组装具有散热器的半导体器件的方法

文档序号:7002928阅读:139来源:国知局
专利名称:组装具有散热器的半导体器件的方法
技术领域
本发明通常涉及半导体封装,并且更具体而言,涉及一种组装包括散热器的半导体器件的方法。
背景技术
众所周知,集成电路形成在半导体管芯上。这种电路形成有多个材料层,例如互连微小晶体管的导体和绝缘体。管芯能够包括几十万甚至数百万晶体管。因而,在操作中,特别是如果电路在高电压下工作,电路会产生大量的热。一种消散这种热的方式是使用散热器。最简单形式的散热器是将热从管芯传导出使得电路不过热的金属板。为了保护半导体管芯,管芯被附着且电连接到衬底上,然后采用塑料材料来包封衬底和管芯。借助于衬底来提供与管芯的互连。一种流行的外部连接是球栅阵列(BGA), 其是一种附着到衬底底部的导体球的阵列。衬底中的丝线或金属线(提供在多个层中)允许导体球和管芯上的焊盘之间的电连接。一种组装BGA型器件的方法是同时组装器件的阵列,这被称为MAP (制模阵列封装)BGA。然而,各种的工艺局限性使得难以组装包括散热器的MAP BGA封装。例如,各散热器的高度变化将在散热器的顶部上导致不均勻的合模(mold clamping)和模制化合物溢出,以及通过使用侧浇口制模(side gate molding)所引起的模制流动控制的困难,其中, 在侧浇口制模中模制化合物必须流经紧密的空间,这能够引起空隙和丝线冲弯问题(在制模期间由模制化合物的流动所引起的移动或键合丝线)。因而,具有散热器的封装已被限于其中在管芯被附着且电连接到衬底之后将各个散热器直接附着到管芯的制模塑料阵列载体(OMPAC)型封装。然而,OMPAC封装所面对的问题是当在制模之前将散热器直接附着到管芯时,当模制模子(mold chase)关闭时,会在管芯上施加夹紧力,导致管芯破裂。因而, 有利的是能够有效率地组装包括散热器的MAP器件,其中充分减小或消除了管芯破裂的风险。


本发明通过示例的方式来描述且不被附图所限制,其中相同的附图标记表示相似的元件。图中的元件以简单且清楚地方式来描述且不必按比例来绘制。例如,为了清楚,可以夸大层和区域的厚度。图1是根据本发明的一个实施例的封装的半导体器件的横截面图;图2A是示出将散热器附着到膜的步骤的透视图,以及图2B是图2A的附着到膜的散热器的放大图;图3示出将模制化合物设置到图2A的附着至膜的散热器的上方的步骤;图4示出在第一模制模子部分设置图3的膜、散热器和模制化合物的步骤;图5、6、7示出对半导体管芯的阵列以及相应的散热器进行制模的步骤;图8示出从图7的制模器件的阵列中去除图2A的膜的步骤;以及
图9示出将制模器件的阵列分离成各个封装器件的步骤。
具体实施例方式在此公开了本发明的详细示例性实施例。然而,在此公开的具体结构和功能细节仅仅表示描述本发明的示例实施例的目的。本发明可以以许多替选形式来实现且不应该解释为仅限于在此阐述的实施例。此外,在此使用的术语仅仅是为了描述特定实施例且不意图限于本发明的实施例。如在此使用的,单数形式“一”、“一个”以及“该”意图也包括复数形式,除非上下文以其他方式清楚地指出。将进一步理解的是,术语“包括”、“含有”和/或 “包含”,指定存在所述的特征、步骤或组件,但是并不排除一个或更多其他特征、步骤或组件的存在或增加。也应当注意的是在一些替选实现中,所描述的功能/动作可以以不同于图中所描述的顺序出现。例如,根据所涉及的功能性/动作,连续示出的两个图事实上可以同时执行或有时可以以相反的顺序执行。在一个实施例中,本发明提供了一种用于封装半导体管芯或组装包括散热器的半导体器件的方法。