专利名称:图像传感器的阶梯式封装及其制造方法
技术领域:
本发明涉及微电子器件的封装,且更特别地涉及光学半导体器件的封装。
背景技术:
半导体器件的趋势是更小的集成电路(IC)器件(也称作芯片)、以更小的封装体封装(其保护芯片而同时提供片外信号连接性)。一个实例是图像传感器,其是包括将入射光变换成电信号的光电检测器(其准确地反映具有良好空间分辨率的入射光的强度和颜色信息)的IC器件。目前,板上芯片(C0B-其中裸片被直接安装在印刷电路板上)和谢尔卡斯(Shellcase)晶片级CSP(其中晶片被层叠在两个玻璃薄片之间)是用来构造图像传感器模块(例如用于移动器件照相机、光学鼠标等)的主流的封装和装配工艺。然而,随着使用较 高像素图像传感器,由于针对封装8和12英寸图像传感器晶片的投资支出、装配限制、尺寸限制(该要求是对于较低剖面器件的)以及产率问题,COB和Shellcase WLCSP装配变得愈加困难。例如,Shellcase WLCSP技术包括在晶片被单体化成独立的封装芯片之前在晶片上封装图像传感器,意味着来自每个晶片的有缺陷的那些芯片在它们可被测试之前仍然被封装(其抬高了成本)。存在对用于诸如已经被单体化和测试的图像传感器的芯片的改进的封装和封装技术的需要,并且其提供节省成本和可靠的低剖面封装解决方案(即提供必要的机械支持和电连接性)。
发明内容
本发明的一个方面是图像传感器封装,该图像传感器封装包括具有相对的第一和第二表面的晶体装卸器,该装卸器包括形成在第一表面中的腔体和从腔体的侧壁延伸的至少一个台阶,其中腔体以孔的形式终止在第二表面;安装到第二表面并在孔上延伸且覆盖该孔的盖子,其中该盖子对于至少一个范围的光波长是光学透明的;和传感器芯片,其被布置在腔体中并被安装到该至少一个台阶。该传感器芯片包括具有前和后相对表面的基板,形成在前表面处的多个光电检测器,和形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。在本发明的另一个方面中,图像传感器封装包括具有相对的第一和第二表面的装卸器和传感器芯片。该装卸器对于至少一个范围的光波长是光学透明的,包括在第一表面中形成的腔体,该腔体没有到达第二表面,其中该腔体包括从腔体的侧壁延伸的至少一个台阶。传感器芯片被布置在腔体中并被安装到该至少一个台阶。该传感器芯片包括具有前和后相对表面的基板,形成在前表面处的多个光电检测器,和形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。在本发明的又一个方面中,形成图像传感器封装的方法包括提供具有相对的第一和第二表面的晶体装卸器;在第一表面中形成腔体,该腔体具有从腔体的侧壁延伸的至少一个台阶,其中该腔体以孔的形式终止在第二表面;将盖子安装到第二表面,该盖子在孔上延伸且覆盖该孔,其中该盖子对于至少一个范围的光波长是光学透明的;以及将传感器芯片安装到腔体中并安装到该至少一个台阶。该传感器芯片包括具有前和后相对表面的基板,形成在前表面处的多个光电检测器,和形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。在本发明的又一个方面中,形成图像传感器封装的方法包括提供具有相对的第一和第二表面的装卸器;在第一表面中形成腔体,该腔体没有到达第二表面,其中该腔体包括从腔体的侧壁延伸的至少一个台阶,并且其中该装卸器对于至少一个范围的光波长是光学透明的;以及将传感器芯片安装到腔体中并安装到该至少一个台阶。该传感器芯片包括具有前和后相对表面的基板,形成在前表面处的多个光电检测器,和形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。本发明的其他目的和特征将通过阅览说明书、权利要求和附图而变得明显。
图1A-1E是半导体封装结构的截面侧视图,其依次示出了用于图像传感器芯片的封装结构的加工过程中的各步骤。图2A-2G是半导体封装结构的替换实施例的截面侧视图,其依次示出了用于图像传感器芯片的封装结构的加工过程中的各步骤。图3是图2G的实施例的截面侧视图,但是对于半导体孔、盖子和互连中的导电材料具有修改的配置。图4是半导体封装结构的第二个替换实施例的截面侧视图。图5是半导体封装结构的第三个替换实施例的截面侧视图。图6是图2G的实施例的截面侧视图,但是具有BSI型传感器。
