共面式光伏电池及其制造方法

文档序号:7159397阅读:181来源:国知局
专利名称:共面式光伏电池及其制造方法
技术领域
本发明系有关光伏电池技术,特别是有关于共面式光伏电池及其制造方法。
背景技术
太阳电池(solar cell)或光伏电池(photovoltaic cells)是利用光电转换效应 (photovoltaic effect)将太阳光的能量转换为电能的装置。在全球环境保护的浪潮下,太阳电池被期许能做为替代能源,并在近年来被积极地发展,得以广泛地商品化。另外,在建筑物、车辆或其它物体上也可以部份覆盖太阳电池,藉以尽量使用太阳能源做为供电能源。太阳电池的效能是以光电转换效率(conversion efficiency)来评量,与光电转换效率有关的几个参数定义如下Voc 开路电压(V)Isc 短路电流(A)Pmp 最大输出功率(W)Vmp 最大输出功率时之电压(V)Imp 最大输出功率时之电流(A)F. F. (Fill Factor) :±真充因子(% ) = (Vmp χ Imp/Voc χ Isc)x 100%由上述定义得知,Pmp 最大输出功率(W) = Vmp χ Imp= F. F. χ(Voc χ Isc)/100%光电转换效率(η)=最大输出功率/入射阳光功率=F. F. χ(Voc χ Isc)/(Pin χ 100% )由上式得知,太阳电池的光电转换效率与开路电压(Voc)、短路电流(Isc)、填充因子(F.F.)等因素成正向关系,这三个数值提高了,太阳电池的光电转换效率也随之提升。另外,太阳电池的开路电压(Voc)与组成太阳电池的半导体电极材料之能带宽 (energy bandgap)约成正比关系,故采用的半导体电极材料其能带愈宽,则太阳电池的开路电压会愈高。同时,太阳电池的开路电压也会受表面与本体(buck)缺陷浓度的影响;一般而言,太阳电池的表面缺陷浓度越高,逆向饱和电流(reverse saturation current, Ιο) 会越大,则开路电压将会降低。具有低缺陷的特性的半导体材料,通常于成膜过程中会富含有较多氢原子,氢原子可以钝化(passivate)表面缺陷,以有效降低表面缺陷浓度,最后将可以有效提高开路电压同时提高短路电流(Isc)。太阳电池的短路电流(Isc)与组成太阳电池的半导体电极材料之表面与本体(buck)缺陷浓度与有效入射阳光能量的影响,采用的半导体电极材料其表面与本体(buck)缺陷浓度越低,逆向饱和电流(Io)会越小,由光子所产生之少数载子 (photon-generated minority carrier)再结合(recombination)的比 列也较/[氐,短路电、流 (Isc)因而提升。另外,提升有效入射阳光能量可以提高光电流的产生,也可以提高太阳电池的短路电流(Isc)。太阳电池的填充因子(F. F.)则决定于太阳电池内部的等效串联电阻(Rs)与等效并联电阻(Rsh)特性,当等效串联电阻(Rs)愈小且等效并联电阻(Rsh)愈大时,填充因子(F. F.)的数值愈大。等效串联电阻(Rs)与等效并联电阻(Rsh)的数值取决于太阳电池的相关材料特性与制造技术的设计及水平,等效串联电阻(Rs)是太阳电池导电回路中所有材料的导电电阻与接口的接触电阻的总和,导电回路中的各项电阻如1)金属导线的电阻、2)N型半导体层的电阻、3)P型半导体层的电阻、4)金属导线与N型半导体层接口的接触电阻、5)金属导线与P型半导体层接口的接触电阻、6)N型半导体层与P型半导体层接口的接触电阻等。等效并联电阻(Rsh)主要是由N型半导体层与P型半导体层的绝缘处理效果所决定,当N/P型半导体层间的漏电电流越低,等效并联电阻(Rsh)的数值越大,填充因子 (F. F.)的数值也随之提高。习知的太阳电池通常会有两种缺点,使得光电转换效率受到限制,这些缺点包括 1)正面电极(front electrode)的遮蔽效应(shading effect),当金属或透明导电氧化层(transparent conductive oxide)电极设置于太阳电池正面时,会阻挡或吸收入射太阳光,降低太阳电池对入射光能量的吸收,光电流因而减少,光电转换效率也随之下降。2)浓掺杂(heavily-doped)半导体或金属/半导体界面的缺陷(defects),导致藉由光子所产生之少数载子(photon-generated minority carrier)再结合(recombination),进而降低转换效率。因此,如何克服习知太阳电池的上述缺点,乃此业界之所引领企盼者。

