半导体装置和电子设备的制作方法

文档序号:7262410阅读:147来源:国知局
半导体装置和电子设备的制作方法
【专利摘要】本发明涉及半导体装置和电子设备。该半导体装置包括:由半导体材料制成的基板,用多种材料制成并形成在基板上的层。开口部,被形成为穿透形成在基板上的多个层中的至少被形成为绝缘膜的层并暴露电极焊盘的表面,并被填充以铝或铝合金。
【专利说明】半导体装置和电子设备
【技术领域】
[0001]本技术涉及半导体装置和电子设备,并且更具体地,涉及能够提供复杂的固态成像元件,同时保持高精度的引线接合工艺的半导体装置和电子设备。
【背景技术】
[0002]通常,在固态成像元件中,光电转换单元被设置在芯片中心的成像区域中,电路单元被设置在其外围,其外围是芯片边缘区域,以及包括用于外部互连的铝(Al)基合金膜(例如铝铜)的多个引线接合焊盘电极被设置在芯片边缘区域。
[0003]引线接合焊盘电极的表面覆盖有绝缘膜等,但由于绝缘膜等开口,引线接合焊盘的金属表面被暴露。
[0004]在半导体装置的组装工序中,为了将半导体芯片与封装(package)电连接,执行用金属线将半导体芯片上暴露的金属表面(焊盘电极)与封装的内引线(inner lead)连接的引线接合(wire bonding)工序。
[0005]这里,当制造固态成像元件时,球焊技术被广泛用作引线接合工艺,使用金(Au)制成的接合线进行压接,以便一定量的负荷、热、以及当结合使用超声波时的超声波振动被施加到导线。在此时,在固态成像元件中,例如,鉴于要安装的滤色器的材料的耐热性,在芯片上加热温度被设置为250°C或更低。
[0006]在引线接合工序中,使用被称为毛细管的工具,并且通过将毛细管移动到开口的引线接合焊盘的正上方位置,然后将毛细管向下移动,压接金(Au)球。此时,开口焊盘的形状显著影响引线接合工艺的精度。
[0007]当引线接合焊盘的表面是存在于离半导体芯片的表面较深的位置时,由于毛细管向下移动的距离增加,引线接合工艺的精度降低。由于这个原因,当引线接合焊盘的表面存在于离半导体芯片的表面较深的位置时,有可能出现压接位置不正、导线断开缺陷等。此夕卜,很可能残留由于切割而产生的灰尘或水分,而焊盘腐蚀(外观缺陷)的风险也增加。
[0008]近年来,从功率消耗的角度看,MOS类型如互补金属氧化物半导体(CMOS)被广泛用作安装在移动设备(如带有摄像头的移动电话或个人数字助理(PDA))中的固态成像元件。
[0009]此外,作为MOS型固态成像元件,为了实现高灵敏度、低噪声和高品质特性,底部发光固态成像元件已经被开发作为像素结构,该元件具有光从的硅(Si)基板的背面侧发射的结构,而不是相关技术中的顶部发射结构。
[0010]然而,在相关技术中的顶部发射结构中,引线接合焊盘的深度为2μπι或更小,而在MOS型底部发光固态成像元件中,引线接合焊盘的深度为5至8 μ m。因此,引线接合工艺的精度降低,并且工艺裕度减小。其结果是,出现特性缺陷或引线接合可靠性劣化的风险增大。
[0011]此外,近年来,作为超越摩尔定律(more than more)技术,基板堆叠(3D设备)已经引领半导体工业。在这里,作为下一代底部发光固态成像元件,已开发了具有层叠结构的底部发光固态成像元件(其为高功能3D设备的领先产品),并预期会大规模生产。
[0012]然而,在具有层叠结构的底部发光类型中,引线接合焊盘的位置是12 μ m或更大,其比在底部发光型中的更深,并且比在相关技术的产品中的更深。由于这个原因,在技术上,变得越来越难以在焊盘上直接形成引线接合。
[0013]在这方面,已经提出了如下技术:对于芯片表面,用于执行引线接合的电极被暴露(例如参见JP2011-192669A)。在JP2011-192669A所公开的技术中,在布置有焊盘(pad)、接合线、激光熔化槽和切割槽(dicing groove)的切割区域中,焊盘形成在防反射膜上,并被电连接到形成在层间绝缘膜中的互连层。

【发明内容】

[0014]然而,当使用JP2011-192669A中所公开的技术时,有一个问题在于,互连处理的数量增加,并且芯片面积大小增加。
