半导体装置及其制造方法与流程

文档序号:11531328阅读:206来源:国知局
半导体装置及其制造方法与流程

本发明涉及半导体装置及其制造方法,例如,涉及具有金属柱的半导体装置及其制造方法。



背景技术:

为了将三维集成电路微细化,寻求贯通半导体基板的贯通电极即tsv(throughsiliconvia)、将半导体芯片彼此连接的凸起(bump)等金属柱的微细化。

专利文献1及2记载了使用自组织化(日语:自己組織化)的聚合物形成微细的周期图案的技术。非专利文献1记载了以下技术:通过对分散有焊锡粒子的各向异性导电性糊剂(paste)加热,从而使焊锡粒子在电极部分凝集,电极和焊锡进行金属结合。

现有技术文献

专利文献

专利文献1:国际公开第2013/146538号

专利文献2:日本专利公开2014-5325号公报

非专利文献

非专利文献1:积水化学工业株式会社、2014年5月27日新闻稿〈url:http://www.sekisui.co.jp/news/2014/1244746_20127.html〉



技术实现要素:

(一)要解决的技术问题

在专利文献1及2中,未对贯通电极、凸起等金属柱的形成进行记载。在非专利文献1中,不能将凸起微细化。

本发明是鉴于上述课题而完成的,其目的在于将金属柱微细化。

(二)技术方案

本发明为一种半导体装置,其特征在于,具备:在延伸方向上延伸的金属柱;从与所述延伸方向交叉的方向包围所述金属柱的聚合物层;以及经由所述聚合物层与所述金属柱分离,且在所述交叉的方向上包围所述聚合物层的导向体。

在上述结构中,能够构成为,具备在所述延伸方向上层叠的第一基体及第二基体,所述金属柱为将所述第一基体和所述第二基体电连接的凸起。

在上述结构中,能够构成为,所述导向体设置于所述第一基体和所述第二基体中的至少一方。

在上述结构中,能够构成为,具备:在所述第一基体的与所述第二基体对置的面上设置的多个第一电极;以及在所述第二基体的与所述第一基体对置的面上设置的多个第二电极,所述金属柱分别将所述多个第一电极和所述多个第二电极电连接。

在上述结构中,能够构成为,具备:设置于所述第一基体且与所述多个第一电极电连接的第一电路;设置于所述第二基体且与所述多个第二电极电连接的第二电路;检测所述多个第一电极中的至少一个第一电极是否与所述多个第二电极中的任一个第二电极连接的检测电路;以及基于所述检测电路的检测结果,对所述第一电路与所述多个第一电极的连接及所述第二电路与所述多个第二电极的连接中的至少一方进行切换的切换电路。

在上述结构中,能够构成为,具备半导体基板,所述导向体为在贯通所述半导体基板的贯通孔的内面所形成的绝缘体膜,所述聚合物层填充于所述贯通孔内,所述金属柱为贯通所述聚合物层的贯通电极。

在上述结构中,能够构成为,在所述导向体内设置有多个所述金属柱。

在上述结构中,能够构成为,在所述导向体内设置有一个所述金属柱。

在上述结构中,能够构成为,所述导向体为亲水性,所述聚合物层中的与所述导向体连接的区域为亲水性。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的亲水性聚合物层和在所述亲水性聚合物层的内侧设置的疏水性聚合物层,所述金属柱设置于所述疏水性聚合物层的内侧。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的亲水性聚合物层和在所述亲水性聚合物层的内侧设置的疏水性聚合物层,所述金属柱在所述亲水性聚合物层与所述疏水性聚合物层之间呈环状设置。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的亲水性聚合物层和在所述亲水性聚合物层的内侧设置的疏水性聚合物层,在所述亲水性聚合物层与所述疏水性聚合物层之间设置有多个所述金属柱。

在上述结构中,能够构成为,所述导向体为疏水性,所述聚合物层中的与所述导向体连接的区域为疏水性。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的疏水性聚合物层和在所述疏水性聚合物层的内侧设置的亲水性聚合物层,所述金属柱设置于所述亲水性聚合物层的内侧。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的疏水性聚合物层和在所述疏水性聚合物层的内侧设置的亲水性聚合物层,所述金属柱在所述疏水性聚合物层与所述亲水性聚合物层之间呈环状设置。

在上述结构中,能够构成为,所述聚合物层含有在所述导向体的内侧设置的疏水性聚合物层和在所述疏水性聚合物层的内侧设置的亲水性聚合物层,在所述疏水性聚合物层与所述亲水性聚合物层之间设置有多个所述金属柱。

在上述结构中,能够构成为,所述金属柱为多粒子体。

在上述结构中,能够构成为,所述金属柱的材料具有所述聚合物层的材料的熔点以下的熔点。

本发明为一种半导体装置,其特征在于,具备:层叠的第一基体及第二基体;在所述第一基体的与所述第二基体对置的面上设置的多个第一电极;在所述第二基体的与所述第一基体对置的面上设置的多个第二电极;分别将所述多个第一电极和所述多个第二电极连接的多个凸起;设置于所述第一基体,且与所述多个第一电极电连接的第一电路;设置于所述第二基体,且与所述多个第二电极电连接的第二电路;检测所述多个第一电极中的至少一个第一电极是否与所述多个第二电极中的任一个第二电极连接的检测电路;以及基于所述检测电路的检测结果,对所述第一电路与所述多个第一电极的连接及所述第二电路与所述多个第二电极的连接中的至少一方进行切换的切换电路。

本发明为一种半导体装置的制造方法,其特征在于,含有:向导向体内填充含有金属粒子和聚合物的混合物的工序;以及对所述混合物进行热处理的工序,该工序使得所述聚合物凝集于所述导向体侧,从而形成与所述导向体连接的聚合物层,且所述金属粒子经由所述聚合物层与所述导向体分离而凝集,从而由所述金属粒子形成在所述导向体的延伸方向上延伸的金属柱。

