质量%以下,更优选为1. 5质量% 以上且7.0质量%以下。作为副成分之一的硼氧化物的含量,相对于主成分100质量%,将硼氧化物的质 量换算为B2O3时的质量比优选为0. 1质量%以上且3. 0质量%以下,更优选为1. 0质量% 以上且2.5质量%以下。
作为副成分之一的铋氧化物的含量,相对于主成分100质量%,将铋氧化物的质 量换算为Bi2O3时的质量比优选为1. 0质量%以上且4. 0质量%以下,更优选为1. 5质量% 以上且3.5质量%以下。作为副成分之一的钴氧化物的含量,相对于主成分100质量%,将钴氧化物的质 量换算为CoO时的质量比优选为0. 5质量%以上且2. 0质量%以下,更优选为1. 0质量% 以上且1.5质量%以下。

作为副成分之一的锰氧化物的含量,相对于主成分100质量%,将锰氧化物的质 量换算为MnO2时的质量比优选为0. 3质量%以上且1. 5质量%以下,更优选为0. 5质量% 以上且1.0质量%以下。作为副成分之一的铜氧化物的含量,相对于主成分100质量%,将铜氧化物的质 量换算为CuO时的质量比优选为0. 1质量%以上且2. 0质量%以下,更优选为0. 7质量% 以上且1.3质量%以下。作为副成分之一的钙氧化物(属于碱土类金属氧化物)的含量,相对于主成分100 质量%,将钙氧化物的质量换算为CaO时的质量比优选为0. 1质量%以上且1. 5质量%以 下,更优选为0. 5质量%以上且1. 5质量%以下。作为副成分之一的玻璃的含量,相对于主成分100质量%,优选为2.0质量%以上 且7. 0质量%以下,更优选为4. 0质量%以上且5. 5质量%以下。(第二电介质层)本实施方式的第二电介质层为包含不同于第一电介质层的材质的电介质层。第 二电介质层的材质只要是不同于第一电介质层的材质,就对其种类没有限制,可以使用公 知的材质。具体而言,可以列举镁橄榄石(2Mg0*Si02)、顽火辉石(MgO · SiO2)、透辉石 (CaO ^gOdSiO2)等。其中,从相对介电常数£r较低且Q*f值较大的观点出发,优选以 镁橄榄石为主成分的电介质层。在此,所谓“含有与第一电介质层不同材质的电介质层”是指,只要第二电介质层 的成分与第一电介质层的成分不是完全相同即可。例如,第二电介质层中也可以含有一部 分第一电介质层的成分。(边界层)本实施方式的边界层形成于第一电介质层与第二电介质层之间且含有Zn以及 Ti。由于含有Zn以及Ti的边界层存在于第一电介质层与第二电介质层之间,因此可以牢 固地层叠第一电介质层、边界层以及第二电介质层。虽然该作用机理还不甚明了,然而可以 考虑为由于在边界层中存在Zn以及Ti,因此可以在较低的温度下形成对各材质具有良好 的反应性的ZnTiO3系结晶相,由此提高了接合强度。对Zn没有特别的限制,可以列举锌氧化物、硫酸锌、氯化锌等。其中,从烧成后残 留的阴离子类对芯片的电特性、特别是可靠性试验中对寿命的影响的角度出发,优选ZnO。对Ti没有特别的限制,可以列举钛氧化物、氯化钛等。其中,从烧成后残留的阴离 子类对芯片的电特性、特别是可靠性试验中对寿命的影响的角度出发,优选Ti02。在本实施方式中,对Ti成分与Zn成分的配比没有特别的限定。边界层中作为其他成分也可以含有CuO、MgO、CoO、Fe2O3> NiO0对边界层的厚度没有特别的限定,可以根据第一电介质层与第二电介质层的材质等适宜选择合适的厚度。然而从保持边界附近的介电特性的观点出发,优选上限值为 IOum0从更加牢固地层叠电介质层的观点出发,优选下限值为1 μ m。在本实施方式中,第一电介质层与第二电介质层的边界并不一定具有明确的界 面。此外,对边界层的形成方法没有特别的限定,然而优选通过同时烧成第一电介质 层和第二电介质层而发生的反应来形成。