具体实施例方式本发明是对于图像传感器来说理想的晶片级、低应力封装解决方案。低应力封装解决方案的形成如下所述。该形成工艺开始于晶体装卸器6,晶体装卸器6分别包括顶和底表面8和10。腔体12形成在装卸器6的底表面10中,如图IA所示。腔体12可以通过使用激光、等离子体刻蚀工艺、喷砂工艺、机械研磨工艺或任何其他类似的方法来形成。优选地,腔体12通过光刻等离子体刻蚀来形成,该光刻等离子体刻蚀包括在装卸器6上形成光致抗蚀剂层、对光致抗蚀剂层图案化以露出装卸器6的选择部分以及然后执行等离子体刻蚀工艺(例如,使用SF6等离子体)以去除装卸器6的露出部分以形成腔体12。优选地,腔体12不延伸超过晶体基板厚度的3/4,或至少在腔体的最大深度部分处保留约50 的最小厚度。等离子体刻蚀可以是各向异性的、锥形的、各向同性的、或其组合。如所示出的,等离子体刻蚀是锥形的,其中腔体侧壁14具有远离垂直位置约5度的角度(即侧壁14向内地随深度延伸)。然后,通过上面列举的用于形成腔体12的技术中的任一个,形成穿过晶体装卸器6的变薄部分(从腔体12穿过顶表面8)的孔16。孔16的横向尺寸(即直径)小于腔体12的那些横向尺寸,导致形成阶梯式侧壁14(即具有向着孔16的中心伸出的台阶18,其中台阶18包括在基本上垂直延伸的表面处终止的基本上横向延伸的表面)。优选地,台阶18围绕腔体12的周线是连续的(即台阶18采用限定孔16的环形肩的形式)。然而,多个分立的台阶18可以在分立的位置形成为朝向孔16的中心向内延伸。为了确保穿过孔16的合适的成像,孔16的尺寸规格优选稍大于(例如至少50 ym)传感器芯片(在下面描述)的成像面积。所得到的结构在图IA中示出。接下来,隔离(电介质)层20被形成在底表面10和腔体侧壁14和台阶18上。层20可以是氧化硅、氮化硅、环氧基、聚酰亚胺、树脂、FR4、或任何其它适合的电介质材料。优选地,层20是至少0. I 的厚度,且使用任何传统的电介质层沉积技术(其是本领域中公知的)形成。然后,导电层22被形成在层20上。导电层22可以是Cu、Cu/Ni/Au、Cu/Au、Ti/Cu/Au、Al/Ni/Cu或另外的其它公知的导电材料。接下来,执行光刻步骤以去除层22的直接邻近于底表面10的外部边缘、台阶18的内部边缘(邻近孔16)的那些部分,以及上述 的选择部分以形成多个分立的迹线23,每个迹线23从台阶18延伸到底表面10。所得到的结构在图IB中示出。电介质层24被形成在导电层22 (和隔离层20的暴露部分)上。层24可以是氧化硅、氮化硅、环氧基、聚酰亚胺、树脂、FR4、或任何其它适合的电介质材料。优选地,层24是至少0.1 的厚度,且使用任何适当的电介质层沉积技术(其是本领域中公知的)形成,例如电化学沉积、层压、喷射或旋涂等。接下来,执行光刻步骤以去除台阶18和底表面10上的层24的选择部分以暴露导电层22的选择部分(即每个迹线23的端部)。导电层22的选择性暴露的部分分别形成接触焊盘26/28。所得到的结构在图IC中示出。接下来,SMT (表面安装)互连30被形成在接触焊盘28上。SMT互连可以是BGA型,且使用焊料合金的丝网印刷工艺、或通过植球工艺、或通过电镀工艺形成。BGA(球栅阵列)互连是通常通过焊接或部分熔融金属球到接合焊盘上形成的、用于与对等导体形成物理和电接触的圆形导体。可替换地,SMT互连可以是导电金属柱(例如铜)。盖子32被附加到装卸器6的顶表面8,优选地利用粘结剂34。盖子32延伸跨过孔16并且优选地密封孔16,且对于至少一个范围的光波长(例如用于照相机应用的可见光)是光学透明的。在优选的实施例中,盖子32由玻璃或聚合物制成,具有至少25 iim的厚度。盖子32可包括抗反射和/或抗红外的涂层。所得到的结构在图ID中示出。传感器芯片36被插入腔体12中并被安装到台阶18。传感器芯片36包括基板38,在基板38上形成多个光电检测器40 (和支持电路)以及接触焊盘42。