在上述结构中,能够构成为,含有在第一基体上配置第二基体的工序,所述进行热处理的工序含有形成所述金属柱来作为将所述第一基体和所述第二基体电连接的凸起的工序。

在上述结构中,能够构成为,填充所述混合物的工序含有:通过在所述第一基体及所述第二基体中的至少一方的表面形成所述混合物,从而向在所述第一基体及所述第二基体中的至少一方的所述表面所形成的所述导向体内填充所述混合物的工序。

在上述结构中,能够构成为,含有:形成贯通半导体基板的贯通孔的工序;以及在所述贯通孔的内面形成绝缘膜作为所述导向体的工序,填充所述混合物的工序为向所述贯通孔内填充所述混合物的工序,所述金属柱为贯通所述聚合物层的贯通电极。

在上述结构中,能够构成为,所述导向体为亲水性,所述聚合物至少含有亲水性聚合物。

在上述结构中,能够构成为,所述聚合物含有亲水性聚合物和疏水性聚合物,在对所述混合物进行热处理的工序中,所述亲水性聚合物凝集于所述导向体侧,所述疏水性聚合物远离所述导向体而凝集。

在上述结构中,能够构成为,所述导向体为疏水性,所述聚合物至少含有疏水性聚合物。

在上述结构中,能够构成为,所述聚合物含有亲水性聚合物和疏水性聚合物,在对所述混合物进行热处理的工序中,所述疏水性聚合物凝集于所述导向体侧,所述亲水性聚合物远离所述导向体而凝集。

在上述结构中,能够构成为,对所述混合物进行热处理的工序是以比所述聚合物的熔点高的温度对所述混合物进行热处理的工序。

本发明的半导体装置的制造方法也可以含有:向在水平方向上延伸的一对导向体之间填充含有金属粒子和聚合物的混合物的工序;以及对所述混合物进行热处理的工序,该工序使得所述聚合物凝集于各导向体侧,从而形成与各导向体连接的聚合物层,且所述金属粒子经由所述聚合物层与各导向体分离而凝集,从而由所述金属粒子形成在水平方向上延伸的金属柱。该情况下,能够得到一种半导体装置,其特征在于,具备:在水平方向上延伸的金属柱;从与所述延伸方向交叉的方向夹着所述金属柱的聚合物层;以及经由所述聚合物层与所述金属柱分离,且在所述交叉的方向上夹着所述金属柱和所述聚合物层的一对导向体。另外,能够容易地形成在水平方向上延伸的金属柱。

另外,本发明的半导体装置的制造方法也可以含有:将金属膜形成于在水平方向上延伸的一对导向体的表面的工序;向各导向体之间填充含有金属粒子和聚合物的混合物的工序;以及对所述混合物进行热处理的工序,该工序使得所述金属离子凝集于各导向体侧,从而形成与各导向体连接并在各导向体的延伸方向上延伸的金属柱,且所述聚合物经由所述金属柱与各导向体分离而凝集,从而形成在各导向体的延伸方向上延伸的聚合物层。该情况下,能够得到一种半导体装置,其特征在于,具备:在延伸方向上延伸的聚合物层;从与所述延伸方向交叉的方向夹着所述聚合物层的金属柱;以及经由所述金属柱而与所述聚合物层分离,且在所述交叉的方向上夹着所述金属柱和所述聚合物层的一对导向体。另外,能够以更狭小的间隔形成金属柱,能够缩窄由金属柱构成的金属配线的间隔。另外,优选含有去除在各导向体的表面露出的金属膜的工序。在将各导向体设置于基体等的表面的情况下,以覆盖基体等的表面和各导向体的表面的方式形成金属膜,在各导向体之间的金属膜上与各导向体隔开间隔地形成导向体层,从而在导向体层的范围内使聚合物凝集,能够形成使各金属柱分离的聚合物层。

另外,本发明的半导体装置的制造方法也可以含有:形成在水平方向上延伸的一对导向体的工序,该一对导向体的内部为金属制,且表面被亲水性或疏水性的薄膜覆盖;向各导向体之间填充含有金属粒子和聚合物的混合物的工序;以及对所述混合物进行热处理的工序,该工序使得所述聚合物凝集于各导向体侧,从而形成与各导向体连接的聚合物层,且所述金属粒子经由所述聚合物层与各导向体分离而凝集,从而由所述金属粒子形成在各导向体的延伸方向上延伸的金属柱。该情况下,能够得到一种半导体装置,其特征在于,具备:在延伸方向上延伸的金属柱;从与所述延伸方向交叉的方向夹着所述金属柱的聚合物层;以及经由所述聚合物层与所述金属柱分离,且在所述交叉的方向上夹着所述金属柱和所述聚合物层的、内部为金属制的一对导向体。另外,通过利用各导向体内部的金属制的部分及金属柱来作为金属配线,从而能够以更狭小的间隔形成金属配线。另外,优选含有去除在各导向体的表面露出的薄膜的工序。

本发明的半导体装置的制造方法也可以进行以下工序,即,堆积多个板状的支撑体,该板状的支撑体是在表面设置多个导向体并向各导向体之间填充所述混合物而成的,然后对所述混合物进行热处理。该情况下,能够得到一种半导体装置,其特征在于,将设置为一个或多个所述金属柱、一个或多个所述聚合物层以及多个所述导向体沿着表面延伸的板状的支撑体,在与所述表面垂直的方向上堆积多个而成。另外,能够在各支撑体堆积而成的各层一次性形成金属柱。在热处理后,也可以具有去除所形成的聚合物层的工序,由此,能够形成多层配线。