所述方法包括将散热器附着到膜且将颗粒状形式的模制化合物分发到膜上使得模制化合物至少部分地覆盖膜和散热器。具有附着的散热器的膜被放置在第一模制部分中。具有被附着且被电耦合至其的半导体管芯的衬底被放置在第二模制部分中,然后将第一和第二模制部分配对使得管芯被散热器覆盖。然后颗粒状模制化合物被熔融使得模制化合物覆盖管芯和散热器的侧面。然后分离第一和第二模制部分。去除被粘附到衬底的膜以暴露散热器的顶表面,并因而形成半导体器件。在另一实施例中,本发明是根据上述方法形成的封装半导体器件。现在参考图1,示出封装的半导体器件10的放大横截面图。器件10包括被附着并电连接到多层丝线衬底14的半导体管芯12。管芯12和衬底14是半导体器件的公知的组件,并因而它的详细描述对于本发明的完全理解不是必需的。一种将管芯12附着和电连接至衬底14的方式是采用焊球(未示出)附着至管芯12的下侧。焊球将管芯12的导电端子与在衬底14中形成的布线图案互连。如环氧树脂的底部填充材料16被设置在管芯12 和衬底14之间的间隙中。将管芯12电连接至衬底14的另一种方式是采用丝线16。丝线 16被键合至管芯12的有源表面上的焊盘且键合至衬底上的相应接触焊盘,如图1所示,采用公知的丝线键合工艺和公知的丝线键合设备。器件10包括在实施例中示出的具有通常U形横截面的散热器18。散热器18可以由具有优良热传导性能的任何材料来形成。在本领域中公知的且在本领域中使用的一种这样的材料是铜。散热器在本领域中是公知的。散热器18位于管芯12的上方,使得管芯12 位于散热器18的内部。散热器18被以规定尺寸制作且被成形以覆盖管芯12和丝线16,但是不接触管芯12或丝线16。此外,在本发明的一个实施例中,散热器18也不接触衬底14。 而是,在散热器18和衬底14之间具有间隙19。模制化合物20覆盖管芯12的顶表面和侧表面、衬底14的顶表面以及丝线16,且位于散热器18和衬底14之间的间隙19内。模制化合物20可以由本领域公知的塑料材料来形成。连接球22被附着至衬底14的下侧且借助于衬底14和丝线16来提供与管芯12 的外部电连接。例如,连接球22可以是C4(受控崩溃芯片连接器)焊球。虽然半导体器件10的各个元件包括公知的元件,但是尤其对于MAP工艺来说,这些元件还不易组装。然而,本发明人发现了一种采用MAP工艺形成半导体器件10的新型方法,这将参照图2-9来进行描述。执行具有腔朝下构思的制模操作,这使得能够将各个散热器嵌入在器件10中,且因而避免对管芯附着工艺要求预模制散热器。不流动(free flow) 制模工艺适应紧密空间且允许使用高热模制化合物,而没有丝线冲弯或其他模制化合物流动相关问题的重要风险。现在参考图2A,示出将散热器18放置到模制释放膜M上的步骤的图示。可以使用取放机沈来将散热器18放置在膜M上。膜M优选地是耐热的。在一个实施例中,膜 M在它的两个相反主表面的至少一个上具有粘合剂,允许将散热器18附着到主表面之一。 相反表面可以包括或可以不包括允许膜M粘附到模制腔的粘合剂,如以下详细讨论的。将散热器18附着到膜M的另一种方式是采用双面粘合胶带观,如图2B所示。可以使用其他方法将散热器18附着到膜M,然而,重要的是将散热器18附着到膜M的方式可能是无效的,即散热器18可能与膜M脱离,如参照图8所详细讨论的。散热器18包括诸如铜的具有良好热传导性能的材料。在示出的实施例中,散热器 18具有通常U形横截面。然而,本发明可以适用其他形状的散热器,例如T形散热器。如果例如使用T形散热器,则“T”的基部附着到管芯的表面且暴露“T”的顶部。