由此,通过第一电介质层、可以构成边界层的材质 以及第二电介质层相互发生反应,可以在第一电介质层与第二电介质层之间形成边界层, 并且使第一电介质层、可以构成边界层的材质以及第二电介质层一体化。在本实施方式中,优选将含有主成分为BaO、Nd2O3以及TiO2的第一电介质层和含 有与第一电介质层不同的材质且含有Zn的电介质材料同时进行烧成。通过同时进行烧成, 使含有不同于第一电介质层的材质且含有Zn的电介质材料中的Zn与第一电介质层中的Ti 发生反应,从而可以形成含有Zn以及Ti的边界层,并且还形成第二电介质层。其结果,第 一电介质层与第二电介质层通过边 界层而被牢固地层叠。可以将该Zn作为助烧结剂而以 锌氧化物的形态添加于电介质材料中。在本实施方式中,优选第一电介质层也含有Zn。通过使第一电介质层也含有Zn, 可以通过同时进行烧成而更加牢固地使电介质层彼此层叠。可以将该Zn作为助烧结剂而 以锌氧化物等的形态配合于第一电介质层中。对反应条件没有特别的限定,可以在870 940°C下烧成,优选在900°C下烧成2. 5 小时。(陶瓷电子部件)本实施方式的陶瓷电子部件可以例如作为高频器件之一的多层器件的部件而使 用。多层器件由在内部整体地制作有(被一体化地埋设)电容器、电感等电介质器件的由多 个陶瓷层所形成的多层陶瓷基板制造。该多层陶瓷基板通过如下方法制造在由彼此的介 电特性不同的电介质陶瓷组合物形成的生片上形成通孔之后,层叠多层生片,并将其同时 进行烧成,从而制造该多层陶瓷基板。作为其他可以制造的电子部件,可以列举低通滤波器 (LPF)、带通滤波器(BPF)、双工器(DPX)、耦合器(方向性耦合器)、平衡不平衡转换器(或 巴伦平衡不平衡阻抗转换器)等。将本实施方式的陶瓷电子部件作为LC滤波器时的一实施方式的概念图(模式截 面图)如图1所示。图1的符号10表示滤波器。LC滤波器10具备具有电容器Cl、C2、 C3的电容部和具有线圈L的线圈部。电容器部与线圈部经由导通孔(via)12(通孔导体) 而连接。LC滤波器10的电容部由3层结构的电容器构成,然而本实施方式的陶瓷电子部件 并不局限于3层结构,可以为任意的多层结构。本实施方式的陶瓷电子部件可作为SMD模 块化的多层器件而适用于高频LC滤波器。在制造多层器件时,在本实施方式的电介质陶瓷组合物中混合聚乙烯醇类、丙烯 酰类以及乙基纤维素等有机粘结剂等之后,将得到的混合物成型为薄片状,从而得到生片。 生片的成型方法可以使用薄片法或印刷法等湿式成型方法,也可以适用压制法等干式成型 方法。接着,在其间配置有成为内部电极的导体材料Ag系金属的状态下,交错地层叠多 层所得到的生片和与其介电特性不同的其他生片,将该层叠体切断为所希望的尺寸,形成生片芯片。在对所得到的生片芯片实施脱粘结剂处理之后,对生片芯片进行烧成,从而得到烧结体。烧成优选在例如如空气那样的氧气氛中进行。烧成温度优选在作为导体材料而使 用的Ag系金属的熔点之下。具体而言,优选860 1000°C,更优选870 940°C。通过在 所得到的烧结体上形成外部电极等,从而可以制造出具有由Ag系金属形成的内部电极的 多层器件。[实施例]以下通过实施例更为详细地说明本发明,然而本实施方式并不限于这些实施例。((1-1) BaNdTiO 系氧化物(BaO-Nd2O3-TiO2 陶瓷)材料的制作)称取24. 36质量%的碳酸钡(BaCO3) ,40. 29质量%的氢氧化钕(Nd(OH)3) ,35. 35 质量%的氧化钛(TiO2)(总计100质量% ),将称取的粉体加入到尼龙制球磨机中,添加离 子交换水和市售的分散剂,调制成浓度为25%的浆料,混合16小时。