(三)有益效果

根据本发明,能够将金属柱微细化。

附图说明

图1的(a)~(d)是说明实施例1的金属柱的形成方法的图。

图2的(a)及(b)是表示实施例2的金属柱的形成方法的图。

图3的(a)及(b)是表示实施例2的变形例1的金属柱的形成方法的图。

图4的(a)及(b)是表示实施例2的变形例2的金属柱的形成方法的图。

图5的(a)~(e)是表示实施例3的金属柱的形成方法的图。

图6的(a)~(e)是表示实施例4的半导体装置的制造方法的剖视图。

图7的(a)~(e)是表示实施例4的变形例1的半导体装置的制造方法的剖视图。

图8的(a)~(d)是表示实施例4的变形例2的半导体装置的制造方法的剖视图。

图9的(a)~(c)是表示实施例5的半导体装置的制造方法的剖视图(之一)。

图10的(a)及(b)是表示实施例5的半导体装置的制造方法的剖视图(之二)。

图11是表示实施例5的半导体装置的制造方法的剖视图(之三)。

图12是在实施例5中产生错位的例。

图13是实施例6的半导体装置的框图。

图14是表示实施例6的检测电路的一例的框图。

图15是说明实施例6的半导体装置的动作的一例的框图(之一)。

图16是说明实施例6的半导体装置的动作的一例的框图(之二)。

图17表示实施例7的金属柱的形成方法,(a)是俯视图,(b)是剖视图。

图18表示实施例8的金属柱的形成方法,(a)是热处理前的剖视图,(b)是热处理后的剖视图。

图19表示实施例8的变形例的金属柱的形成方法,(a)是热处理前的剖视图,(b)是热处理后的剖视图。

图20表示实施例9的金属柱的形成方法,(a)是热处理前的剖视图,(b)是热处理后的剖视图。

具体实施方式

下面,参照附图,对本发明的实施例进行说明。

实施例1

图1的(a)~(d)是说明实施例1的金属柱的形成方法的图。图1的(a)及(c)是俯视图,图1的(b)及(d)分别是图1的(a)及图1的(c)的a-a剖视图。

如图1的(a)及(b)所示,向导向体12内填充含有金属粒子22和聚合物24的混合物20。导向体12具有亲水性或疏水性。作为具有亲水性的导向体12,例如,能够使用氧化硅或氮化硅等无机绝缘体、或者金属。作为具有疏水性的导向体12,能够使用疏水性聚合物等的有机绝缘膜。导向体12也可以是在基体等上形成的膜。导向体12也可以是使基体的表面具有亲水性或疏水性而成的部件。例如,硅的表面为疏水性,但是若使硅的表面氧化而形成氧化硅膜,则成为亲水性的表面。

在混合物20中,金属粒子22分散于聚合物24中。金属粒子22为例如金(au)、铜(cu)、银(ag)、或者含有它们的合金等低电阻金属。另外,金属粒子22也可以由碳纳米管构成。另外,金属粒子22为例如锡(sn)、铟(in)、或者含有它们的合金等熔点低的金属。金属粒子22为例如纳米粒子,具有1nm~100nm程度的直径。在混合物20中分散着的大量金属粒子22也可以由一种金属构成,也可以由多种金属构成,也可以混合有金属粒子和碳纳米管。混合物20中的金属粒子22的含有量优选为1~50vol.%。

作为聚合物24,能够使用例如苯乙烯类聚合物、(甲基)丙烯酸酯类聚合物、乙烯类聚合物、或者二烯类聚合物等加成聚合类聚合物。而且,能够使用尿素类聚合物、酰亚胺类聚合物、或者酰胺类聚合物等缩聚类聚合物。而且,能够使用聚氨酯类聚合物、环氧类聚合物、苯并环丁烯等加成聚合类聚合物。另外,能够使用它们的混合物。

更详细而言,聚合物24为例如聚苯乙烯(ps)、聚甲基丙烯酸甲酯(pmma)等有机聚合物。另外,作为聚合物24,例如,能够使用聚烯烃(例如,聚乙烯或者聚丙烯)、聚烯氧化物(例如,聚氧化乙烯)、聚氧化丙烯、聚氧化丁烯、聚醚、聚(甲基)丙烯酸酯、聚苯乙烯、聚酯、聚有机硅氧烷、聚有机甲锗烷、或者它们的混合物。

作为聚合物24,除了上述以外,也能够使用专利文献1、2所例示出的物质、或者其它的聚合物。聚合物24也可以含有填料等的粒子。聚合物24含有的粒子为例如氧化硅等热膨胀系数小的无机绝缘物。在导向体12为亲水性时,聚合物24优选至少含有亲水性聚合物。在导向体12为疏水性时,聚合物24优选至少含有疏水性聚合物。聚合物的亲水性或者疏水性能够通过聚合物24的极化、亲水基或疏水基的有无、和/或聚合物24的分子量等来控制。

此外,广泛使用接触角来作为表示亲水性、疏水性指标。即,接触角越小,则亲水性越高,接触角越大,则疏水性越高。例如,就作为聚合物24的例子举出的物质的接触角而言,苯乙烯类聚合物为约90度,(甲基)丙烯酸酯类聚合物为约70度,乙烯类聚合物为约90度,尿素类聚合物为约80度,酰亚胺类聚合物为75~90度,酰胺类聚合物为50~70度,聚氨酯类聚合物为80~95度,环氧类聚合物为约90度,苯并环丁烯为约90度。本说明书中,“亲水性”、“疏水性”仅仅表示相对的性质。

如图1的(c)及(d)所示,对混合物20进行热处理。由此,金属粒子22和聚合物24进行相分离。此时,聚合物24凝集于导向体12侧。由此,由所凝集的聚合物24形成与导向体12连接的聚合物层16。由于聚合物24凝集于导向体12侧,因此金属粒子22远离导向体12而凝集。由此,由所凝集的金属粒子22形成经由聚合物层16与导向体12分离的金属柱14。这样,聚合物24和金属粒子22自组织化,在聚合物层16内形成金属柱14。金属柱14在导向体12的延伸方向上延伸。在导向体12为亲水性,且聚合物24含有亲水性聚合物的情况下,聚合物24容易以与导向体12连接的方式凝集。由此,聚合物层16中的与导向体12连接的区域成为亲水性。在导向体12为疏水性,且聚合物24含有疏水性聚合物的情况下,聚合物24容易以与导向体12连接的方式凝集。由此,聚合物层16中的与导向体12连接的区域成为疏水性。这样,为了使聚合物24以与导向体12连接的方式凝集并在聚合物层16内高效地形成金属柱14,聚合物24的接触角和导向体12的材料的接触角越接近越好。

