带有δ掺杂层的太阳能电池的制作方法与工艺

文档序号:12039033阅读:412来源:国知局
带有δ掺杂层的太阳能电池的制作方法与工艺
本申请涉及太阳能电池,并且特别地涉及带有δ掺杂层的太阳能电池,以及更特别地涉及在背面场区中带有δ掺杂层的太阳能电池。

背景技术:
太阳能电池通过光伏效应将太阳能转变为有用的电能。与传统的硅太阳能电池相比,现代的多结太阳能电池以明显更高的效率工作,并且具有重量轻的额外优点。因此,太阳能电池提供了适用于多种地面和空间应用的可靠、轻便和可持续的电能来源。太阳能电池通常包括具有某一能带隙(energybandgap)的半导体材料。太阳光中具有比半导体材料能带隙更大的能量的光子被半导体材料吸收,由此释放半导体材料内的电子。自由电子扩散通过半导体材料并作为电流流过电路。太阳能电池后表面的电子空穴再结合导致效率的损失。因此,太阳能电池通常配备有位于太阳能电池后表面附近的背面场层。背面场层起到阻碍少数载流子朝向后表面(也就是朝向隧道结或后电极)流动的作用。因此,背面场层通常阻止少数载流子在太阳能电池的后界面或表面处再结合或逃离太阳能电池的基极,从而钝化太阳能电池的基极后界面或表面并充当太阳能电池的少数载流子屏障。不利地,寻找用作背面场层的更高带隙材料变得愈加困难,特别是用于诸如AlGaInP太阳能电池这样的高带隙太阳能电池的背面场层。因此,本领域技术人员继续进行太阳能电池领域的研发工作。

技术实现要素:
在一个实施例中,公开的太阳能电池可以包括基极区、背面场层和位于基极区与背面场层之间的δ掺杂层。在另一个实施例中,公开的太阳能电池可以包括具有前端和后端的基极区以及位于基极区的后端附近的δ掺杂层。在又一个实施例中,公开一种用于形成太阳能电池的方法。该方法可以 包括以下步骤:(1)提供基底;(2)在基底上生长背面场层;(3)δ掺杂背面场层以形成δ掺杂层;(4)在δ掺杂层上方生长附加层。根据以下详细描述、附图和所附权利要求,所公开的带有δ掺杂层的太阳能电池及其形成方法的其它实施例将变得显而易见。附图说明图1是所公开的带有δ掺杂层的太阳能电池的一个实施例的横截面示意图;图2是示出可以用于形成所公开的带有δ掺杂层的太阳能电池的步骤的流程图;图3是所说明的电流-电压(“LIV”)关系的图形实例,其对比了所公开的太阳能电池(带有δ掺杂层)和背面场区中不带有δ掺杂层的太阳能电池;图4是所公开的太阳能电池(带有δ掺杂层)和用于对比的背面场区中不带有δ掺杂层的太阳能电池的开路电压的图形实例;图5A是具有单独作为背面场区的δ掺杂层的太阳能电池的带隙示意图;以及图5B是具有作为部分背面场区的δ掺杂层的太阳能电池的带隙示意图。具体实施方式参见图1,所公开的带有δ掺杂层的太阳能电池(整体标记为10)的一个实施例可以包括位于上部结构14和下部结构16之间的电池/单元(cell)12。电池12可以包括窗口19、发射极区20、本征或耗尽区22、基极区24和背面场(BSF)区26。上部结构14可以是位于电池12上方的任意结构。本领域技术人员可以理解,上部结构14的具体组成将取决于太阳能电池10的具体结构。在一种结构中,太阳能电池10可以是多结太阳能电池,并且电池12可以是该多结太阳能电池的上部子电池(subcell)。可替代地,电池12可以是太阳能电池10的唯一电池。因此,上部结构14可以包括例如抗反射涂层、盖层(例如GaAs盖)和电接触层(例如金属栅)。在另一种结构中,太阳能电池10可以是多结太阳能电池,并且上部结构14可以是该多结太阳能电池的另一个子电池。