发明内容
因此,本发明之目的,在于提供一种共面式光伏电池及其制造方法,可以提升光电转换效率,其机制有三(一)、阳极结构和阴极结构同设置于光伏电池的背光面传统太阳电池的正面密布导电用的银导线,约占满5 10 %的表面积,因银导线属于不透光材料,会遮挡太阳光进入N/P型半导体层,减少太阳电池对阳光能量的吸收,降低光电流的产生,进而降低太阳电池的光电转换效率。本发明将太阳电池的阳极结构和阴极结构同设置于太阳电池的背面,阳极和阴极的导电金属布线也同时配置于太阳电池的背面,不存在遮挡太阳光进入N/P型半导体层的问题,增加太阳电池对阳光能量的吸收,增加光电流的产生,进而提高太阳电池的光电转换效率。(二)、异质电极设计传统太阳电池的N型半导体层与P型半导体层均由硅材料组成,所以太阳电池的开路电压(Voc)与硅材料的能带宽(energy bandgap)约成正比关系。本发明保留太阳电池的本体(bulk)为硅材料,同时改变太阳电池的阳极和阴极的半导体材料,采用能带宽度大于硅材料能带宽度的半导体材料,如非晶硅(a_Si:H)、碳化硅(SiC)、砷化镓(GaAs)等半导体材质,导入高能带宽度的材料,增加太阳电池的总体能带宽度,藉以提高太阳电池的开路电压(Voc),进而提高太阳电池的光电转换效率。(三)、钝化(passivate)表面缺陷传统太阳电池的制造过程中,藉由高温扩散掺入磷元素与硼元素,形成N+型半导体层与P+型半导体层,高浓度掺杂(heavily-doped)会在半导体内部及表面生成晶体结构上的缺陷(defects);这些N+型或P+型半导体层,因为是位于太阳电池吸收阳光的作用层 (active layer)内,它们的表面缺陷(surface defects)若无妥善处理,这些缺陷会在太阳电池发电时会形成严重再结合中心,将降低太阳电池的效率。另外这些N+型或P+型半导体层表面,与金属电极接触的金属/半导体接口也是一种接口缺陷(interface defects) 密度很高的区域,也会严重影响太阳电池的效率。传统太阳电池吸收光子能量所产生的少数载子(photon-generated minority carrier)在传导的过程中,会被太阳电池里的晶体缺陷(bulk defects)、表面缺陷 (surface defects)及接口缺陷(interface defects)捕捉,形成再结合(recombination) 现象,使得光电流减少,同时开路电压降低,进而降低转换效率。本发明采用高能带宽度的异质性半导体材料镀在太阳电池的本体(bulk)上,成为太阳电池的阳极结构与阴极结构, 被选用的高能带宽度异质性材料都是具有低缺陷特性的半导体材料。在沉积异质性半导体膜层前,本发明采用活化的氢原子对受损伤的半导体表面进行修补作用,活化的氢原子可以修补半导体的悬空键(dangling bond),钝化(passivate)表面缺陷,以有效降低表面缺陷浓度,减少再结合中心(recombination center)的密度,可以有效提高开路电压,同时提高短路电流(short circuit current,Isc),进而提高太阳电池的光电转换效率。同时此异质性半导体材料的钝化层配合上述宽能带异质电极材料组合,将使得本太阳电池的硅本体与N+型及P+型半导体层间产生一个位能电场。此位能电场将使得N+ 型及P+型半导体层与金属电极接触的金属/半导体高缺陷密度接口,离开太阳电池的吸收阳光作用层,如此也将降低再结合而提高本太阳电池的效率。本发明运用上述的特殊结构与技术在单(多)晶硅芯片上实施制造一种新型太阳电池,此太阳电池的光电转换效率相较习知的太阳电池的光电转换效象有着显著的改善。


关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。图1为根据本发明所示出的共面式光伏电池之剖面示意图;图2A至图2G为根据本发明之共面式光伏电池制造方法一较佳实施例的制造流程剖面图。主要组件符号说明1-受光面;2-背光面;10-半导体基底;12、12A-低缺陷缓冲层;14、14A-P+宽能带半导体层;16-阳极电极;18、18A-低缺陷缓冲层;20、20A-N+宽能带半导体层;22-阴极电极;24-阳极结构;26-阴极结构;28-沟槽;30-保护层;以及,32-抗反射层。