相比亲水性聚合物,熔融金属的极化率更高。极化率高的聚合物亲水性高,亲水性高的物质和亲水性低的物质更容易进行相分离。因此,相比亲水性聚合物,疏水性聚合物更容易和熔融金属进行相分离。因此,在金属粒子22熔融的情况下,优选导向体12具有疏水性,聚合物24含有疏水性聚合物。另外,通过使用无机绝缘膜等,从而能够容易地形成亲水性的导向体12。因此,也可以是导向体12具有亲水性,聚合物24含有亲水性聚合物。

在这样形成的半导体装置中,聚合物层16从与延伸方向交叉的方向包围金属柱14。导向体12经由聚合物层16与金属柱14分离,从与延伸方向交叉的方向包围聚合物层16。导向体12也可以不形成为完全包围聚合物层16。即,在图1的(c)中,包围聚合物层16的一部分为疏水性,而一部分为亲水性,这样也可以。在图1的(d)中,包围聚合物层16的一部分为疏水性,而一部分为亲水性,这样也可以。

根据实施例1,聚合物24凝集于导向体12侧,从而形成聚合物层16,金属粒子22远离导向体12而凝集,从而形成金属柱14。由此,金属柱14形成为与导向体12分离。因此,能够缩小金属柱14的直径和/或金属柱14的间隔。这样,能够将金属柱14微细化。通过将金属柱14微细化,能够降低其配线的电容。金属柱14的直径及间隔能够设置成例如0.1μm~10μm。为了将金属柱14微细化,优选金属柱14的直径及间隔为1μm以下。金属柱14的高度能够设置成例如1μm~100μm。例如,能够形成纵横比为10以上的金属柱14。

热处理温度只要是使金属粒子22和聚合物24进行相分离的温度即可。例如,作为热处理温度,能够采取150℃~300℃。进一步优选为200℃~250℃。为了进行相分离,热处理温度优选比聚合物24的熔点高。

作为金属粒子22,能够使用熔点比热处理温度低的材料(例如,熔点比聚合物24低的材料)。该情况下,通过使热处理温度比金属粒子22的熔点高,从而金属柱14熔融。因此,不会在金属柱14上形成细孔。为了使金属粒子22熔融,金属柱14的熔点优选为聚合物层16的熔点以下,但是也可以比聚合物层16的熔点高。在使用熔点比热处理温度高的材料来作为金属粒子22的情况下,金属柱14成为金属粒子22彼此集合并接触而成的具有细孔的多粒子体。

实施例2

实施例2是使用亲水性聚合物与疏水性聚合物的混合物来作为聚合物24的例子。图2的(a)及(b)是表示实施例2的金属柱的形成方法的图。图2的(a)是俯视图,图2的(b)是图2的(a)的a-a剖视图。在实施例2的图2的(a)及(b)中,使用亲水性聚合物与疏水性聚合物的混合物来作为聚合物24。相比亲水性聚合物,疏水性聚合物具有疏水性。亲水性聚合物和疏水性聚合物为互相不混和的聚合物。亲水性聚合物和疏水性聚合物的选择能够通过聚合物24的极化、亲水基的有无、和/或聚合物的分子量等而适当选择。

如图2的(a)及(b)所示,通过对混合物进行热处理,从而亲水性聚合物、疏水性聚合物以及金属粒子进行相分离。在导向体12为亲水性时,亲水性聚合物凝集于导向体12侧,在导向体12侧形成的第一聚合物层16a为亲水性聚合物层。疏水性聚合物远离导向体12而凝集,在第一聚合物层16a的内侧形成疏水性聚合物层,即第二聚合物层16b。金属粒子22凝集于疏水性聚合物的内侧,在第二聚合物层16b的内侧形成金属柱14。在导向体12为疏水性时,疏水性聚合物凝集于导向体12侧,亲水性聚合物远离导向体12而凝集。由此,第一聚合物层16a成为疏水性聚合物层,第二聚合物层16b成为亲水性聚合物层,此外,其它结构与实施例1相同,省略说明。

图3的(a)及(b)是表示实施例2的变形例1的金属柱的形成方法的图。图3的(a)是俯视图,图3的(b)是图3的(a)的a-a剖视图。如图3的(a)及(b)所示,在实施例2的变形例1中,在第一聚合物层16a的内侧形成金属柱14。在金属柱14的内侧形成第二聚合物层16b。这样,在第一聚合物层16a与第二聚合物层16b之间呈环状地形成金属柱14。其它结构与实施例2相同,省略说明。

图4的(a)及(b)是表示实施例2的变形例2的金属柱的形成方法的图。图4的(a)是俯视图,图4的(b)是图4的(a)的a-a剖视图。如图4的(a)及(b)所示,在实施例2的变形例2中,在第一聚合物层16a与第二聚合物层16b之间形成多个金属柱14。其它结构与实施例2的变形例1相同,省略说明。

根据实施例2及其变形例,聚合物24含有亲水性聚合物和疏水性聚合物。由此,在导向体12为亲水性时,在热处理中,亲水性聚合物凝集于导向体12侧,疏水性聚合物远离导向体12而凝集。因此,第一聚合物层16a成为亲水性聚合物层,第二聚合物层16b成为疏水性聚合物层。在导向体12为疏水性时,第一聚合物层16a成为疏水性聚合物层,第二聚合物层16b成为亲水性聚合物层。这样,在亲水性聚合物和疏水性聚合物进行相分离时,金属粒子22也进行相分离,因此,金属粒子22比实施例1更容易凝集。因此,能够高精度地形成金属柱14。

在金属粒子22熔融的情况下,相比亲水性聚合物,熔融金属更容易与疏水性聚合物进行相分离。因此,使导向体12具有亲水性,使第一聚合物层16a成为亲水性聚合物层。由此,通过疏水性聚合物与熔融金属的相分离而形成金属柱14。因此,能够更高精度地形成金属柱14。

如实施例2所示,金属柱14也可以设置于第二聚合物层16b的内侧。由此,能够缩小金属柱14的直径。如实施例2的变形例1所示,也可以在第一聚合物层16a与第二聚合物层16b之间呈环状地设置金属柱14。如实施例2的变形例2所示,也可以在第一聚合物层16a与第二聚合物层16b之间设置多个金属柱14。由此,能够进一步缩小金属柱14的间隔。