图3是示出以颗粒状形式设置在散热器18上方以及散热器18之间、以及释放膜 24上的模制化合物20的侧横截面图。模制化合物20应该至少部分地覆盖散热器18和膜 M。可以采用本领域公知的传统分发机器的喷嘴将模制化合物20分布到散热器18上方以及散热器18之间。模制化合物20可以是传统上用于压缩制模的颗粒状形式的环氧树脂化合物。在压缩制模中使用的诸如颗粒状环氧树脂的颗粒状模制化合物20比也在传统IC管芯封装工艺中使用的液体化合物更便宜且更易存储。虽然在本发明的一个实施例中优选为颗粒状模制化合物,但是在可替选的实施例中,模制化合物20可以是适于压缩制模的其他形式,例如小球、粉末、凝胶、液体等等。此外,可以使用其他制模方法,例如注射制模。如果使用注射制模,则模制模子可以是中心浇口型或侧浇口型。图4示出在放置到模制模子的第一部分30中之后具有附着的散热器18和颗粒状模制化合物20的膜M。注意,在将具有附着的散热器18的膜M放置在模制模子的第一部分30中之后,颗粒状模制化合物可以设置在散热器18和膜M上方。本发明的一个实施例中,第一模制部分30包括用于允许产生真空压力以使得膜M紧靠模制模子的第一部分 30的孔或通道32。在其他实施例中,膜M可以包括粘合剂,使得膜M可以粘附到第一模制模子部分30。在本发明的替选实施例中,模制模子是中心浇口制模类型,这允许将模制化合物从模制模子的顶部注射到模制腔中。在又一可替选的实施例中,模制模子允许从侧部入口或通路注射模制化合物。对于中心浇口模制模子和侧部浇口模制模子,与使用颗粒状模制化合物20相反地执行注射制模。图5示出附着有多层布线衬底14的底表面的第二模制模子部分34。多个半导体管芯12被附着到且电连接到衬底14的顶表面。在示出的示例中,管芯12通过公知的丝线键合工艺、采用丝线16被电连接到衬底14。在本发明的替选实施例中,管芯12可以采用导电凸块被电连接到衬底14,这也是本领域中公知的。衬底14可以采用粘合剂、双面胶带、 真空压力或这些方法的组合被附着到第二模制模子部分34。在示出的实施例中,第二模制模子34是被降低到第一或底部模制模子部分30的模制模子的顶部部分。第一模制模子部分30和散热器18被以规定尺寸制作并且被定位使得当模制模子关闭时,即当第二模制模子部分34降低到第一模制模子部分30上时,管芯12被接收到散热器18中使得衬底14接触或者接近于接触散热器18的底部,但是没有远到使得丝线16接触散热器18。在本发明的一个实施例中,在关闭模制模子或管芯12被接收在散热器18内之前,至少部分地熔融模制化合物20。图6是处于关闭位置的模制模子以及制模工艺的横截面侧视图,其中制模工艺被执行由此通过加热来熔融或溶化模制化合物20使得其覆盖管芯12和散热器18的侧面。制模工艺也可以包括当膜M和衬底14仍然在第一和第二模制部分30和34内时固化模制化合物。在完成制模工艺之后,例如后模制固化之后,分离第一和第二模制部分30和34,以及从模制模子整体地去除现在处于制模阵列形式的器件,如图7所示。在该工艺中的这点上,膜M仍然附着到散热器18,且因此在下一步骤中,膜M被去除以暴露散热器18的顶表面,如图8所示。图9示出通过划片切割(singulation)工艺而彼此分离的多个器件10。划片切割工艺是公知的且可以包括使用诸如图9中所示的锯 40的锯或激光来切割。可以通过研磨或其他方法来去除多余的模制化合物。优选地在划片切割之后附着导电球22(图1),这也是本领域中公知的。如上所述,本发明允许具有散热器的半导体器件的组装,这种组装不要求在制模之前使散热器直接附着到丝线键合衬底上。