具体实施例方式下面结合附图详细说明本发明的具体实施例。请参照第1图,所示为根据本发明之共面式光伏电池之剖面示意图。如第1图所示,一半导体基底10具有一受光面1和一背光面2,阳极结构M和阴极结构沈设置于半导体基底10之背光面2上,藉由沟槽观互为绝缘相隔。一绝缘保护层(isolated passivationlayer) 30覆盖阳极结构M和阴极结构沈,并填充于沟槽观内,与半导体基底10接触。另外,一抗反射层(anti-reflection layer) 32覆盖于受光面1上。根据本发明阳极结构M包括阳极电极16、P+半导体层14A和缓冲层12A,而阴极结构沈包括阴极电极22、N+半导体层20A和缓冲层18A等。此缓冲层12A和18A具有低缺陷(low defect)的特性,较佳而言,可以由本质(intrinsic) a-Si :H、SiC、GaAs等半导体材质所构成。另,P+半导体层14A和N+半导体层20A均具有宽能带(wide bandgap) 之特性,较佳而言,可以是由a-Si:H、SiC、GaAS等材质所构成;惟,P+半导体层14A系掺杂有P型杂质(acceptor type impurities),而N+半导体层20A系掺杂有N型杂质(donor type impurities)。请参照第2A至2G图,所示为根据本发明之共面式光伏电池制造方法一较佳实施例的制造流程剖面图。如第2A图所示,在半导体基底10的受光面1侧,处理成具有纹理(textured)之表面。此半导体基底10可以是N型或P型半导体晶圆(wafer),而此晶圆可以是单晶硅 (mono-crystal 1 ine silicon)、多晶娃(poly-crystal 1 ine silicon)、非晶娃(amorphous silicon)、SiC或GaAs等材质所构成。而在半导体基底10受光面1形成纹理的方式,可以采用酸性、碱性化学蚀刻或干式电浆蚀刻方式为之。因此,具纹理的受光面1会使经第一次界面反射的入射太阳光,因入射角度之设计,有第二次进入太阳电池的机会,将可增加阳光的有效吸收。接着,请参照第2B图所示,在半导体基底10的背光面2上依序形成一缓冲层12 和一 P+型半导体层14。较佳而言,缓冲层12系由本质a-Si:H、SiC、GaAS等半导体材质所构成,具有低缺陷之特性;而P+型半导体层14可以a-Si:H、SiC、GaAs等材质所构成,并掺杂如硼(boron)等P型杂质而得,并具有宽能带的特性。然后,请参照第2C图,在P+型半导体层14上形成阳极电极16。而形成阳极电极 16的方法,可以采用半导体制程使用之光罩印刷的方式定义既定的图案,再以后续金属蒸镀(evaporating)、或溅镀(sputtering),并配合掀离(lift off)步骤完成;或以金属浆料丝网印刷(screen printing of metal paste),并配合烧结(firing)等制程而得。较佳而言,阳极电极16可以是由Al、Ag、Cu等材质所构成。接着,以具有既定图案之电极16为屏蔽,利用电浆蚀刻(Plasma etching)方式,依序定义P+型半导体层14和缓冲层12,分别成为P+半导体层14A和缓冲层12A,即如第2D图所示。接下来,在半导体基底10背光面2上方依序形成一缓冲层18和一 N+型半导体层20。较佳而言,缓冲层18系由本质a-Si:H、SiC、GaAs等半导体材质所构成,具有低缺陷(low defect)之特性;而N+型半导体层20可以a_Si H、SiC、GaAs等材质所构成,并掺杂如砷(arsenic)或磷(phosphorous)等N型杂质而得,并具有宽能带(wide bandgap)的特性。然后,在N+型半导体层20上形成阴极电极22。而形成阴极电极22的方法,可以采用半导体制程使用之光罩印刷的方式定义既定的图案,再以后续金属蒸镀(evaporating)、 或溅镀(sputtering),并配合掀离(lift off)步骤完成;或以金属浆料丝网印刷(screen printing of metal paste),并配合烧结(firing)等制程而得。较佳而言,阴极电极22可以是由Al、Ag、Cu等材质所构成。接着,以具有既定图案之电极22为屏蔽,利用电浆蚀刻 (plasma etching)方式,依序定义N+型半导体层20和缓冲层18,分别成为为N+半导体层20A和缓冲层18A,即如第2E图所示。