[0015]期望提供功能很强的固态成像元件,同时保持高精度的引线接合工艺。
[0016]根据本技术的第一实施方式,提供了一种半导体装置,包括由半导体材料制成的基板,用多种材料制成并形成在基板上的多个层。被形成为穿透被形成在基板上的多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露的开口部被填充以铝或铝合金。
[0017]被电连接到焊盘电极的导线可通过引线接合而连接到开口部中填充的铝或铝合金。
[0018]开口部中填充的铝或铝合金可包括从所述半导体装置的表面突出的凸部。
[0019]凸部可被压接(pressure-bond)到与焊盘电极电连接的另一个导体,并且通过倒装芯片接合(flip chip bonding)被连接到所述另一导体。
[0020]铝或铝合金可通过CVD技术选择性地沉积在开口部中以用铝或铝合金填充所述开口部。
[0021]可使用DMAH气体作为稀释气体、通过使用包括在焊盘电极中的铝或铝合金作为晶种的热生长来沉积铝或铝合金。
[0022]可使用抗蚀剂掩模将气相生长的铝或铝合金沉积在开口部中。
[0023]半导体装置可以被配置为底部发光(bottom-emission) MOS型固态成像兀件
[0024]半导体装置可以被配置为具有层叠结构(stacked structure)的底部发光MOS型固态成像元件。
[0025]根据本技术的第二实施方式,提供了一种电子设备,其包括用半导体材料制成的基板,用多种材料制成并形成在基板上的多个层。被形成为穿透形成在所述基板上的多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露的开口部被填充以铝或铝合金。
[0026]在本技术的第一和第二实施方式中,开口部被填充以铝或铝合金,所述开口部形成为穿透形成在基板上的多个层中的至少被形成为绝缘膜的层并且使焊盘电极的表面暴露。
[0027]根据上述的本技术的实施方式,能够提供高功能的固态成像元件,同时保持高精度的引线接合工艺。
【专利附图】

【附图说明】[0028]图1A至图1D是用于说明引线接合工艺的一个例子的图;
[0029]图2是用于说明顶部发射MOS型固态成像元件的结构的图;
[0030]图3是用于说明底部发光MOS型固态成像元件的结构的图;
[0031]图4是用于说明具有层叠结构的底部发光MOS型固态成像元件的结构的图;
[0032]图5是用于说明通过根据本技术的一个实施方式的技术执行的引线接合的图;
[0033]图6是用于说明通过根据本技术的一个实施方式的技术执行的引线接合的图;
[0034]图7是用于说明通过根据本技术的一个实施方式的技术执行的引线接合的图;
[0035]图8是用于说明通过根据本技术的一个实施方式的技术执行的引线接合的图;
[0036]图9是用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的示例性配置的图;
[0037]图10是用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的另一个示例性配置的图;
[0038]图11是用于说明通过根据本技术的一个实施方式的技术执行的倒装芯片接合的图;
[0039]图12是用于说明通过根据本技术的一个实施方式的技术执行的倒装芯片接合的图;
[0040]图13用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的另一个示例性配置的图;
[0041]图14是示出了作为应用本技术的电子设备的摄像设备的示例性配置的框图。【具体实施方式】
[0042]在下文中,将参考附图详细描述本公开的优选实施方式。请注意,在本说明书和附图中,具有基本相同功能和结构的结构元件用相同的参考标号表示,并且省略对这些结构元件的重复解释。
[0043]在下文中,将参照附图对此处所公开的技术的实施方式进行说明。
[0044]图1A至图1D是用于说明引线接合工艺的一个例子的图。
[0045]在半导体装置的组装工序中,为了将半导体芯片与封装电连接,执行用金属线将半导体芯片上的暴露的金属表面(焊盘电极)与封装的内引线连接的引线接合工序。