回收混合好的浆料,在120°C下干燥24小时之后,在威力粉碎机(wiley mill)中 磨碎干燥块,使其通过#30目的筛子,将回收的粉体收集在氧化镁制的匣钵中,在电炉中, 在1270°C下在空气气氛中预烧2小时,得到基材的预烧粉体(称“一次预烧粉体”)。相对于100质量%的一次预烧粉体,称取1. 5质量%的氧化硼(B2O3)、2. 0质量% 的氧化锌(ZnO)、1.0质量%的氧化铜(CuO),将称取的粉体加入到尼龙制球磨机中,添加离 子交换水,调制成浓度为33%的浆料,混合16小时。回收混合好的浆料,在120°C下干燥24小时之后,在威力粉碎机中磨碎干燥块,使 其通过#300目的筛子。将回收的粉体收集在氧化镁制的匣钵中,在电炉中,在750°C下在 空气气氛中预烧2小时,得到预烧粉体(称“二次预烧粉体”),其为基材与添加物的混合粉 体。称取99质量%的二次预烧粉体,并称取1质量%的Ag粉末,将这些粉体加入到尼 龙制球磨机中,添加酒精,调制成浓度为33%的浆料,混合16小时,从而得到微粉化的成品 料。回收混合的酒精浆料,在80 120°C下干燥24小时之后,在威力粉碎机中磨碎干 燥块,使其通过#300目的筛子,从而得到成品料。((1-2) BaNdTiO 系氧化物(BaO-Nd2O3-TiO2 陶瓷)薄片的制作)在以上述方法制作的成品料中配合希望量的市售的甲苯(1级)、酒精(特级)、分 散剂、丙烯酸树脂漆,加入到聚乙烯制的球磨机中混合16小时,得到薄片成型用浆料。利用 刮刀法将其成型为薄片形,从而制作多片薄片。((2-1) MgO · SiO2陶瓷材料的制作)相对于100质量%的镁橄榄石(2Mg0 · SiO2),称取6. 0质量%的氧化硼(B2O3)、 16. 0质量%的氧化锌(ZnO)、4. 0质量%的氧化铜(CuO)、2. 0质量%的碳酸钙(CaCO3),将称 取的粉体加入到尼龙制球磨机中,添加离子交换水,调制成浓度为33%的浆料,混合16小 时。回收混合好的浆料,在120°C下干燥24小时之后,在威力粉碎机中磨碎干燥块,使 其通过#300目的筛子。将回收的粉体收集在氧化镁制的匣钵中,在电炉中,在750°C下在空 气气氛中预烧5小时,得到预烧粉体,其为基材与添加物的混合粉体。称取100质量%的所得到的预烧粉体,并称取0. 38质量%的碳酸锂(Li2CO3),将这些粉体加入到尼龙制球磨机中,添加酒精,调制成浓度为33%的浆料,混合16小时,从而 得到微粉化的成品料。回收混合的酒精浆料,在80 120°C下干燥24小时之后,在威力粉碎机中磨碎干 燥块,使其通过#300目的筛子,从而得到成品料。((2-2) 2Mg0 · SiO2陶瓷材料薄片的制作)在以上述方法制作的成品料中配合希望量的市售的甲苯(1级)、酒精(特级)、分 散剂、丙烯酸树脂漆,加入到聚乙烯制的球磨机中混合16小时,得到薄片成型用浆料。利用 刮刀法将其成型为薄片形,从而制作多片薄片。((3-1) BaNdTiO系氧化物与2Mg0 · SiO2陶瓷的复合材料的制作)称取24. 36质量%的碳酸钡(BaCO3) ,40. 29质量%的氢氧化钕(Nd(OH)3) ,35. 35 质量%的氧化钛(TiO2)(总计100质量% ),将称取的粉体加入到尼龙制球磨机中,添加离 子交换水和市售的分散剂,调制成浓度为25%的浆料,混合16小时。回收混合好的浆料,在120°C下干燥24小时之后,在威力粉碎机中磨碎干燥块,使 其通过#30目的筛子。将回收的粉体收集在氧化镁制的匣钵中,在电炉中,在1270°C下在空 气气氛中预烧2小时,得到基材的预烧粉体(称“一次预烧粉体”)。