再请参照第2E图所示,阳极电极16、P+半导体层14A和缓冲层12A堆栈成阳极结构对,而阴极电极22、N+半导体层20A和缓冲层18A堆栈成阴极结构26,阳极结构M与阴极结构沈经由沟槽观互为绝缘相隔,并藉由沟槽观露出半导体基底10的部分。然后,在半导体基底10之背光面2侧形成一绝缘保护层(isolated passivation layer) 30,保护层30覆盖阳极结构M与阴极结构沈,并填充于沟槽观内与半导体基底10 接触,即如第2F图所示。较佳而言,此保护层30系藉电浆增强化学气相沈积法(PE-CVD) 或溅镀法(sputtering)而得,可以是由SiNx、SiOx、Ta205等材质所构成。接着,在半导体基底10之具纹理(textured)受光面1覆盖一抗反射层 (anti-reflection layer) 32。较佳而言,此抗反射层32,可以是由SiNx、Si0x、Ta205等材质所构成。此抗反射层32可以减少入射太阳光的反射程度,藉以增加进入半导体基底10 的太阳光。根据本发明之共面式光伏电池,具有阳极结构M与阴极结构沈同设置于半导体基底10之背光面2,故可避免电极设置于在受光面1的遮蔽效应。再者,阳极电极M和阴极电极26均具有复数迭层结构,阳极结构M包括阳极电极16、宽能带半导体层14A和低缺陷缓冲层12A,而阴极结构沈包括阴极电极22、宽能带半导体层20A和低缺陷缓冲层 18A等,避免因材料缺陷或接口缺陷导致转换效率劣化的问题。本说明书中所述的只是本发明的较佳具体实施例,以上实施例仅用以说明本发明的技术方案而非对本发明的限制。凡本领域技术人员依本发明的构思通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在本发明的范围之内。
权利要求
1.一种共面式光伏电池,其特征在于,包括 一半导体基底,具有一受光面与一背光面;以及一阳极结构和一阴极结构,互为绝缘相隔,同设置在该背光面上。
2.如权利要求1所述的共面式光伏电池,其中该阳极结构包括一缓冲层、一P型半导体层、以及一金属电极,其中该缓冲层与该半导体基底接触。
3.如权利要求1所述的共面式光伏电池,其中该阴极结构包括一缓冲层、一η型半导体层、以及一金属电极,其中该缓冲层与该半导体基底接触。
4.如权利要求2或3所述的共面式光伏电池,其中该缓冲层具有低缺陷的特性。
5.如如权利要求2或3所述的共面式光伏电池,其中该半导体层具有宽能带的特性。
6.如权利要求1所述的共面式光伏电池,其中该受光面经处理成具有纹理。
7.如权利要求6所述的共面式光伏电池,还包括一抗反射层覆盖于该受光面。
8.如权利要求1所述的共面式光伏电池,还包括一保护层,设置阳极结构与该阴极结构之间,并与该半导体基底之部分接触。
9.一种共面式光伏电池的制造方法,其特征在于,包括下列步骤 提供一半导体基底,其中该半导体基底具有一受光面和背光面;以及形成一阳极电极与一阴极电极于该半导体基底之该背光面上。
10.如权利要求9所述的共面式光伏电池的制造方法,其中形成该阳极结构之步骤包括依序形成一低缺陷缓冲层、一宽能带ρ型半导体层、以及一电极于该半导体基底上方。
11.如权利要求9所述的共面式光伏电池的制造方法,其中形成阴极结构之步骤包括 依序形成一低缺陷缓冲层、一宽能带η型半导体层、以及一电极于该半导体基底上方。
12.如权利要求9所述的共面式光伏电池的制造方法,其中该受光面经处理成具有纹理。
13.如权利要求12所述的共面式光伏电池的制造方法,还包括形成一抗反射层覆盖于该受光面之步骤。
14.如权利要求12所述的共面式光伏电池的制造方法,还包括形成一保护层于该阳极结构与该阴极结构间之步骤,该保护层并与该半导体基底之部分接触。
全文摘要
一种共面式光伏电池及其制造方法。根据本发明之共面式光伏电池包括一半导体基底,具有一受光面与一背光面;以及一阳极结构和一阴极结构,互为绝缘相隔,同设置在该背光面上。
文档编号H01L31/06GK102403370SQ20111027406
公开日2012年4月4日 申请日期2011年9月15日 优先权日2010年9月15日
发明者王坤池, 许国强 申请人:王坤池, 许国强
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1