[0046]此处,例如,当制造固态成像元件时,球焊技术被广泛用作引线接合工艺,使用金(Au)制成的接合线进行压接,以便将一定量的负荷、热、以及当结合使用超声波时的超声波振动施加给导线。
[0047]首先,如图1A中所示,使用毛细管12将金(Au)制成的接合线11移动到焊盘电极15上。接合线11的前端部分(球)13以球形形成,并且如图1B所示,将毛细管12向下移动,使得球部13被压接到从绝缘膜14暴露出的焊盘电极15。此时,一定量的负荷、热、以及超声波振动被施加到接合线11。
[0048]此后,如图1C所示,将毛细管12向上移动,如图1D所示,毛细管12被移向内引线17以使接合线11与内引线17连接。
[0049]在引线接合的过程中,当焊盘电极15的表面存在于离半导体芯片的表面(图1A至图1D中的绝缘膜14的表面)较深的位置时,毛细管12向下移动的距离长,并且引线接合工艺的精度劣化。由于这个原因,当焊盘电极15的表面存在与离半导体芯片的表面较深的位置时,压接位置不正、导线断开缺陷等有可能发生。此外,由于切割而产生的灰尘或水分可能残留,焊盘腐蚀(外观缺陷)的风险也增加。
[0050]近年来,从功率消耗的角度看,MOS型如CMOS被广泛用作安装在移动设备(如带有摄像头的移动电话或PDA)中的固态成像元件。
[0051]此外,作为MOS型固态成像元件,为了实现高灵敏度、低噪声和高品质的特性,底部发光固态成像元件已经被开发作为像素结构,该元件具有光从的硅(Si)基板的背面侧发射的结构,而不是相关技术中的顶部发射结构。
[0052]图2是用于说明MOS型固态成像元件的结构的图。
[0053]图2是具有顶部发射结构的MOS型固态成像元件。在图2的例子中,被配置为半导体芯片的MOS型固态成像元件从图2的顶部开始包括定制材料(有机物质材料)层21、绝缘薄膜层22、粘接层23、用于电路形成的层间绝缘膜24以及硅基板25。片上透镜(on-chiplens)、滤色器等形成在定制材料层21上,电互连形成在用于电路形成的层间绝缘膜24上,并且光电二极管形成在娃基板25上。
[0054]由于焊盘电极26被布置在粘接层23,为了在焊盘电极26上进行引线接合,有必要暴露出焊盘电极26的表面,为此,有必要形成开口部27,其穿透定制材料层21和绝缘薄膜层22。
[0055]在顶部发射MOS型固态成像元件的情况下,从图2上部发射的光穿过用于电路形成的层间绝缘膜24,直至达到形成在硅基板25上的光电二极管。如上所述,因为电互连形成在用于电路形成的层间绝缘膜24中,例如,可能会出现一种现象,即光在朝向光电二极管的光路中间的互连中反射。在这种情况下,例如,很难使由片上透镜收集的光高效地到达光电二极管。出于这个原因,已经开发了底部发光MOS型固态成像元件。
[0056]图3示出了被配置为半导体芯片的底部发光MOS型固态成像元件。在底部发光MOS型固态成像元件中,光发射自硅基板的另一面(背面侧),因此在没有互连或晶体管的影响的情况下,进入单位像素的光的量可以增加。
[0057]在图3的配置例子中,绝缘薄膜层22在如下状态下被连接:图2的粘接层23、用于电路形成层间绝缘膜24、以及硅基板25的顶部和底部被反转。换句话说,图2中的硅基板25的背面侧处于图3中的绝缘膜层22的正下方。在图3的配置例子中,为了在被布置在粘接层23上的焊盘电极26上进行引线接合,有必要形成穿透硅基板25、用于电路形成的层间绝缘膜24、以及定制材料层21和绝缘薄膜层22的开口部27。因此,图3的例子中的开口部27比图2的例子中的更深。
[0058]例如,在顶部发射MOS型固态成像元件中,到焊盘电极26的深度是2μπι或更小,而在底部发光MOS型固态成像元件中,到焊盘电极26的深度是5μπι至8μπι。
[0059]此外,近年来,作为下一代底部发光固态成像元件,已开发底部发光具有层叠结构的固态成像元件(其为高功能3D设备的领先产品),并预期会大规模生产。