光电检测器40 (和支持电路)以及接触焊盘42如图IE所示被形成在基板38的面向上的(前)表面处。接触焊盘42电连接到光电检测器40(和/或它们的支持电路)用于提供片外信号发送。每个光电检测器40将光能转换成电压信号。可包括芯片上的附加电路,用以放大电压,和/或将其转换成数字数据。滤色器44和微透镜46被安装在光电检测器40上。这种类型的图像传感器是本领域公知的,因此并不在这里做进一步的描述。传感器芯片36通过倒装芯片连接器48与装卸器6机械地和电气地连接,倒装芯片连接器48将每个接触焊盘42 (在传感器芯片36上)与接触焊盘26 (在台阶18上)中的一个电连接。连接器48的实例包括BGA、Au柱形凸块和导电膏。可选的密封(电介质)材料可被用来填充腔体12,且因此将传感器芯片36密封在其中。所得到的结构在图IE中示出。图IE的封装的传感器芯片组件提供了许多优点。第一,给晶体装卸器6提供阶梯式腔体(即传感器芯片36被安装到的横向延伸的台阶18)提供了优良的机械性能和电稳定性、和用于安装和电连接传感器芯片36到装卸器6的可靠技术。第二,通过形成在装卸器6上的导电层22来可靠地提供片外连接性。第三,通过提供与完成的传感器芯片36分离的封装结构,传感器芯片36可以在安装之前被完全地测试,因此节省了封装原来是有缺陷的传感器芯片的成本。第四,将腔体12的侧壁形成为倾斜的潜在地减小了可能由90度拐角造成的在晶体装卸器上的损害性诱生应力。第五,腔体12的倾斜的侧壁还意味着不存在负角度区域,该负角度区域可能在形成于其上的材料层中导致产生间隙。第六,通过首先形成隔离层20,并然后在其上形成金属化层22,避免了金属扩散到晶体装卸器6中。第七,用盖子32密封孔16,微透镜46被保护而免于污染,同时允许光穿过盖子32并到达传感器芯片36。第七,为了更好的器件保护和可靠性,传感器36可被密封在装卸器6中。第八,封装结构可被用于多个部件的并排集成,诸如在一个SMT可兼容的封装中的支持处理器和存储器芯片与背面照射的图像传感器的集成,而不增加封装的总高度。图2A-2G示出了第一替换实施例的形成,其中在晶体装卸器6被处理以形成腔体12、孔16和台阶18 (使用与上面关于图IA所描述的相同的工艺步骤)之前,盖子32被安 装到晶体装卸器6 (如图2A所示)。所得到的结构在图2B中示出。然后传感器36被插入腔体12,并通过电介质安装材料60 (例如环氧树脂、胶带等)安装到台阶18,如图2C所示。在这点上,装卸器6的高度可以通过硅刻蚀被降低,其去除了装卸器6的底部部分以致于其底表面10与传感器芯片的背表面一般高。然后电介质材料62被形成在底表面10上和腔体12中,其将传感器芯片36密封在腔体12中。所得到的结构在图2D中示出。然后孔64被形成为穿过电介质材料62并进入传感器芯片基板38以暴露接触焊盘42。孔64可以通过对于较大尺寸的孔64使用CO2激光器(例如光斑尺寸约70 y m)或对于较小尺寸的孔64 (例如直径小于50 u m)使用UV激光器(例如在355nm波长处光斑尺寸约20iim)来形成。可以使用在小于140ns的脉冲长度的介于10和50kHz之间的激光脉冲频率。孔64的剖面可以是锥形的,在形成孔64所穿过的表面处具有较大的尺寸。优选地,最小和最大孔直径分别是大约5到250 u m,且侧壁的角度相对于垂直于形成孔64所穿过的表面的方向在0°和45°之间(即,因此孔64在接触焊盘42处具有较小的截面尺寸)。绝缘层66通过薄膜涂布(例如喷射、旋涂和/或电化学沉积)和光刻工艺被形成在孔64的侧壁上。所得到的结构在图2E中示出。接下来,导电材料层68被沉积在电介质材料层62上,其还用导电材料填充孔64。导电材料层68优选是例如铜、钨、铝、铝铜合金等的金属材料。接下来,光刻工艺被执行以选择性地去除导电层68的部分,留下扇入/扇出互连70,其均电连接到接触焊盘42中的一个。所得到的结构在图2F中示出。电介质(绝缘)材料层72被形成在层62和互连70上。接下来,光刻工艺被执行以选择地去除电介质层72在互连70上的那些部分,由此暴露互连70。接下来,SMT互连30形成在互连70上,优选采用BGA型互连的形式。所得到的结构在图2G中示出。在图2G的实施例的情况下,片外导电性从传感器芯片接触焊盘42、通过导电材料67穿过传感器芯片基板38被路由到SMT互连30。除了上面列举的优点之外,该结构还能够实现较高水平的布线和较短的互连,其将帮助改进电性能和减少功率消耗。