选择实施例2及其变形例的哪一个,能够根据亲水性聚合物及疏水性聚合物的材料和/或分子量等、金属粒子22的材料和/或粒径、热处理条件而适当设定。例如,在疏水性聚合物的疏水性弱的情况下,能够形成类似于实施例2那样的金属柱14。在疏水性聚合物的疏水性强的情况下,能够形成类似于实施例2的变形例1那样的金属柱14。通过在混合物20上设置作为种的多个电极,能够形成类似于实施例2的变形例2那样的金属柱14。

实施例3

实施例3是在导向体12内形成多个金属柱14的例子,是中通孔(via-middle)法的例子。图5的(a)~(e)是表示实施例3的金属柱的形成方法的图。图5的(a)及(c)是俯视图,图5的(b)及(d)分别是图5的(a)及(c)的a-a剖视图,图5的(e)是相当于图5的(a)及(c)的a-a截面的剖视图。

如图5(a)及图5(b)所示,向导向体12内填充混合物20。如图5的(c)及(d)所示,在导向体12及混合物20上形成具有多个开口的绝缘膜26。绝缘膜26例如为氧化硅或氮化硅等的无机绝缘膜、或者树脂等的有机绝缘膜。经由绝缘膜26的多个开口,以与混合物20连接的方式形成多个电极28。电极28例如为金、铜、镍(ni)或者钛(ti)等的金属层。也可以在形成绝缘膜26及电极28后向导向体12内充填混合物20。

如图5的(e)所示,对混合物20进行热处理。金属粒子22以多个电极28为种而凝集,分别形成多个金属柱14。其它结构与实施例1相同,省略说明。

根据实施例3,在导向体12内设置有多个金属柱14。由此,即使不将导向体12微细化,也能够将金属柱14微细化。尤其是能够缩小金属柱14的间隔。根据电极28的配置,能够任意地设定金属柱14的配置。

另外,通过电极28与混合物20连接,从而以与多个电极28分别连接的方式设置多个金属柱14。在电极28之间,绝缘膜26与混合物20连接,因此,金属柱14不形成于电极28之间。由此,能够使多个金属柱14的间隔更加微细。

在金属柱14为类似于锡或铟那样的熔点低的金属的情况下,为了在热处理时不使电极28熔融,电极28优选为熔点比金属柱14高的材料。为了作为锡或铟的种而发挥功能,电极28优选为镍。在金属柱14为类似于金或铜那样的熔点高的金属的情况下,为了在热处理时不使电极28熔融,电极28也可以为与金属柱14相同的材料。

在电极28为形成金属柱14时的种的情况下,也可以不设置导向体12。另外,导向体12和聚合物的亲水性、疏水性也可以不对应。

实施例4

实施例4是将金属柱14用于贯通半导体基板的贯通电极的例,是后通孔(via-last)法的例。图6的(a)~(e)是表示实施例4的半导体装置的制造方法的剖视图。

如图6的(a)所示,在半导体基板10上形成含有晶体管等的晶体管区域30。半导体基板10为例如单晶硅基板。在半导体基板10上形成电极34。电极34为例如铜层或镍层等金属层。在半导体基板10上形成多层配线32。多层配线32为交替地层叠多个绝缘层和配线层的构造。绝缘层为例如氧化硅层,配线层为铜层等导电层。由多层配线32和晶体管区域30内的晶体管等形成电路。在多层配线32上形成电极38。电极38是铜层等导电层。电极38和电极34经由多层配线32内的配线36而电连接。也可以在电极38上形成凸起等。电极34也可以与晶体管区域30的晶体管电连接。

如图6的(b)所示,对半导体基板10的下表面进行研磨。由此,将半导体基板10薄膜化成例如10μm~100μm厚的程度。

如图6的(c)所示,从半导体基板10的下表面形成贯通半导体基板10的孔18。孔18的形成使用深rie(reactiveionetching)法。在孔18的内面形成导向体12。孔18的直径例如为1μm~10μm。通过例如对半导体基板10进行热氧化,从而形成氧化硅膜的导向体12。作为导向体12,也可以使用例如cvd(chemicalvapordeposition)法来形成氧化硅膜等绝缘膜。由此,形成亲水性的导向体12。另外,作为导向体12,也可以在孔18的内面形成聚合物等的有机绝缘膜。例如,通过使pmda(pyromelliticdianhydride)和oda(oxydianiline)聚合,从而能够形成疏水性的聚酰亚胺的导向体12。

如图6的(d)所示,使用实施例1、实施例2及其变形例的金属柱的形成方法,在孔18内形成聚合物层16和金属柱14。如图6的(e)所示,在半导体基板10的下表面形成与金属柱14电连接的电极40。电极40例如为铜层等金属层。金属柱14作为将电极34和电极40电连接的贯通电极而发挥功能。金属柱14的直径为例如0.1μm~数μm。

实施例4的变形例1是中通孔法的例子。图7的(a)~(e)是表示实施例4的变形例1的半导体装置的制造方法的剖视图。如图7的(a)所示,在半导体基板10的上表面形成晶体管区域30。

如图7的(b)所示,从半导体基板10的上表面形成孔18。在孔18的内面形成导向体12。如图7的(c)所示,使用实施例1、实施例2及其变形例的金属柱的形成方法,在孔18内形成聚合物层16和金属柱14。如图7的(d)所示,在半导体基板10的上表面形成电极34、多层配线32以及电极38。如图7的(e)所示,研磨半导体基板10的下表面,以使金属柱14露出。在半导体基板10的下表面形成与金属柱14电连接的电极40。其它结构与实施例4相同,省略说明。

实施例4的变形例2是在孔18内形成多个金属柱14的例子。图8的(a)~(d)是表示实施例4的变形例2的半导体装置的制造方法的剖视图。如图8的(a)所示,在半导体基板10的上表面形成晶体管区域30,在半导体基板10的上表面形成多层配线32。多层配线32内的配线36将电极34和38电连接。在半导体基板10的上表面相邻地形成多个电极34。