散热器也可以附着到具有双面粘合剂胶带的释放膜,当将模制化合物分发到散热器上方时以及在制模期间,具有双面粘合剂胶带的释放膜将散热器保持在适当的位置。在从模制模子去除器件的阵列之后来执行容易的剥带。可以使用不流动(flow-free)制模技术,其适应用于模制化合物填充的紧密空间,而不涉及丝线冲弯的问题。因而,本发明提供了一种组装具有浮置散热器的热增强MAPBGA封装的方法。填充衬底14和散热器18之间的间隙19的模制化合物20抑制衬底分层。可以利用不流动制模技术来使用高热模制化合物。虽然在此参照具体实施例描述了本发明,然而可以在不偏离由所附权利要求所阐明的本发明的范围的情况下作出各种修改和改变。因而,说明书和附图应当被看作是说明性的而非限制意义,且所有这种修改意图被包括在本发明的范围内。在此关于具体实施例描述的益处、优点或问题的解决方案不意图被理解为是任何或全部权利要求的重要的、必需的或基本的特征或要素。
权利要求
1.一种组装包括散热器的半导体器件的方法,所述方法包括 将所述散热器附着到膜;将模制化合物分发到所述膜上,使得所述模制化合物至少部分地覆盖所述膜和所述散热器;将具有附着的散热器的所述膜放置到第一模制部分中;提供其上附着且电耦合有半导体管芯的衬底;将具有附着的管芯的所述衬底附着到第二模制部分;配对所述第一和第二模制部分使得所述管芯由所述散热器覆盖;熔融所述模制化合物至少直到所述模制化合物覆盖所述管芯和所述散热器的侧面;分离所述第一和第二模制部分,其中所述膜粘附到所述衬底;以及去除所述膜以暴露所述散热器的顶表面,由此形成所述半导体器件。
2.根据权利要求1所述的组装半导体器件的方法,其中,所述膜是耐热的并且在它的相反主表面上具有粘合剂。
3.根据权利要求1所述的组装半导体器件的方法,其中,所述散热器具有通常U形的横截面。
4.根据权利要求3所述的组装半导体器件的方法,其中,所述散热器与所述衬底分隔开。
5.根据权利要求1所述的组装半导体器件的方法,其中,所述模制化合物最初为颗粒状形式。
6.根据权利要求1所述的组装半导体器件的方法,其中,通过对所述第一和第二模制部分施加热来熔融颗粒状模制化合物。
7.根据权利要求6所述的组装半导体器件的方法,其中,在熔融之后,当所述膜和衬底仍然在所述第一和第二模制部分内时,固化所述模制化合物。
8.根据权利要求1所述的组装半导体器件的方法,进一步包括以下步骤 划片切割所述膜以彼此分离邻近的器件。
9.一种半导体器件,所述半导体器件根据权利要求1所述的方法来组装。
全文摘要
本发明提供一种组装具有散热器的半导体器件的方法。用于封装半导体管芯或组装包括散热器的半导体器件的方法首先将散热器附着到膜,以及将颗粒状形式的模制化合物分发到膜上,使得模制化合物至少部分地覆盖膜和散热器。将具有附着的散热器的膜放置在第一模制部分中。具有在其上附着且电耦合有半导体管芯的衬底被放置到第二模制部分中,然后配对第一和第二模制部分使得通过散热器覆盖管芯。然后熔融颗粒状模制化合物,使得模制化合物覆盖管芯和散热器的侧面。然后分离第一和第二模制部分。粘附到衬底的膜被去除,以暴露散热器的顶表面,并由此形成半导体器件。
文档编号H01L21/48GK102280390SQ20111015441
公开日2011年12月14日 申请日期2011年5月24日 优先权日2010年6月8日
发明者丁行强, 鲁扎伊尼·易卜拉欣 申请人:飞思卡尔半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1