[0060]图4示出了被配置为半导体芯片的具有层叠结构的底部发光MOS型固态成像元件。在具有层叠结构的底部发光MOS型固态成像元件中,由于用于形成电路的多个层堆叠,可以结合实现高图像质量和高功能性需要的大规模信号处理电路,并且芯片尺寸可以减小。[0061]在图4的配置例子中,除了用于电路形成的层间绝缘膜24夕卜,还层叠用于电路形成的层间绝缘膜28,并且焊盘电极26被布置在用于电路形成的层间绝缘膜28上。由于这个原因,在图4的配置例子中,为了在焊盘电极26上进行引线接合,有必要形成穿透定制材料层21、绝缘薄膜层22、硅基板25、用于电路形成的层间绝缘膜24、以及粘接层23的开口部27。因此,图4的例子中的开口部27比图3的例子中的更深。
[0062]例如,在具有层叠结构的底部发光MOS型固态成像元件中,到焊盘电极26的深度为12 μ m或更大。
[0063]如上所述,根据最近的技术发展趋势,到焊盘电极26的深度趋于进一步增加,因此难以保持弓I线接合工艺的精度。
[0064]在这方面,在本技术中,即使当到焊盘电极26的深度进一步增加时,也可以保持引线接合工艺的精度。
[0065]例如,如图5中所示,假定焊盘电极26被布置在开口部27的背面。此处,开口部27形成为被外围部件41所包围,但实际上,如上参照图2至图5所述,外围部件41由定制材料层21、绝缘薄膜层22等形成。
[0066]在本技术中,铝或铝合金被沉积在焊盘电极26的表面上,从而减小了焊盘电极26的深度,并且可以容易地进行引线接合。换句话说,通过使用低温下分解的原料混合气体进行晶体生长,铝或铝合金被沉积在焊盘电极26的表面上,在所述晶体生长中,作为构成暴露的焊盘电极26的金属的铝(Al)或铝合金作为晶种。
[0067]例如,通过使用汽化二甲基铝氢化物(DMAH:ALH (CH3) 2)和稀释气体(H2)的化学气相沉积(CVD)技术,仅在开口部27选择性沉积铝。
[0068]例如,使用DMAH的铝的CVD在JP H4-51525A中被详细公开。
[0069]在图5所示的状态中,在焊盘电极26表面上的污染物被去除后,例如,使用稀释气体作为载体供给DMAH气体,DMAH的全压和分压被适当地设定,然后通过CVD技术进行沉积。此时,根据包括在外围部件41中的定制材料层的特性(例如滤色器材料的耐热性)设定CVD过程温度,并且例如,晶片上的加热温度被设定为250°C或更低。例如,晶片上的加热温度可能被设定为180°C到220°C。当晶片上的温度过低时,原料气体不分解,铝不被析出。
[0070]通过以上过程,例如,如图6所示,铝合金42被沉积在焊盘电极26的表面上。此时,焊盘电极26和沉积的铝合金42 (其已经在200°C被选择性地晶种生长)之间的界面粘附的附着力为约2000kgf/cm2的,并可以具有优于在引线接合时的共享强度(sharestrength)的特性。
[0071]因此,在铝合金42的表面上进行引线接合,并且焊盘电极26可以被电连接。
[0072]换句话说,如图7所示,可以进行引线接合,使得球部13被压接到铝合金42的表面。在这种情况下,例如,与当在图5所示的状态下在焊盘电极26上进行弓I线接合时相比,球部13向下移动的距离减小,从而可以容易地进行引线接合。换句话说,一般情况下,因为焊盘电极26的深度增加,工艺裕度减小,但通过本技术可以抑制工艺裕度的减小。
[0073]或者,替代沉积铝合金42 (或铝),例如,通过无电解Au电镀等,金可以被埋在焊盘电极26上。然而,例如,作为具有层叠结构的底部发光MOS型固态成像元件,当开口部27非常深时,如果使用是同系金属的铝合金42,可以提高粘接方面的可靠性。
[0074]此外,无电解Au电镀通过溶液中的催化反应来刺激增长,当催化剂附着在除焊盘电极26以外的地方时,可能不能以高精度地进行选择性生长。在这方面,当采用铝的晶种晶体生长时,晶体控制是不必要的,容易进行选择性生长,并且选择性优异。此外,铝的价格比黄金低。
[0075]如上所述,根据本技术,即使到焊盘电极26的深度很深,也可以保持引线接合工艺的精度。
[0076]此外,由于填充了铝合金42,因此开口部27的深度变浅,很难残留切割时产生的灰尘,并且很难残留产生的水分。因此,根据本技术,能抑制接合特性缺陷,并且预期会提高
可靠性。