如图8的(b)所示,研磨半导体基板10的下表面。以使相邻的多个电极34露出的方式,从半导体基板10的下表面形成贯通半导体基板10的孔18。在孔18的内面形成导向体12。

如图8的(c)所示,使用实施例3的金属柱的形成方法,在孔18内形成多个金属柱14和聚合物层16。金属柱14以与电极34连接的方式形成。通过设定电极34的配置,从而能够以任意的配置形成金属柱14。如图8的(d)所示,形成与金属柱14连接的电极40。金属柱14的间隔例如为0.1μm~数μm。其它结构与实施例4相同,省略说明。

根据实施例4及其变形例,如图6的(c)、图7的(b)以及图8的(b)所示,形成贯通半导体基板10的贯通孔,即孔18。如图6的(c)、图7的(b)以及图8的(b)所示,在孔18的内面形成绝缘膜来作为导向体12。如图6的(d)、图7的(c)以及图8的(c)所示,向孔18内填充混合物。然后,使用实施例1~3及其变形例,作为贯通聚合物层16的贯通电极,形成金属柱14。

在形成贯通半导体基板10的贯通电极的情况下,难以以低成本形成纵横比高的微细的贯通电极。例如,在孔内形成绝缘膜。为了抑制贯通电极与半导体基板的短路,使绝缘膜比较厚。在绝缘膜内形成阻挡层及种晶层(seedlayer)。然后,考虑使用镀层法来形成贯通电极的方法。在该方法中,制造工时变多,制造成本提高。另外,难以在纵横比高的孔内形成绝缘膜、阻挡层、种晶层。

在实施例4及其变形例中,聚合物层16作为用于抑制贯通电极与半导体基板的短路的绝缘膜而发挥功能,导向体12用于将孔18的内面设置成亲水性或疏水性。因此,作为导向体12使用的绝缘膜也可以是薄的。利用自组织化来形成聚合物层16,因此能够加厚聚合物层16。因为能够加厚聚合物层16,所以,相对于孔18的纵横比,能够提高贯通电极的纵横比。这样,能够以低成本形成纵横比高的微细的贯通电极。

在形成金属柱14后,不推荐施加使聚合物层16熔融的温度。例如,不推荐对聚合物层16施加300℃以上的温度。在实施例4中,在形成多层配线32后,形成金属柱14。因此,在形成多层配线32的工序中,能够施加比实施例4的变形例1高的温度。

在实施例4的变形例2中,在孔18内形成多个金属柱14。因此,能够将贯通电极的间隔微细化。也可以将在孔18内形成多个金属柱14的方法应用于中通孔法。

此外,在实施例4及其变形例2中,因为电极34成为形成金属柱14时的种,所以也可以不设置导向体12。另外,导向体12和聚合物的亲水性、疏水性也可以不对应。

实施例5

实施例5是将金属柱14用作将层叠的半导体芯片等的基体彼此连接的微凸起的例子。图9的(a)~9(c)、图10的(a)、图10的(b)以及图11是表示实施例5的半导体装置的制造方法的剖视图。

如图9的(a)所示,半导体芯片11具有半导体基板10、多层配线32以及电极38。在半导体基板10的上表面形成有晶体管区域30。在半导体基板10上形成有多层配线32。在多层配线32上形成有电极38。也可以设置有贯通半导体基板10的贯通电极。

如图9的(b)所示,在半导体芯片11上形成导向体12。导向体12例如为绝缘膜,例如为氧化硅膜等无机绝缘体或者树脂等有机绝缘体。导向体12的至少侧面为亲水性或疏水性。导向体12以包围电极38的方式形成。

如图9的(c)所示,在半导体芯片11上形成混合物20。混合物20以覆盖导向体12的方式形成。

如图10的(a)所示,以混合物20彼此对置的方式配置半导体芯片11a及11b。半导体芯片11a及11b为例如图9的(c)所示的半导体芯片11。由此,在半导体芯片11a及11b的互相对置的面配置多个电极38。如图10的(b)所示,使半导体芯片11a及11b的混合物20接触。

如图11所示,通过进行热处理,聚合物凝集于导向体12侧而形成聚合物层16。金属粒子以电极38为种而凝集,形成将电极38彼此连接的金属柱14。金属柱14将半导体芯片11a和11b电连接。金属柱14的直径及间隔为例如0.1μm~10μm。金属柱14的高度为例如1μm~数十μm。

根据实施例5,如图10的(a)所示,在作为第一基体的半导体芯片11a上配置作为第二基体的半导体芯片11b。如图11所示,使用实施例1~3及其变形例,形成金属柱14来作为将半导体芯片11a和11b电连接的凸起。具体而言,金属柱14分别将半导体芯片11a的多个电极38和半导体芯片11b的多个电极38连接。

在非专利文献1的方法中,在相邻的电极之间不形成凸起,因此难以缩小电极间隔。在实施例5中,因为设置有导向体12,所以即使电极38的间隔缩小也能够形成金属柱14。因此,能够将凸起微细化。

在实施例5中,在半导体芯片11a及11b双方设置有导向体12,但是只要在半导体芯片11a及11b中的至少一方设置有导向体12即可。另外,虽然向半导体芯片11a及11b双方的导向体12填充了混合物20,但是,也可通过在半导体芯片11a及11b中的至少一方的表面形成混合物20,从而向在半导体芯片11a及11b中的至少一方的表面形成的导向体12内填充混合物20。

在实施例5中,作为第一基体及第二基体,分别以半导体芯片11a及11b为例进行了说明,但是第一基体及第二基体中的至少一方可以为插板(interposer),也可以为配线基板。

实施例6

实施例6是半导体芯片具有检测电路及切换电路的例子。图12是在实施例5中产生了错位的例子。如图12所示,在实施例5中,在使半导体芯片11a和11b对置地配置时,产生错位。在实施例5中,能够缩小金属柱14的间距。例如,能够将电极38的间距设置为1μm以下。另一方面,半导体芯片11a与11b的对准精度为例如数μm。因此,若产生错位,则会导致通过金属柱14将与本来应该彼此连接的电极38不同的电极38彼此电连接。在实施例6中,解决这样的课题。