相对于68. 4质量%的一次预烧粉体,称取31. 4质量%的镁橄榄石(2Mg0 · SiO2) (一次预烧粉体+镁橄榄石=100质量%)、2.48质量%的氧化硼(B2O3)、6. 67质量%的氧 化锌(ZnO)、3. 14质量%的氧化铋(Bi2O)、1. 12质量%的氧化钴(CoO)、0. 66质量%的碳酸 锰(MnCO3)、1.07质量%的碳酸钙(CaCO3),将称取的粉体加入到尼龙制球磨机中,添加离子 交换水,调制成浓度为33%的浆料,混合16小时。回收混合好的浆料,在120°C下干燥24小时之后,在威力粉碎机中磨碎干燥块,使 其通过#300目的筛子。将回收的粉体收集在氧化镁制的匣钵中,在电炉中,在750°C下在 空气气氛中预烧2小时,得到预烧粉体(称“二次预烧粉体”),其为基材与添加物的混合粉 体。称取100质量%的所得到的二次预烧粉体,并称取0. 75质量% WAg粉末,将这些 粉体加入到尼龙制球磨机中,添加酒精,调制成浓度为33%的浆料,混合16小时,从而得到 微粉化的成品料。回收混合的酒精浆料,在80 120°C下干燥24小时之后,在威力粉碎机中磨碎干 燥块,使其通过#300目的筛子,从而得到成品料。((3-2) BaNdTiO系氧化物与2Mg0 · SiO2陶瓷的复合材料的薄片的制作)在以上述方法制作的成品料中配合希望量的市售的甲苯(1级)、酒精(特级)、分 散剂、丙烯酸树脂漆,加入到聚乙烯制的球磨机中混合16小时,得到薄片成型用浆料。利用 刮刀法将其成型为薄片形,从而制作多片薄片。(实施例1 10以及比较例1 6)使用由上述方法得到的(I)BaNdTiO系氧化物、(2) 2Mg0 · Si02、(3)BaNdTi0系氧 化物与2Mg0 · SiO2的复合材料,在表1所示的条件下制作一体化芯片,确认这些芯片的边 界反应层的主要扩散成分、电镀处理后向边界反应层的浸渍状况、边界反应层的厚度以及 有无电介质层的剥离。这些结果汇集在表1以及表2中。至于一体化芯片的制作方法以及 评价方法,除了改变表1以及表2中所示的条件之外,其他与以下作为示例的实施例10的情况相同。(实施例10)(使用BaNdTiO系氧化物与2Mg0· SiO2陶瓷的复合材料的薄片制作一体化芯片)(至烧成为止)在BaO-Nd2O3-TiO2陶瓷薄片上将Ag浆料(TDK公司制)印刷为所希望的电容器图 案形状(烧成后芯片的形状是长度方向为4. 5mm、宽度方向为3. 2mm的图案),在120°C下干 燥15分钟。接着,将薄片层叠并使2Mg0 · SiO2陶瓷薄片处于外层部分,使印刷的 BaO-Nd2O3-TiO2陶瓷薄片处于内层部分(形成4层的内层部),在70°C、700kg/cm2、7分钟 的条件下进行压制。利用湿法切割方法将其切断为所希望的电容器形状,在间歇炉(batch furnace)中,在350°C下进行1小时的脱粘结剂处理之后,在900°C下空气气氛中烧成2. 5 小时,从而得到一体化芯片。(烧成后 电镀为止)为了在烧成的一体化芯片的端部形成外部端子,使用市售的Ag外部端子浆料手 工涂敷在端子两侧,在120°C下干燥15分钟,在连续式烧成炉(LINDBERG(株式会社)制) 中,在670°C下进行烘干处理。利用本公司所拥有的电镀装置对端部已烧成的芯片进行 Cu-Ni-Sn电镀,在各电镀处理中,电镀进行至膜厚达到希望的值为止,得到一体化芯片。(确认一体化芯片的边界部有无剥离的方法)对于处理实施至电镀后的一体化芯片的3个面(平面、侧面、端面),每一样品在η =10处利用金属显微镜确认了有无剥离等异常。(确认一体化芯片的边界部的扩散厚度的方法)用钳子截断处理实施至电镀后的一体化芯片,利用扫描电镜(日本电子株式会社 制,型号JSM-T300)观察该截断的边界面,拍摄一体化烧成后的边界面的COMPO(组成)照 片(2000倍),从而利用观察机附属的定标器(scaler)确认了边界部的扩散厚度。在图2 中示意了实施例10的一体化芯片的边界附近的COMPO照片。