关于图2G的实施例,应当注意到在形成导电层68的过程中,不需要填充孔64,而是可以沿着孔64的侧壁形成导电层,如图3所示。在图3中还示出了没有与孔64对准的互连30 (即被示为扇出互连),和具有比装卸器6小的横向尺寸的盖子32。图4示出了第二个替换实施例,其中盖子32被集成地形成为光学透明装卸器6的一部分。代替形成从腔体12延伸到装卸器6的顶表面8的孔16,腔体12延伸超越台阶18足够远以容纳滤色器44和微透镜46。在这个实施例中,装卸器6优选由无定形(非晶)玻璃制成。装卸器6的单片(单个材料)结构通过保护传感器芯片36免受湿气和不期望的有机材料的影响而能够实现较高水平的气密性控制的工作环境。对浸入液体或高湿度环境中的封装,湿气渗透是常见的失效模式。封装内部的湿气可引起在器件的有源区域上的冷凝,导致结构腐蚀和/或退化的性能。此外,该结构还消除了对气密密封腔体的需要,并由此比使用高温阳极、熔融、焊料等的结合工艺的结构具有更高的耐性和可靠性。
图5示出了第三个替换实施例,其包括用于传感器芯片36的集成处理器。第二腔体82形成在装卸器6中,横向上邻近腔体12,(采用与用来形成腔体12的相同方式)。然后,第二芯片(例如处理器IC芯片)84被插入第二腔体82中。IC芯片84包括处理器集成电路86,用于处理来自传感器芯片36的信号。该IC芯片84包括在其前表面上暴露的导电接触焊盘88,用于在芯片上和芯片外传送信号。该IC芯片84通过电介质材料62被密封在第二腔体82中。暴露接触焊盘88的孔90以与孔64相同的方式被形成为穿过电介质材料62。孔90可被填充有导电材料68,且SMT互连30形成在其上,如上面描述的和图5中所示的。图5中的实施例的优点是其为传感器芯片36和处理器芯片84提供了共封装。处理芯片84包括硬件处理器和软件算法的组合,其共同构成用于从单个光电检测器40收集亮度和色度信息并使用其来为每个像素计算/内插正确的颜色和亮度值的图像处理器。图像处理器估算给定像素的颜色和亮度数据,将它们与来自相邻像素的数据进行比较且然后使用去马赛克算法以从不完整的颜色样品重构全色图像,且产生用于该像素的适当亮度值。图像处理器还评估完整图片且校正锐度并减小图像的噪声。图像传感器的演变导致图像传感器中的日益更高的像素计数,以及诸如自动聚焦、缩放、红眼消除、人脸跟踪等的附加照相机功能性,这要求可以以更高速度操作的更强大的图像传感器处理器。摄影师不希望在他们可以实施拍摄之前等待照相机的图像处理器完成其工作,他们甚至不想告知某些处理正在照相机内部进行。因此,图像处理器必须被优化以在相同或者甚至更短的时间周期内处理更多的数据。上面描述的且在图1-5中示出的传感器芯片36是前面照射(FSI)型传感器,其中光电检测器40、支持电路和接触焊盘42、滤色器和微透镜被形成在芯片的前表面上,且光电检测器40被定向成捕获/测量入射到芯片的前表面的光。然而,背面照射(BSI)型传感器也是公知的,其中光电检测器被配置成捕获/测量进入芯片的背表面的光,由此光穿过硅基板且到达光电检测器。滤色器44和微透镜46被安装到芯片的背表面。BSI传感器的优点在于,假定电路层通常比光电检测器更靠近芯片的前表面,当光从背表面进入时该电路被省略。上述的封装技术可以如图6中所示地使用BSI型传感器芯片实现,其中背表面(代替了前表面)被安装到台阶18,且孔64仅延伸穿过电介质层62以暴露接触焊盘42 (不需要孔延伸进入基板)。