本领域技术人员可以理解,相 邻的子电池可以由隧道结分离。下部结构16可以是位于电池12之下的任意结构。本领域技术人员可以理解,下部结构16的具体组成将取决于太阳能电池10的具体结构。在一种结构中,太阳能电池10可以是多结太阳能电池,并且电池12可以是该多结太阳能电池的下部子电池。可替代地,电池12可以是太阳能电池10的唯一电池。因此,下部结构16可以包括例如缓冲层和基底(例如锗基底)。在另一种结构中,太阳能电池10可以是多结太阳能电池,并且下部结构16可以是该多结太阳能电池的另一个子电池。电池12可以通过隧道结与底层电池(underlyingcell)分离。背面场区26可以包括第一背面场层28、δ掺杂层30和第二背面场层32。因此,δ掺杂层30可以位于第一背面场层28和第二背面场层32之间。可替代地,背面场区26可以包括第一背面场层28和δ掺杂层30(也就是没有第二背面场层32)。因此,δ掺杂层30可以位于基极区24和第一背面场层28之间的界面处。δ掺杂层30可以包括相对于第一和第二背面场层28、32表现为掺杂物的任意元素。因此,δ掺杂层30的组成可能取决于第一和第二背面场层28、32的组成。作为一个一般的非限制性示例,电池12可以通过以下过程形成:窗口18可以是AlInP2,发射极区20可以是GaInP2,本征区22可以是GaInP2,基极区24可以是GaInP2,第一和第二背面电场层28、32可以是AlGaAs。由于第一和第二背面场层28、32是由第13和15族元素形成的,因此δ掺杂层30可以由不同于第13和15组元素的元素(或多种元素)形成。作为一个具体的非限制性示例,电池12的第一和第二背面场层28、32可以由AlGaAs形成,而δ掺杂层30可以由第14组元素如碳、硅或锗形成。作为另一个具体的非限制性示例,电池12的第一和第二背面场层28、32可以由AlGaAs形成,而δ掺杂层30可以由碳形成。δ掺杂层30的层厚度可能取决于多种因素,包括使用的δ掺杂物的类型和在其上施加δ掺杂层30的背面场材料(例如第一背面场层28的材料)。本领域技术人员可以理解,δ掺杂物的局限性可能限制可获得的δ掺杂层30的总体层厚度。在一种表达方式中,δ掺杂层30可以具有在大约1纳米到大约100纳米 的范围内的平均层厚度。在另一种表达方式中,δ掺杂层30可以具有在大约5纳米到大约50纳米的范围内的平均层厚度。在另一种表达方式中,δ掺杂层30可以具有在大约5纳米到大约25纳米的范围内的平均层厚度。在另一种表达方式中,δ掺杂层30可以具有在大约5纳米到大约15纳米的范围内的平均层厚度。在又一种表达中,δ掺杂层30可以具有大约10纳米的平均层厚度。因此,δ掺杂物可以被限制为背面场区26中的非常薄的层。δ掺杂层30中的δ掺杂物的体积浓度也可能取决于多种因素,包括使用的δ掺杂物的类型和在其上施加δ掺杂层30的基底的材料(例如第一背面场层28的材料)。在一种表达方式中,δ掺杂层30中的δ掺杂物的体积浓度可以至少约为每立方厘米1×1018个原子。在另一种表达方式中,δ掺杂层30中的δ掺杂物的体积浓度可以至少约为每立方厘米1×1019个原子。在另一种表达方式中,δ掺杂层30中的δ掺杂物的体积浓度可以至少约为每立方厘米1×1020个原子。在另一种表达方式中,δ掺杂层30中的δ掺杂物的体积浓度可以至少约为每立方厘米1×1021个原子。在又一种表达方式中,δ掺杂层30中的δ掺杂物的体积浓度可以在大约每立方厘米1×1018个原子到大约每立方厘米1×1022个原子的范围内。