[0077]此外,由于铝合金42被沉积在焊盘电极26上,可以提高对加负荷的引线接合的耐受性,并且例如,可以消除一些损害,例如,在相关技术中引线接合时可能发生的焊盘电极26下的层间膜的破裂。
[0078]其结果是,由于焊盘电极26可以更薄地形成,例如,当半导体芯片的各个层彼此粘合时产生的台阶差可以减小。因此,例如,在顶部发射MOS型固态成像元件中,涂覆定制材料等的工序中发生的不均匀可以减小,可以预期固态成像元件性能的提高和成品率的提高。此外,在底部发光MOS型固态成像元件中,有望改善形成焊盘电极之后进行的粘接工序的成品率。
[0079]此外,由于焊盘电极26的表面由铝合金42保护,电池反应产生的铝离子和切割时产生的硅废物及水分的反应所造成的外观缺陷可以被抑制。
[0080]以上对根据图6的例子的说明是在铝合金是通过CVD技术进行热生长的假设条件下进行的,但可以通过CVD技术进行气相生长铝合金。在这种情况下,例如,如图8所示,可以布置抗蚀剂掩模51,但只有开口部27可被选择性地填充以铝合金。
[0081]上面的说明是结合一个例子进行的,在该例子中,DMAH被用作原料气体,该原料气体用于选择性地以铝合金填充开口部27,但也可以使用任何其它气体。例如,代替DMAH,也可以使用低温下分解的铝金属化合物,如甲基吡咯烷铝烷(MPA)、三异丁基铝(TIBA)、单甲基二氢化铝(MMADH)、二乙基氢化铝(DEAH)、三甲基胺铝烷(TMAA )、三乙胺铝烷(TEAA )或二甲基乙胺铝烷(DMEAA)。
[0082]如上参照图5至图8所述,进行引线接合,从而可以制造例如图9所示的封装结构。
[0083]图9是用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的示例性配置的图。
[0084]在图9所示的封装结构101中,多个微透镜113被布置其上的半导体芯片112被布置在陶瓷基板122上。此外,玻璃111与半导体芯片112平行放置,其间隔着一个空间。
[0085]在图9所示的封装结构101中,在半导体芯片112的右端和左端的开口部114上进行引线接合,使得导线115被连接到内引线121。
[0086]同时,已经结合封装结构101说明了图9的例子,该结构被制造为半导体芯片112通过引线接合与内引线121连接,但半导体芯片112可以通过倒装芯片接合与内引线121连接。
[0087]图10是用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的另一个示例性配置的图。[0088]图10所示的封装结构102,与图9的例子类似,多个微透镜113被布置其上的半导体芯片112被布置在陶瓷基板122上。此外,玻璃111与半导体芯片112平行放置,其间隔
着一个空间。
[0089]在图10的封装结构102中,与图9的例子不同,半导体芯片112的右端和左端的连接部分116通过倒装芯片接合连接到内引线121。
[0090]作为如图10所示制造的封装结构,可以获得比例如图9的例子更小的MOS型固态成像元件的封装结构。该封装结构称为芯片尺寸封装结构。
[0091]如图10所示,当半导体芯片112通过倒装芯片接合与内引线121连接时,铝合金42比例如在图6中所示的状态下填充更多。换句话说,如图11所示,铝合金通过CVD技术沉积,使得开口部27被填充以铝合金42,并且在顶表面上形成圆形凸部42a。
[0092]图11中所示的凸部42a对应于图10中所示的连接部分116,并且通过倒装芯片接合与内引线121连接。此时,形成为凸部42a的铝合金42在一个点接触内引线121的表面,并塌缩,从而可以进行接合,而没有非接触部分。此外,例如,与不设置凸部42a并且铝合金42在一个平面上接触内引线121的表面时相比,接合时的压力大,并且提高了反应性。
[0093]此外,当如图10所示来制造封装结构时,例如,图9所示的导线115是不必要的,从而在固态成像元件中,可以抑制光在金制成的导线上反射时产生的闪耀或阴影。
[0094]此外,当如图10所示制造封装结构时,引线接合工序是不必要的,因此,可以解决引线接合工艺的精度劣化时产生的各种问题。