在图2中可以确认,第二电介 质层(2Mg0 · SiO2陶瓷材料)被形成为上层,第一电介质层(BaNdTiO系氧化物)被形成为 下层。而且确认了,在上层与下层之间形成有边界反应层(厚度ΙΟμπι)。即可以确认,利用 同时烧成,通过上层与下层之间的反应而形成了边界反应层。(确认一体化芯片的边界部有无耐电镀性的方法)用钳子截断处理实施至电镀后的一体化芯片,利用扫描电镜(日本电子株式会社 制,型号JSM-T300)观察该截断的边界面,拍摄一体化烧成后的边界面的COMPO照片(2000 倍),从而确认边界部有无耐电镀性。(确认一体化芯片的边界部的扩散元素的方法)使用市售的环氧树脂将烧成后的一体化芯片埋入容器中, 使用研磨剂进行研磨, 完成镜面研磨之后,利用扫描电镜(日本电子株式会社制,型号JSM-6700)对其研磨面进行 SEM-EDS观察,拍摄一体化烧成后的边界面的EDS照片(2000倍),确认边界部的扩散元素 分布状态。图3示意了实施例10的一体化芯片的烧成后芯片的芯片中心部边界附近COMPO 图像照片,图4示意了实施例10的一体化芯片的Zn成分的EDS照片,图5示意了实施例10 的一体化芯片的Ti成分的EDS照片。
银银賊 EN 3vo9,aiois.oss ‘/ν刀魄
濉舔輞 , 蚺 运轮溫K-<om onutnoouAOmSs Opim 寸运瑶纪 P M
_________rM似
铒锱贱 I Svo-is.oswCN+ 要氣
Mfli耻 . ¥ 链轮韶K-.εοωοπυo!s.ot>ostNo^^oJaous Opim ε ρ取傲丑 主剥
οουο ·OUN 湖的
---------碧
3νο4ο"· 501S.03WZ+ gj 协
摊Pt体 ■ ¥ 链轮链K-oioouomSM^ OpimboVAOmonuOpifflCSP4愆运 反初
_________界τ
耻 . ¥ 运聽K-S .Ol 霸 條 OPPNBg SViaod 蓉丝Isf瞞 OIlPi 一 认YM
,Oouio^m .OCN___ai盼
J^^Ml S S 均一 一 瘅藤 Is^ 艋』瞅州S Si Si__Si Ss^10第
I^tf 唧蹈令tfu聛 吔暍令tf—城 \ ^
-------1 层
CN^例质
施介 实电
由一 LM
幻 幻:31 111 发 ο
本发明所涉及的陶瓷电子部件可以作为LC滤波器或各种电容器等各种电子器件 而被广泛应用于各种领域。
权利要求
一种陶瓷电子部件,其特征在于,具有含有主成分为BaO、Nd2O3、TiO2的第一电介质层;与所述第一电介质层材质不同的第二电介质层;以及形成于所述第一电介质层与所述第二电介质层之间且含有Zn以及Ti的边界层。
2.一种陶瓷电子部件,其特征在于,将含有主成分为Ba0、Nd203、Ti02的第一电介质层和含有不同于所述第一电介质层的材 质且含有Zn的电介质材料同时进行烧成而形成。
3.如权利要求2所述的陶瓷电子部件,其特征在于, 所述第一电介质层还含有Zn。
全文摘要
本发明提供一种陶瓷电子部件,本发明的陶瓷电子部件虽然是层叠不同材质的电介质层而形成,但可以充分防止被层叠的电介质层彼此间的相互剥离。本发明的陶瓷电子部件具有含有主成分为BaO、Nd2O3、TiO2的第一电介质层;与第一电介质层材质不同的第二电介质层;形成于第一电介质层与第二电介质层之间且含有Zn以及Ti的边界层。
文档编号H01G4/12GK101844428SQ20101014749
公开日2010年9月29日 申请日期2010年3月25日 优先权日2009年3月25日
发明者小更恒, 岚友宏, 樱井俊雄, 畑中洁 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1