应当理解,本发明不限于上面描述和此处示出的(一个或多个)实施例,而是涵盖落在所附权利要求的范围内的任何和所有变型。例如,此处对于本发明的引用并不旨在限制任何权利要求或权利要求术语的范围,而是相反仅引用可以被一个或多个权利要求覆盖的一个或多个特征。上述的材料、工艺和数值示例仅是示例性的,且不应认为限制了权利要求。而且,从权利要求和说明书显见,并不是所有方法步骤必须以示出或要求保护的确切顺序执行,而是以允许本发明的图像传感器封装的适当形成的任何顺序单独或同时执行。单层材料可以形成为这种或类似材料的多层,且反之亦然。应当注意,如这里使用的术语“上方”和“上”均包括性地包括“直接位于…上”(没有布置于其间的中间材料、元件或空间)和“间接位于…上”(有布置于其间的中间材料、元件或空间)。同样,术语“邻近”包括“直接邻近”(没有布置于其间的中间材料、元件或·空间)和“间接邻近”(有布置于其间的中间材料、元件或空间),“安装到”包括“直接安装至IJ” (没有布置于其间的中间材料、元件或空间)和“间接安装到”(有布置于其间的中间材料、元件或空间),且“电耦合”包括“直接电偶合到”(其间没有把元件电连接在一起的中间材料或元件)和“间接电耦合到”(其间有把元件电连接在一起的中间材料或元件)。例如,“在基板上方”形成元件可以包括直接在基板上形成元件,其间没有中间材料/元件,也可以在基板上间接形成元件,其间具有一个或多个中间材料/元件。
权利要求
1.一种图像传感器封装,包括 具有相对的第一和第二表面的晶体装卸器,该装卸器包括形成在第一表面中的腔体和从腔体的侧壁延伸的至少一个台阶,其中腔体以孔的形式终止在第二表面; 安装到第二表面并在孔上延伸且覆盖该孔的盖子,其中该盖子对于至少一个范围的光波长是光学透明的;和 传感器芯片,其被布置在腔体中并被安装到该至少一个台阶,其中该传感器芯片包括: 具有如和后相对表面的基板, 形成在前表面处的多个光电检测器,和 形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。
2.如权利要求I所述的图像传感器封装,其中传感器芯片的前表面被安装到该至少一个台阶。
3.如权利要求I所述的图像传感器封装,其中传感器芯片的背表面被安装到该至少一个台阶。
4.如权利要求2所述的图像传感器封装,进一步包括 多个导电迹线,其每个沿着该至少一个台阶、腔体的侧壁和第一表面延伸,并且与该至少一个台阶、腔体的侧壁和第一表面绝缘;以及 布置在基板前表面和该至少一个台阶之间的多个电连接器,其中电连接器中的每一个被电连接在迹线中的一个和接触焊盘中的一个之间。
5.如权利要求2所述的图像传感器封装,进一步包括 布置在腔体中并将传感器芯片密封在腔体中的电介质材料。
6.如权利要求2所述的图像传感器封装,其中,通过沉积在该至少一个台阶和该前表面之间的电介质材料,该传感器芯片被安装到该至少一个台阶。
7.如权利要求2所述的图像传感器封装,进一步包括 在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个; 在每一个孔中的从该一个接触焊盘延伸到背表面的导电材料;以及多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到在所述孔中的一个中的导电材料。
8.如权利要求7所述的图像传感器封装,进一步包括 在第一和背表面上延伸的电介质材料,其将传感器芯片密封在腔体中,其中该多个孔中的每个延伸穿过电介质材料。
9.如权利要求2所述的图像传感器封装,进一步包括 在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个,其中每个孔包括导电材料层,该导电材料层与该一个接触焊盘电接触,并且沿着孔的侧壁延伸且与该孔的侧壁绝缘;以及 多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到导电材料层中的一个。
10.如权利要求I所述的图像传感器封装,进一步包括 形成在装卸器的第一表面中的第二腔体;布置在第二腔体中的处理器芯片,该处理器芯片包括 第二基板, 形成在第二基板上的处理电路,以及 形成在第二基板上的、被电耦合到处理电路的多个第二接触焊盘。
11.如权利要求10所述的图像传感器封装,进一步包括 在装卸器的第一表面、传感器芯片和处理器芯片上方延伸的电介质材料,其将传感器芯片密封在腔体中并且将处理器芯片密封在第二腔体中。