[0095]已经结合一个例子进行了上面的说明,在该例子中,设置了从半导体芯片的表面穿透到焊盘电极的开口部,并填充铝合金,但可以设置从半导体芯片的背面侧穿透到焊盘电极的开口部并被填充以铝合金,如12所示。
[0096]在图12中,穿透焊盘电极26的开口部27被设置成从背面侧穿透外围部件41,并且开口部27被填充以铝合金42。此外,在图12的例子中,铝合金通过CVD技术沉积,使得在底表面上形成圆形凸部42a。
[0097]因此,例如,连接部分可以在半导体芯片的背面侧上形成并通过倒装芯片接合连接。
[0098]图13用于说明根据本技术的一个实施方式的MOS型固态成像元件的封装结构的另一个示例性配置的图。
[0099]在图103所示的封装结构中,与图10的例子类似,多个微透镜113被布置其上的半导体芯片112被布置在陶瓷基板122上。此外,由树脂113支撑的玻璃111与半导体芯片112平行放置,其间隔着一个空间。
[0100]在图13所示的封装结构103中,与10的例子不同,连接部分116形成在半导体芯片112的右端和左端的背面侧上。图12中所示的凸部42a对应于图13中所示的连接部分116,并通过倒装芯片接合被连接到另一个导体部分等。
[0101]当如13所示制造封装结构时,例如,可以获得芯片尺寸小于图10所示的MOS型固态成像元件的封装结构。
[0102]本技术可应用在整体的电子设备,其中固态成像元件被用作图像捕获单元(光电转换单元),例如包括数字静态照相机或摄像机的成像设备、具有摄像功能的移动终端设备、或复印机,其中,固态成像元件被用作图像扫描单元。[0103]图14是示出了作为应用本技术的电子设备的摄像设备的示例性配置的框图。
[0104]图14的摄像设备600包括具有透镜组的光学单元601、采用了像素2的上述组件的固态成像器件(成像器件)602、以及作为摄像信号处理电路的DSP电路603。摄像设备600还包括帧存储器604、显示单元605、记录单元606、操作单元607和电源单元608。DSP电路603、帧存储器604、显示单元605、记录单元606、操作单元607和电源单元608经由总线609彼此相连。
[0105]光学单元601从对象捕获入射光(图像光)并在固态成像装置602的成像平面上形成图像。固态成像器件602将图像通过光学单元601形成在成像平面上的入射光量转换为像素单元的电信号,并输出电信号作为像素信号。例如,根据上述实施方式的MOS型固态成像元件可以被用作固态成像器件602。
[0106]例如,显示单元605包括平板型显示设备,例如液晶面板或有机电致发光(EL)面板等,并显示由固态成像装置602捕获的运动图像或静止图像。记录单元606将由固体摄像装置602拍摄的运动图像或静止图像记录在记录介质,如视频磁带或数字多功能盘(DVD)

寸T O
[0107]操作单元607根据用户的操作生成用于由摄像设备600提供的各种功能的操作命令。电源单元608适当地将被用作DSP电路603、帧存储器604、显示单元605、记录单元606和操作单元607的操作电力的各种电力提供给供应目标。
[0108]如上所述,因为根据上述实施方式的MOS型固态成像器件的封装结构被用作固态成像器件602,所以即使当到焊盘电极的深度很深时,也可以保持引线接合工艺的精度。
[0109]已就本技术应用于MOS型固态成像元件的封装结构说明了上述实施方式,但是本技术可被应用到另一种封装结构。换句话说,本技术可以应用于各种半导体装置。
[0110]本领域技术人员应当理解,根据设计需求和其他因素,在所附权利要求或其等价方案范围内,可以进行各种修改、组合、子组合以及更改。
[0111]此外,本技术也可以被配置如下。
[0112](I) 一种半导体装置,包括:
[0113]用半导体材料制成的基板;以及
[0114]用多种材料制成并在所述基板上形成的多个层,
[0115]其中,开口部被填充以铝或铝合金,所述开口部被形成为穿透形成在所述基板上的所述多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露。
[0116](2)根据(I)的半导体装置,