图13是实施例6的半导体装置的框图。半导体芯片11a及11b分别具备检测电路50a及50b、切换电路52a及52b、以及内部电路54a及54b。检测电路50a及50b、切换电路52a及52b以及内部电路54a及54b含在由晶体管区域30内的晶体管和多层配线32形成的电子电路中。多个电极38a及38b和检测电路50a及50b通过多个配线60a及60b而分别电连接。检测电路50a及50b和切换电路52a及52b通过多个配线62a及62b而分别电连接。切换电路52a及52b和内部电路54a及54b通过多个配线64a及64b而分别电连接。半导体芯片11a的多个电极38a和半导体芯片11b的多个电极38b通过多个金属柱14而分别电连接。

内部电路54a及54b是实现半导体芯片的原有功能的电路(第一电路及第二电路),分别经由电极38a及38b和配线60a及60b至64a及64b而电连接。检测电路50a及50b检测多个电极38a的至少一个电极38a是否与多个电极38b中的任一个电极38b连接。切换电路52a及52b基于检测电路50a及50b的检测结果,切换内部电路54a与多个电极38a的连接、及内部电路54b与多个电极38b的连接中的至少一方。

对使用边界扫描(boundaryscan)电路来作为检测电路50a及50b的例进行说明。图14是表示实施例6的检测电路的一例的框图。省略了切换电路52a及52b的图示。虽然对从半导体芯片11a向11b输出信号的情况进行说明,但是从半导体芯片11b向11a输出信号的情况也相同。

如图14所示,半导体芯片11a及11b分别具备检测电路50a及50b以及内部电路54a及54b。检测电路50a及50b分别具备bs(边界扫描)电路72a及72b、缓存74a及74b以及控制电路76a及76b。

bs电路72a基于控制电路76a的指示,在内部电路54a工作时向缓存74a输出内部电路54a输出的信号,在边界扫描时,使从相邻的bs电路72a所输入的边界扫描信号与时钟同步地向其它bs电路72a输出。缓存74a调整从bs电路72a所输入的信号的电平等,并向电极38a输出。

bs电路72b基于控制电路76b的指示,在内部电路54b工作时,向内部电路54b输出缓存74b所输出的信号,在边界扫描时,使从相邻的bs电路72b所输入的边界扫描信号与时钟同步地向其它bs电路72b输出。缓存74b调整输入到电极38b的信号的电平等,并向bs电路72b输出。

控制电路76a及76b控制bs电路72a及72b,进行边界扫描。配线78a及78b传送边界扫描信号。电极38a及38b输入或输出在内部电路54a与54b之间传送的信号。电极38a和38b通过金属柱14而电连接。电极38c及38d输入或输出边界扫描信号,且通过金属柱14而连接。电极38e及38f输入或输出在控制电路76a与76b之间传输的控制信号,且通过金属柱14而连接。

控制电路76a及76b进行边界扫描,从而能够检测多个电极38a的至少一个电极38a是否与多个电极38b中的任一个电极38b连接。

在由于半导体芯片11a与11b的错位而使电极38c和38d未连接,和/或电极38e与38f未连接的情况下,便不能进行边界扫描。因此,即使半导体芯片11a与11b错位,也要使电极38c和38d连接,电极38e和38f连接。例如,分别设置多个电极38c~38f。或者,增大电极38c~38f的面积。由此,即使半导体芯片11a和11b错位而接合,多个电极38c和多个38d的任一个也将连接。电极38e和38f也相同。

图15及图16是说明实施例6的半导体装置的工作的一例的框图。省略了检测电路50的图示。如图15及图16所示,切换电路52a及52b分别具备对多个配线62a及62b和多个配线64a及64b的连接进行切换的多个开关66a及66b。开关66a及66b分别能够任意地将与多个配线62a及62b连接的端子a~h、和与多个配线64a及64b连接的端子a~h连接或断开。

在图15中,本来应该连接的电极38a及38b彼此未偏离(shift),通过金属柱14而连接。开关66a及66b将端子a~h分别与端子a~h连接。由此,以本来应该连接的连接关系将内部电路54a及54b彼此电连接。

在图16中,电极38a及38b彼此偏离后连接。在图16的例中,电极38b向左侧偏离两个而与电极38a连接。切换电路52a将端子a~f分别与端子b~g连接。切换电路52b将端子c~h分别与端子b~g连接。由此,以本来应该连接的连接关系将内部电路54a及54b彼此电连接。此外,内部电路54a及54b的两端的配线64a及64b虚设(dummy)。

根据实施例6,检测电路50a及50b检测电极38a及38b彼此的连接关系,切换电路52a及52b切换内部电路54a与电极38a的连接、及内部电路54b与电极38b的连接中的至少一方。由此,在半导体芯片11a及11b的对准精度比电极38a及38b的间距大的情况下,即使电极38a及38b彼此的连接偏离本来的连接关系,也能够将内部电路54a及54b彼此以本来的连接关系连接。

在半导体芯片11a及11b彼此的对准为无旋转而平行地偏移的情况下,电极38a与电极38b的偏离的方向及量对于所有的电极38a及38b相同。因此,例如,在电极38a及38b以相同的间距排列的情况下,切换电路52a及52b只要按照使电极38a与电极38b的连接以相同方向且相同量进行偏移的方式切换连接即可。另外,检测电路50a及50b只要对一个电极38a检测是否与任一个电极38b连接即可。由此,决定电极38a与38b的偏离方向及量。

也可以不设置检测电路50a及50b的任意一方。也可以不设置切换电路52a及52b的任意一方。

在实施例6中,虽然以使用实施例5的方法来层叠半导体芯片11a及11b的情况为例进行了说明,但是在半导体芯片11a及11b用其它方法层叠的情况下,也能够应用检测电路50a及50b、以及切换电路52a及52b。