12.如权利要求11所述的图像传感器封装,进一步包括 多个第一孔,其每个从传感器芯片的接触焊盘中的一个延伸,穿过传感器芯片基板,且穿过电介质材料; 在每个第一孔中的导电材料,其从传感器芯片的该一个接触焊盘延伸,穿过传感器芯片基板且穿过电介质材料; 多个第二孔,其每个从处理器芯片的接触焊盘中的一个延伸且穿过电介质材料;以及 在每个第二孔中的导电材料,其从处理器芯片的该一个接触焊盘延伸且穿过电介质材料。
13.如权利要求12所述的图像传感器封装,进一步包括 多个第一表面安装互连,其每个布置在第一表面或传感器芯片的上方,且每个电连接到在第一孔中的一个中的导电材料; 多个第二表面安装互连,其每个布置在第一表面或处理器芯片的上方,且每个电连接到在第二孔中的一个中的导电材料。
14.如权利要求3所述的图像传感器封装,其中,通过布置在该至少一个台阶和背表面之间的电介质材料,传感器芯片被安装到该至少一个台阶。
15.如权利要求3所述的图像传感器封装,进一步包括 在第一和前表面上延伸的电介质材料,其将传感器芯片密封在腔体中; 多个孔,其每个延伸穿过电介质材料到达接触焊盘中的一个; 在每个孔中的、从该一个接触焊盘延伸的导电材料;以及 多个表面安装互连,其每个布置在第一表面或前表面的上方,且每个电连接到在所述孔中的一个中的导电材料。
16.一种图像传感器封装,包括 具有相对的第一和第二表面的装卸器,其中 该装卸器包括在第一表面中形成的腔体,该腔体没有到达第二表面, 该腔体包括从腔体的侧壁延伸的至少一个台阶, 以及该装卸器对于至少一个范围的光波长是光学透明的; 传感器芯片,该传感器芯片被布置在腔体中并被安装到该至少一个台阶,其中该传感器芯片包括 具有如和后相对表面的基板, 形成在前表面处的多个光电检测器,和 形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。
17.如权利要求16所述的图像传感器封装,其中,通过沉积在该至少一个台阶和传感器芯片的前表面之间的电介质材料,传感器芯片的前表面被安装到该至少一个台阶。
18.如权利要求17所述的图像传感器封装,进一步包括 在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个; 在每一个孔中的、从该一个接触焊盘延伸到背表面的导电材料;以及多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到在所述孔中的一个中的导电材料。
19.如权利要求18所述的图像传感器封装,进一步包括 在第一和背表面上延伸的电介质材料,其将传感器芯片密封在腔体中,其中该多个孔中的每个延伸穿过电介质材料。
20.如权利要求16所述的图像传感器封装,其中装卸器是无定形的、非晶玻璃。
21.—种形成图像传感器封装的方法,包括 提供具有相对的第一和第二表面的晶体装卸器; 在第一表面中形成腔体,该腔体具有从腔体的侧壁延伸的至少一个台阶,其中该腔体以孔的形式终止在第二表面; 将盖子安装到第二表面,该盖子在孔上延伸且覆盖该孔,其中该盖子对于至少一个范围的光波长是光学透明的;以及 将传感器芯片安装到腔体中并安装到该至少一个台阶,其中该传感器芯片包括 具有如和后相对表面的基板, 形成在前表面处的多个光电检测器,和 形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。
22.如权利要求21所述的方法,其中传感器芯片的前表面被安装到该至少一个台阶,该方法进一步包括 形成多个导电迹线,其每个沿着该至少一个台阶、腔体的侧壁和第一表面延伸,并且与该至少一个台阶、腔体的侧壁和第一表面绝缘;以及 形成布置在基板前表面和该至少一个台阶之间的多个电连接器,其中电连接器中的每一个被电连接在迹线中的一个和接触焊盘中的一个之间。
23.如权利要求21所述的方法,其中传感器芯片的前表面被安装到该至少一个台阶,该方法进一步包括 形成在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个; 在每一个孔中形成从该一个接触焊盘延伸到背表面的导电材料;以及形成多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到在所述孔中的一个中的导电材料。