图2是描述用于形成所公开的带有δ掺杂层的太阳能电池的公开方法(整体标记为100)的一个具体方面的步骤的流程图。用于形成邻近太阳能电池后部的δ掺杂层的其它方法也是可预期的。方法100可以开始于具有提供合适基底的步骤的方框102。基底可以是能够在其上生长背面场层的任意基底。合适基底的一种非限制性示例是锗。在方框104处,可以在基底上生长第一背面场层。生长第一背面场层的步骤(步骤104)继续进行,直到获得第一背面场层的期望横截面厚度。可以以外延的方式生长第一背面场层,诸如分子束外延、金属有机气相外延或化学气相外延。可以选择外延前体以得到第一背面场层的期望材料。可任选地,在生长第一背面场层的步骤(方框104)之前,可以将缓冲物施加于基底上以便缓冲物位于第一背面场层和基底之间。本领域技术人员可以理解,可以选择缓冲物以最小化或消除第一背面场层和基底之间的晶格失配的影响。在方框106处,可以停止外延,并且可以开始δ掺杂。在δ掺杂步骤(方框106)期间,可以引入期望的δ掺杂物以在第一背面场层上形成δ掺杂层。可以执行δ掺杂步骤(方框106)直至获得δ掺杂层中的δ掺杂物的预定最小体积浓度。在方框108处,可以停止δ掺杂,并且可以开始生长第二背面场层。可以以外延的方式生长第二背面场层直至获得第二背面场层的期望横截面厚度。随着形成背面场层和δ掺杂层,方法100可以继续生长太阳能电池的附加层如基极区、本征区、发射极区和窗口18的步骤,如方框110所示。因此,利用方法100组装了两个太阳能电池:一个在背面场区中带有δ掺杂层,而另一个不带有δ掺杂层。两个太阳能电池基本上是相同的,除了存在或不存在δ掺杂层。如图3和图4所示,带有δ掺杂层的太阳能电池表现出更高的开路电压(VOC)和更好的填充系数。图5A和图5B是两个带有δ掺杂作为部分背面场区的太阳能电池的能带示意图。图5A是其中δ掺杂层为唯一背面场层的太阳能电池的能带图。图5B是其中δ掺杂层附加于更高带隙背面场层的太阳能电池的能带图。在图5A中,δ掺杂层引入能带能量尖峰,并且这个能量尖峰阻止少数载流子逃离p-n结。在图5B中,δ掺杂层引起的能量尖峰增强了背面场阻止少数载流子的功能。当δ掺杂层位于基极区和背面场层之间的界面处时,δ掺杂层可以在界面处更好地钝化并因此可以减少界面复合,这也可以提高背面场的功能。此外,由于将δ掺杂层设置在背面场区中,高p-型δ掺杂层可以很好地被限制在窄材料厚度范围中,以便几乎不担心p-掺杂物反扩散进入基极区。本领域技术人员可以理解,掺杂物扩散进入基极区可能由于缩短了少数载流子的扩散长度而损害电池性能。相应地,通过在太阳能电池的背面场区中使用δ掺杂层可以提高太阳能电池的效率。不限于任何特殊的理论,据信在背面场区中使用δ掺杂层可以使背面场区在阻止太阳能电池基极区中的少数载流子方面的效率更高,并且可以在基极区和背面场区之间的界面处更好地钝化。进一步据信在背面场区中使用δ掺杂层对高带隙太阳能电池是特别有用的,在高带隙太阳能电池中很难找到用作背面场的更高带隙材料。在另一个可替代实施例中,所公开的δ掺杂层可以被并入到太阳能电池的基极区而不是背面场区。基极区可以包括前端和后端。δ掺杂层可以邻近(也就是处于或接近)基极区的后端被并入到基极区。尽管已经示出和描述了所公开的带有δ掺杂层的太阳能电池的多种实施例,但是本领域技术人员在阅读说明书之后可以想到各种修改。本申请包括这样的修改,并且仅由权利要求的范围限制。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1