实施例7

实施例7是形成在水平方向上延伸的金属柱的例子。图17的(a)及(b)是表示实施例7的金属柱14的形成方法的图。图17的(a)是俯视图,图17的(b)是图17的(a)的a-a剖视图。与实施例1相同,向在基体的表面以在水平方向上延伸的方式设置的一对导向体12之间填充含有金属粒子和聚合物的混合物。然后,如图17的(a)及(b)所示,通过对混合物进行热处理,金属粒子和聚合物进行相分离。

此时,聚合物凝集于各导向体12侧而形成一对聚合物层16,并且金属粒子远离各导向体12而凝集,在各聚合物层16之间形成金属柱14。各聚合物层16及金属柱14沿着各导向体12的延伸方向,在水平方向上延伸。其它结构与实施例1相同,省略说明。这样,根据本发明的实施方式的半导体装置的制造方法,不仅能够形成在垂直方向上延伸的金属柱14,还能够形成在水平方向上延伸的金属柱14。另外,通过将各导向体12预先向右、左弯曲,从而不仅能够形成笔直地延伸的金属柱14,还能够形成向右、左弯曲的金属柱14。

实施例8

实施例8是表示缩窄金属配线的间隔的方法的例子。图18及图19是表示实施例8的金属柱14的形成方法的剖视图。如图18的(a)所示,在基体80的表面设置由氧化硅等构成的一对导向体12,以覆盖基体80的表面及各导向体12的表面的方式设置薄的金属膜82。再在各导向体12的中间部的金属膜82上,与各导向体12隔开间隔地形成与各导向体12为相同材料的薄的导向体层84。与实施例1相同,向各导向体12的内侧的金属膜82及导向体层84上填充含有金属粒子22和聚合物24的混合物20。此时,金属粒子22和金属膜82优选由相同种类的金属或者接触角相近的金属构成。

然后,如图18的(b)所示,通过对混合物20进行热处理,从而金属粒子22和聚合物24进行相分离。此时,金属粒子22凝集于使金属膜82露出的各导向体12侧而形成一对金属柱14,并且聚合物24在各金属柱14之间的导向体层84的范围凝集而形成聚合物层16。去除在各导向体12的表面露出的金属膜82及聚合物层16下的金属膜82,从而能够形成互相分离的金属柱14。由此,相比类似于图17的实施例7那样的在聚合物层16之间形成金属柱14的情况,能够以更狭小的间隔形成金属柱14,能够缩窄由金属柱14构成的金属配线的间隔。此外,金属柱14可以构成在垂直方向上延伸的配线,也可以构成在水平方向上延伸的配线。

作为实施例8的变形例,如图19的(a)所示,在基体80的表面设置一对金属制的芯部86,且形成覆盖基体80的表面及各芯部86的表面的由氧化硅等构成的薄膜88。在此,各芯部86和覆盖各芯部86的局部的薄膜88分别构成导向体12。与实施例1相同地,向各导向体12的内侧的薄膜88上填充含有金属粒子22和聚合物24的混合物20。

然后,如图19的(b)所示,对混合物20进行热处理,从而金属粒子22和聚合物24进行相分离。此时,聚合物24沿着薄膜88而凝集,以在各导向体12之间覆盖薄膜88的表面的方式形成聚合物层16,并且金属粒子22凝集于聚合物层16的表面中央部而形成金属柱14。去除各芯材86的上部的薄膜88,从而能够形成金属制的各芯材86及金属柱14。通过将金属制的各芯材86及金属柱14用作金属配线,从而相比图17的实施例7,能够以更狭小的间隔形成金属配线。此外,金属制的各芯材86及金属柱14可以构成在垂直方向上延伸的配线,也可以构成在水平方向上延伸的配线。

实施例9

实施例9是表示一次进行多层的配线的方法的例子。图20的(a)及(b)是表示实施例9的金属柱14的形成方法的剖视图。如图20的(a)所示,首先,作为最下层,在薄的板状的支撑体90的表面以在水平方向上延伸的方式设置多个导向体12,与实施例1相同地,向各导向体12之间填充含有金属粒子22和聚合物24的混合物20。然后,在此基础上,作为从下起的第二层,堆积支撑体90,相同地,设置多个导向体12,填充混合物20。以下相同地进行,从而层叠多个由支撑体90、导向体12以及混合物20构成的层。此外,支撑体90优选与各导向体12为相同材质。

然后,如图20的(b)所示,对混合物20进行热处理,从而金属粒子22和聚合物24进行相分离。此时,聚合物24凝集于支撑体90及各导向体12侧而形成聚合物层16,并且金属粒子22远离支撑体90及各导向体12而凝集,在聚合物层16的内部形成金属柱14。其它结构与实施例1相同,省略说明。由此,能够一次性在堆积多个支撑体90而成的各层形成金属柱14。因此,通过去除聚合物层16,从而能够形成多层配线。

如图20的(a)及(b)所示,通过在支撑体90的各导向体12之间开开设孔92,从而能够将在该支撑体90的表面形成的金属柱14和在该支撑体90与其之下的支撑体90之间形成的金属柱14连接,能够将各支撑体90之间的层彼此电连接。为了能够去除所形成的聚合物层16,优选以能够从支撑体90的侧方与各导向体12之间的空间连通的方式将各导向体12设置于支撑体90的表面。

以上,虽然对发明的优选的实施例进行了详细叙述,但是本发明不限于该特定的实施例,在权利要求书记载的本发明的宗旨的范围内,能够进行各种变形、变更。

附图标记说明

10:半导体基板;

11、11a、11b:半导体芯片;

12:导向体;

14:金属柱;

16:聚合物层;

16a:第一聚合物层;

16b:第二聚合物层;

18:孔;

20:混合物;

22:金属粒子;

24:聚合物;

26:绝缘膜;

28、34、38、38a-38f、40:电极;

30:晶体管区域;

32:多层配线;

36:配线;

50a、50b:检测电路;

52a、52b:切换电路;

54a、54b:内部电路;

60a、60b、62a、62b、64a、64b:配线;

66a、66b:开关;

72a、72b:bs电路;

74a、74b:缓存;

76a、76b:控制电路;

78a、78b:配线;

80:基体;

82:金属膜;

84:导向体层;

86:芯部;

88:薄膜;

90:支撑体;

92:孔。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1