[0117]其中,被电连接到所述焊盘电极的导线通过弓I线接合而连接到所述开口部中填充的招或招合金。
[0118](3)根据(I)或(2)的半导体装置,
[0119]其中,所述开口部中填充的铝或铝合金包括从所述半导体装置的表面突出的凸部。
[0120](4)根据(3)的半导体装置,
[0121]其中,所述凸部被压接到与所述焊盘电极电连接的另一导体,并且通过倒装芯片接合来连接到所述另一导体。
[0122](5)根据(I)至(4)中任一项的半导体装置,[0123]其中,铝或铝合金通过CVD技术选择性地沉积在所述开口部中以用铝或铝合金填充所述开口部。
[0124](6)根据(5)的半导体装置,
[0125]其中,使用DMAH气体作为稀释气体、通过使用包括在所述焊盘电极中的铝或铝合金作为晶种的热生长来沉积铝或铝合金。
[0126](7)根据(5)的半导体装置,
[0127]其中,使用抗蚀剂掩模将气相生长的铝或铝合金沉积在所述开口部中。
[0128](8)根据(I)至(7)中任一项的半导体装置,
[0129]其中,半导体装置被配置为底部发光MOS型固态成像元件。
[0130](9)根据(I)至(8)中任一项的半导体装置,
[0131]其中,半导体装置被配置为具有层叠结构的底部发光MOS型固态成像元件。
[0132](10)—种电子设备,包括:
[0133]用半导体材料制成的基板;以及
[0134]用多种材料制成并形成在所述基板上的多个层,
[0135]其中,开口部被填充以铝或铝合金,所述开口部被形成为穿透形成在所述基板上的所述多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露。
[0136]本公开包含的主题涉及于2012年8月24日提交至日本专利局的日本在先专利申请JP2012-185081中所公开的主题,其全部内容通过引用结合于此。
【权利要求】
1.一种半导体装置,包括: 用半导体材料制成的基板;以及 用多种材料制成并在所述基板上形成的多个层, 其中,被形成为穿透形成在所述基板上的所述多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露的开口部被填充以铝或铝合金。
2.根据权利要求1所述的半导体装置, 其中,被电连接到所述焊盘电极的导线通过引线接合而连接到所述开口部中填充的铝或招合金。
3.根据权利要求1所述的半导体装置, 其中,所述开口部中填充的铝或铝合金包括从所述半导体装置的表面突出的凸部。
4.根据权利要求3所述的半导体装置, 其中,所述凸部被压接到与所述焊盘电极电连接的另一导体,并且通过倒装芯片接合来连接到所述另一导体。
5.根据权利要求1所述的半导体装置, 其中,铝或铝合金通过CVD技术选择性地沉积在所述开口部中以用铝或铝合金填充所述开口部。
6.根据权利要求5所述的半导体装置, 其中,使用DMAH气体作为稀释气体、通过使用在所述焊盘电极中包含的铝或铝合金作为晶种进行热生长来沉积铝或铝合金。
7.根据权利要求5所述的半导体装置, 其中,使用抗蚀剂掩模将气相生长的铝或铝合金沉积在所述开口部中。
8.根据权利要求1所述的半导体装置, 其中,所述半导体装置被配置为底部发光MOS型固态成像元件。
9.根据权利要求1所述的半导体装置, 其中,半导体装置被配置为具有层叠结构的底部发光MOS型固态成像元件。
10.一种电子设备,包括: 用半导体材料制成的基板;以及 用多种材料制成并形成在所述基板上的多个层, 其中,被形成为穿透形成在所述基板上的所述多个层中的至少形成为绝缘膜的层并且使焊盘电极的表面暴露的开口部被填充以铝或铝合金。
11.根据权利要求10所述的电子设备, 其中,被电连接到所述焊盘电极的导线通过引线接合而连接到所述开口部中填充的铝或招合金。
【文档编号】H01L27/146GK103633105SQ201310354199
【公开日】2014年3月12日 申请日期:2013年8月14日 优先权日:2012年8月24日
【发明者】龟岛隆季 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1