24.如权利要求21所述的方法,其中传感器芯片的前表面被安装到该至少一个台阶,该方法进一步包括 形成在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个,其中每个孔包括导电材料层,该导电材料层与该一个接触焊盘电接触,并且沿着孔的侧壁延伸且与该孔的侧壁绝缘;以及 形成多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到导电材料层中的一个。
25.如权利要求21所述的方法,其中传感器芯片的前表面被安装到该至少一个台阶,该方法进一步包括 形成在装卸器的第一表面中形成的第二腔体; 在第二腔体中插入处理器芯片,该处理器芯片包括 第二基板, 形成在第二基板上的处理电路,以及 形成在第二基板上的、被电耦合到处理电路的多个第二接触焊盘。
26.如权利要求25所述的方法,进一步包括 形成在装卸器的第一表面、传感器芯片和处理器芯片上方延伸的电介质材料,其将传感器芯片密封在腔体中并且将处理器芯片密封在第二腔体中。
27.如权利要求26所述的方法,进一步包括 形成多个第一孔,其每个从传感器芯片的接触焊盘中的一个延伸,穿过传感器芯片基板,且穿过电介质材料; 在每个第一孔中形成导电材料,其从传感器芯片的该一个接触焊盘延伸,穿过传感器芯片基板且穿过电介质材料; 形成多个第二孔,其每个从处理器芯片的接触焊盘中的一个延伸且穿过电介质材料;以及 在每个第二孔中形成导电材料,其从处理器芯片的该一个接触焊盘延伸且穿过电介质材料。
28.如权利要求27所述的方法,进一步包括 形成多个第一表面安装互连,其每个布置在第一表面或传感器芯片的上方,且每个电连接到在第一孔中的一个中的导电材料; 形成多个第二表面安装互连,其每个布置在第一表面或处理器芯片的上方,且每个电连接到在第二孔中的一个中的导电材料。
29.如权利要求21所述的方法,其中传感器芯片的背表面被安装到该至少一个台阶,该方法进一步包括 形成在第一和前表面上延伸的电介质材料,其将传感器芯片密封在腔体中; 形成多个孔,其每个延伸穿过电介质材料到达接触焊盘中的一个; 在每个孔中形成从该一个接触焊盘延伸的导电材料;以及 形成多个表面安装互连,其每个布置在第一表面或前表面的上方,且每个电连接到在所述孔中的一个中的导电材料。
30.一种图像传感器封装的方法,包括 提供具有相对的第一和第二表面的装卸器; 在第一表面中形成腔体,该腔体没有到达第二表面,其中该腔体包括从腔体的侧壁延伸的至少一个台阶,并且其中该装卸器对于至少一个范围的光波长是光学透明的;以及将传感器芯片安装到腔体中并安装到该至少一个台阶,其中该传感器芯片包括 具有如和后相对表面的基板, 形成在前表面处的多个光电检测器,和 形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。
31.如权利要求30所述的方法,其中传感器芯片的前表面通过布置在该至少一个台阶和前表面之间的电介质材料而被安装到该至少一个台阶,该方法进一步包括 形成在基板中的多个孔,其每个从该背表面延伸到接触焊盘中的一个; 在每一个孔中形成从该一个接触焊盘延伸到背表面的导电材料;以及形成多个表面安装互连,其每个被布置在第一表面或背表面上方,且每个电连接到在所述孔中的一个中的导电材料。
全文摘要
本发明涉及图像传感器的阶梯式封装及其制造方法。图像传感器封装包括具有相对的第一和第二表面的晶体装卸器,以及形成在第一表面中的腔体。至少一个台阶从腔体的侧壁延伸,其中腔体以孔的形式终止在第二表面。盖子被安装到第二表面且在孔上方延伸并覆盖该孔。该盖子对于至少一个范围的光波长是光学透明的。传感器芯片被布置在腔体中且被安装到该至少一个台阶。传感器芯片包括具有前和后相对表面的基板、形成在前表面处的多个光电检测器以及形成在前表面处的多个接触焊盘,所述多个接触焊盘被电耦合到所述光电检测器。
文档编号H01L23/28GK102983111SQ20111036193
公开日2013年3月20日 申请日期2011年9月30日 优先权日2011年9月2日
发明者V·奥加涅相 申请人:奥普蒂兹公司